1
|
Bhilare KD, Dobariya P, Hanak F, Rothwell PE, More SS. Current understanding of the link between angiotensin-converting enzyme and pain perception. Drug Discov Today 2024; 29:104089. [PMID: 38977123 PMCID: PMC11368640 DOI: 10.1016/j.drudis.2024.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
The renin-angiotensin system (RAS) is known to affect diverse physiological processes that affect the functioning of many key organs. Angiotensin-converting enzyme (ACE) modulates a variety of bioactive peptides associated with pain. ACE inhibitors (ACEis) have found applications in the treatment of cardiovascular, kidney, neurological and metabolic disorders. However, ACEis also tend to display undesirable effects, resulting in increased pain sensitization and mechanical allodynia. In this review, we provide comprehensive discussion of preclinical and clinical studies involving the evaluation of various clinically approved ACEis. With the emerging knowledge of additional factors involved in RAS signaling and the indistinct pharmacological role of ACE substrates in pain, extensive studies are still required to elucidate the mechanistic role of ACE in pain perception.
Collapse
Affiliation(s)
- Kiran D Bhilare
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Prakashkumar Dobariya
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Filip Hanak
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Patrick E Rothwell
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Swati S More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
He Y, Liu S, Lin H, Ding F, Shao Z, Xiong L. Roles of organokines in intervertebral disc homeostasis and degeneration. Front Endocrinol (Lausanne) 2024; 15:1340625. [PMID: 38532900 PMCID: PMC10963452 DOI: 10.3389/fendo.2024.1340625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
The intervertebral disc is not isolated from other tissues. Recently, abundant research has linked intervertebral disc homeostasis and degeneration to various systemic diseases, including obesity, metabolic syndrome, and diabetes. Organokines are a group of diverse factors named for the tissue of origin, including adipokines, osteokines, myokines, cardiokines, gastrointestinal hormones, and hepatokines. Through endocrine, paracrine, and autocrine mechanisms, organokines modulate energy homeostasis, oxidative stress, and metabolic balance in various tissues to mediate cross-organ communication. These molecules are involved in the regulation of cellular behavior, inflammation, and matrix metabolism under physiological and pathological conditions. In this review, we aimed to summarize the impact of organokines on disc homeostasis and degeneration and the underlying signaling mechanism. We focused on the regulatory mechanisms of organokines to provide a basis for the development of early diagnostic and therapeutic strategies for disc degeneration.
Collapse
Affiliation(s)
- Yuxin He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Ding
- Department of Orthopaedics, JingMen Central Hospital, Jingmen, China
- Hubei Minzu University, Enshi, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Hasegawa T, Akeda K, Yamada J, Kawaguchi K, Takegami N, Fujiwara T, Natsume T, Ide K, Matsuyama Y, Sudo A. Regenerative effects of platelet-rich plasma releasate injection in rabbit discs degenerated by intradiscal injection of condoliase. Arthritis Res Ther 2023; 25:216. [PMID: 37941067 PMCID: PMC10631205 DOI: 10.1186/s13075-023-03200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Intradiscal condoliase injection is an alternative therapeutic option for lumbar disc herniation (LDH). However, it is often associated with disc degeneration. Several in vivo studies have demonstrated the regenerative potential of platelet-rich plasma (PRP) in disc degeneration. Thus, we hypothesized that the intradiscal injection of PRP releasate (PRPr), a soluble releasate isolated from PRP, has the potential to regenerate degenerated intervertebral discs (IVDs) induced by condoliase. This study examined the regenerative effects of PRPr on rabbit IVDs degenerated following condoliase injection. METHODS Eleven New Zealand white rabbits were used in this study. Condoliase (12.5 mU/10 μl) was injected into two non-contiguous discs (L2-L3 and L4-L5), and L3-L4 disc was left intact as a non-injection control. Saline (20 μl) or PRPr (20 μl) was randomly injected into L2-L3 and L4-L5 discs 4 weeks after the condoliase injection. Disc height (DH) was radiographically monitored biweekly from the day of condoliase injection to 16 weeks post-injection. Changes in DH were expressed as percentage DH (%DH) normalized to the baseline DH. Sixteen weeks after condoliase injection, all rabbits were euthanized, and subjected to MRI and histological analyses. RESULTS Intradiscal injection of condoliase induced a significant decrease in %DH (L2-L3 and L4-L5) to 52.0% at week 4. However, the %DH began to return to normal after saline injection and reached 76.3% at week 16. In the PRPr group, %DH began to recover to normal after the PRPr injection and was restored to 95.5% at week 16. The MRI-modified Pfirrmann grade of the PRPr group was significantly lower than that of the saline group (P < 0.01). Histological analyses showed progressive degenerative changes, including reduction of the NP area and condensation of the matrix in the saline and PRPr groups. The histological score of the PRPr group was significantly lower than that of the saline group (P < 0.01). CONCLUSIONS PRPr has great potential to enhance the regeneration of degenerated rabbit IVDs induced by condoliase. The results of this preclinical study suggest that PRPr injection therapy may be indicated for patients with LDH who have poor recovery from disc degeneration after chemonucleolysis treatment with condoliase.
