1
|
Bahar ME, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Akter KM, Kim DH, Yang J, Kim DR. Targeting Autophagy for Developing New Therapeutic Strategy in Intervertebral Disc Degeneration. Antioxidants (Basel) 2022; 11:antiox11081571. [PMID: 36009290 PMCID: PMC9405341 DOI: 10.3390/antiox11081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain. IVDD is characterized by abnormal expression of extracellular matrix components such as collagen and aggrecan. In addition, it results in dysfunctional growth, senescence, and death of intervertebral cells. The biological pathways involved in the development and progression of IVDD are not fully understood. Therefore, a better understanding of the molecular mechanisms underlying IVDD could aid in the development of strategies for prevention and treatment. Autophagy is a cellular process that removes damaged proteins and dysfunctional organelles, and its dysfunction is linked to a variety of diseases, including IVDD and osteoarthritis. In this review, we describe recent research findings on the role of autophagy in IVDD pathogenesis and highlight autophagy-targeting molecules which can be exploited to treat IVDD. Many studies exhibit that autophagy protects against and postpones disc degeneration. Further research is needed to determine whether autophagy is required for cell integrity in intervertebral discs and to establish autophagy as a viable therapeutic target for IVDD.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, GyeongNam, Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju 52727, GyeongNam, Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
- Correspondence: ; Tel.: +82-55-772-8054
| |
Collapse
|
2
|
Hollenberg AM, Maqsoodi N, Phan A, Huber A, Jubril A, Baldwin AL, Yokogawa N, Eliseev RA, Mesfin A. Bone morphogenic protein-2 signaling in human disc degeneration and correlation to the Pfirrmann MRI grading system. Spine J 2021; 21:1205-1216. [PMID: 33677096 PMCID: PMC8356724 DOI: 10.1016/j.spinee.2021.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Back and neck pain secondary to disc degeneration is a major public health burden. There is a need for therapeutic treatments to restore intervertebral disc (IVD) composition and function. PURPOSE To quantify ALK3, BMP-2, pSMAD1/5/8 and MMP-13 expression in IVD specimens collected from patients undergoing surgery for disc degeneration, to correlate ALK3, BMP-2, pSMAD1/5/8 and MMP-13 expression in IVD specimens to the 5-level Pfirrmann MRI grading system, and to compare ALK3, BMP-2, pSMAD1/5/8 and MMP-13 expression between cervical and lumbar degenerative disc specimens. STUDY DESIGN An immunohistochemical study assessing ALK3, BMP-2, pSMAD1/5/8, and MMP-13 expression levels in human control and degenerative IVD specimens. METHODS Human IVD specimens were collected from surgical patients who underwent discectomy and interbody fusion at our institution between 1/2015 and 8/2017. Each patient underwent MRI prior to surgery. The degree of disc degeneration was measured according to the 5-level Pfirrmann MRI grading system. Patients were categorized into either the 1) control group