Collapse
Affiliation(s)
- Takahiro Hasegawa
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Koji Akeda
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan.
| | - Junichi Yamada
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Koki Kawaguchi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Norihiko Takegami
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Tatsuhiko Fujiwara
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Takahiro Natsume
- Hamamatsu Pharma Research, Inc., Pharmacology, Hamamatsu, Shizuoka, Japan
| | - Koichiro Ide
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yukihiro Matsuyama
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| |
Collapse
|
4
|
Sun H, Wang H, Zhang W, Mao H, Li B. Single-cell RNA sequencing reveals resident progenitor and vascularization-associated cell subpopulations in rat annulus fibrosus. J Orthop Translat 2022; 38:256-267. [PMID: 36568849 PMCID: PMC9758498 DOI: 10.1016/j.jot.2022.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background One of the main causes of low back pain is intervertebral disc degeneration (IDD). Annulus fibrosus (AF) is important for the integrity and functions of the intervertebral disc (IVD). However, the resident functional cell components such as progenitors and vascularization-associated cells in AF are yet to be fully identified. Purpose Identification of functional AF cell subpopulations including resident progenitors and vascularization-associated cells. Methods In this study, the single-cell RNA sequencing data of rat IVDs from a public database were analyzed using Seurat for cell clustering, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for functional analysis, StemID for stem cell identification, Monocle and RNA velocity for pseudotime differentiation trajectory validation, single-cell regulatory network inference and clustering (SCENIC) for gene regulatory network (GRN) analysis, and CellChat for cell-cell interaction analysis. Immunostaining on normal and degenerated rat IVDs, as well as human AF, was used for validations. Results From the data analysis, seven AF cell clusters were identified, including two newly discovered functional clusters, the Grem1 + subpopulation and the Lum + subpopulation. The Grem1 + subpopulation had progenitor characteristics, while the Lum + subpopulation was associated with vascularization during IDD. The GRN analysis showed that Sox9 and Id1 were among the key regulators in the Grem1 + subpopulation, and Nr2f2 and Creb5 could be responsible for the vascularization function in the Lum + subpopulation. Cell-cell interaction analysis revealed highly regulated cellular communications between these cells, and multiple signaling networks including PDGF and MIF signaling pathways were involved in the interactions. Conclusions Our results revealed two new functional AF cell subpopulations, with stemness and vascularization induction potential, respectively. The Translational potential of this article These findings complement our knowledge about IVDs, especially the AF, and in return provide potential cell source and regulation targets for IDD treatment and tissue repair. The existence of the cell subpopulations was also validated in human AF, which strengthen the clinical relevance of the findings.
Collapse
Affiliation(s)
- Heng Sun
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haijiao Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China,Corresponding author.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China,Corresponding author. 178 Ganjiang Rd, Rm 201 Bldg 18, Soochow University (North Campus), Suzhou, Jiangsu, 215007, China.
| |
Collapse
|
5
|
Guo Y, Guo K, Hu T, Wu D. Correlation between serum angiotensin-converting enzyme (ACE) levels and intervertebral disc degeneration. Peptides 2022; 157:170867. [PMID: 36055434 DOI: 10.1016/j.peptides.2022.170867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 10/31/2022]
Abstract
Studies have shown that the renin-angiotensin system (RAS) might play an essential role in intervertebral disc degeneration (IDD). The study aimed to investigate the relationship between serum angiotensin-converting enzyme (ACE) concentration and IDD and its predictive value for severe disc degeneration. 245 patients who came to our hospital for low back pain were recruited, and blood samples were collected for routine examination. Descriptive data and demographic parameters were collected. The cumulative grade 1 was calculated by summing up the Pfirrmann grade of all lumbar discs. ACE concentration grouping was determined via tertile split. Correlation analysis and multivariable linear regression analysis were performed to determine the relationship between ACE and IDD. The receiver's degree of disc degeneration (ROC) curve determined the ACE's predictive value. Results indicated that there was no significant difference in demographic parameters among groups. Correlation analysis and multivariate linear analysis showed that ACE was an independent risk factor for IDD. The cumulative grade 1 increased significantly with the increase in ACE concentration, which was consistent with the correlation analysis. Average Pfirrmann grade < 4 indicates mild to moderate degeneration, and grade ≥ 4 indicates severe degeneration in terms of an individual disc. From L1/2 to L5/S1, the mean plasma ACE concentration was significantly higher in the severe degeneration group than in the mild to moderate degeneration group. According to the ROC curve, the cut-off value of ACE levels was 22.5. patients with ACE > 22.5 had severe degeneration. The sensitivity and specificity were 0.762 and 0.521, respectively.
Collapse
Affiliation(s)
- Youfeng Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Tissue Renin-Angiotensin System (tRAS) Induce Intervertebral Disc Degeneration by Activating Oxidative Stress and Inflammatory Reaction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3225439. [PMID: 34413926 PMCID: PMC8369181 DOI: 10.1155/2021/3225439] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022]
Abstract
Lumbar intervertebral disc degeneration (IDD) has been the major contributor to low back pain (LBP). IDD is an chronic inflammation process, with the activation of plentiful inflammation-related cytokines and ECM degradation-related enzymes. In the past few years, hypertension has been reported to correlate with LBP. In addition, the local tissue renin-angiotensin system (tRAS) has been identified in multiple tissues, including the spinal cord, skin, kidney, heart, and bone. Recently, tRAS has also been established in both bovine and human intervertebral disc tissues, especially in the degenerated disc tissue. However, the exact of tRAS and IDD remains unknown. In this present study, proteomic analysis, molecular biology analysis, and animal model were all used. Firstly, we revealed that tRAS was excessively activated in the human degenerated intervertebral disc tissue via proteomic analysis and molecular biology analysis. Then, in vitro experiment suggested that Ang II could decrease the cell viability of human NP cells and promote NP cell apoptosis, senescence, oxidative stress, and NLRP3 activation in human NP cells. In addition, Ang II could also trigger degeneration and fibrosis phenotype in human NP cells. Finally, the animal model demonstrated that the local activated ACE/Ang II axis in the NP tissue could accelerate IDD in aging spontaneously hypertensive rats (SHR). Collectively, the degenerated intervertebral disc tissue showed excessively activated tRAS, and local activated tRAS could induce NP cell senescence, apoptosis, oxidative stress, and inflammatory reaction to promote IDD. These biological effects of Ang II on human NP cells may provide novel insight into further treatment of IDD.
Collapse
|
7
|
Teixeira GQ, Yong Z, Kuhn A, Riegger J, Goncalves RM, Ruf M, Mauer UM, Huber-Lang M, Ignatius A, Brenner RE, Neidlinger-Wilke C. Interleukin-1β and cathepsin D modulate formation of the terminal complement complex in cultured human disc tissue. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:2247-2256. [PMID: 34169354 DOI: 10.1007/s00586-021-06901-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Formation of terminal complement complex (TCC), a downstream complement system activation product inducing inflammatory processes and cell lysis, has been identified in degenerated discs. However, it remains unclear which molecular factors regulate complement activation during disc degeneration (DD). This study investigated a possible involvement of the pro-inflammatory cytokine interleukin-1β (IL-1β) and the lysosomal protease cathepsin D (CTSD). METHODS Disc biopsies were collected from patients suffering from DD (n = 43) and adolescent idiopathic scoliosis (AIS, n = 13). Standardized tissue punches and isolated cells from nucleus pulposus (NP), annulus fibrosus (AF) and endplate (EP) were stimulated with 5% human serum (HS) alone or in combination with IL-1β, CTSD or zymosan. TCC formation and modulation by the complement regulatory proteins CD46, CD55 and CD59 were analysed. RESULTS In DD tissue cultures, IL-1β stimulation decreased the percentage of TCC + cells in AF and EP (P < 0.05), whereas CTSD stimulation significantly increased TCC deposition in NP (P < 0.01) and zymosan in EP (P < 0.05). Overall, the expression of CD46, CD55 and CD59 significantly increased in all isolated cells during culture (P < 0.05). Moreover, cellular TCC deposition was HS concentration dependent but unaffected by IL-1β, CTSD or zymosan. CONCLUSION These results suggest a functional relevance of IL-1β and CTSD in modulating TCC formation in DD, with differences between tissue regions. Although strong TCC deposition may represent a degeneration-associated event, IL-1β may inhibit it. In contrast, TCC formation was shown to be triggered by CTSD, indicating a multifunctional involvement in disc pathophysiology.
Collapse
Affiliation(s)
- Graciosa Q Teixeira
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Ulm, Germany.
| | - Zhiyao Yong
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Ulm, Germany
| | - Amelie Kuhn
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University, Ulm, Germany
| | - Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University, Ulm, Germany
| | - Raquel M Goncalves
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Ulm, Germany.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Michael Ruf
- Center for Spine Surgery, Orthopedics, and Traumatology, SRH-Klinikum Karlsbad-Langensteinbach, Karlsbad, Germany
| | - Uwe M Mauer
- Department of Neurosurgery, German Armed Forces Hospital, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Ulm, Germany
| | - Rolf E Brenner
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Cornelia Neidlinger-Wilke
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Takegami N, Akeda K, Yamada J, Sano T, Murata K, Huang J, Masuda K, Sudo A. RANK/RANKL/OPG system in the intervertebral disc. Arthritis Res Ther 2017; 19:121. [PMID: 28576140 PMCID: PMC5457592 DOI: 10.1186/s13075-017-1332-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/15/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The receptor activator of NF-κB ligand (RANKL), a member of the TNF ligand superfamily, is known to regulate bone metabolism. The expression of each component of the RANK/RANKL/osteoprotegerin (OPG) system in the intervertebral disc (IVD) has not been examined in detail. The purposes of this study were to examine the expression of the RANK/RANKL/OPG system and to evaluate the function of RANKL in the matrix metabolism of the rat IVD. METHODS Sprague-Dawley, 12-week-old, male rats were used in this study. Anulus fibrosus (AF), nucleus pulposus (NP) and cartilaginous endplate (CEP) cells isolated from dissected thoracolumbar discs were monolayer-cultured. RANK/RANKL/OPG expression in rat IVDs was examined using real-time polymerase chain reaction (PCR) and immunohistochemical analysis (cultured cells and IVD tissues). To examine the effect of interleukin-1β (IL-1β) stimulation on the mRNA levels of RANK, RANKL and OPG, the cells were cultured with or without recombinant human IL-1β (rhIL-1β). To evaluate the effect of RANKL on the mRNA expression of catabolic factors (IL-1β, matrix metalloproteinase-3 (MMP-3) and MMP-13), the cells were cultured with RANKL in the presence or absence of rhIL-1β. The immunohistochemical expression of this system was also evaluated using human IVD tissues with different grades of degeneration. RESULTS mRNA expression levels of RANK, RANKL, and OPG were clearly identified in AF, NP and CEP cells. Immunoreactivity to RANK, RANKL and OPG was distributed in the cell membranes and/or cytoplasm of the three types of cells. The mRNA level of RANKL was significantly upregulated by treatment with rhIL-1β of the three types of cells. Treatment with RANKL without rhIL-1β did not induce significant effects on the mRNA expression of catabolic factors by AF, NP and CEP cells. However, the expression was significantly upregulated by stimulation with RANKL in the presence of rhIL-1β. There was a general trend for more RANK/RANKL/OPG-positive cells in human IVD tissues in an advanced stage of degeneration compared to an early stage. CONCLUSIONS Our study showed the possibility that the RANK/RANKL/OPG system may play a part in the process of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Norihiko Takegami
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Koji Akeda
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan.
| | - Junichi Yamada
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Tomohiko Sano
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Koichiro Murata
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Jenny Huang
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Dr, La Jolla, 92093-0863, USA
| | - Koichi Masuda
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Dr, La Jolla, 92093-0863, USA
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| |
Collapse
|
9
|
Molinos M, Almeida CR, Caldeira J, Cunha C, Gonçalves RM, Barbosa MA. Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interface 2015; 12:20141191. [PMID: 25673296 DOI: 10.1098/rsif.2014.1191] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and in vitro studies as well as in vivo animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players.
Collapse
Affiliation(s)
- Maria Molinos
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Universidade do Porto, Porto, Portugal
| | - Catarina R Almeida
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Joana Caldeira
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Patologia e Imunologia-IPATIMUP, Universidade do Porto, Porto, Portugal
| | - Carla Cunha
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Raquel M Gonçalves
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Mário A Barbosa
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Universidade do Porto, Porto, Portugal
| |
Collapse
|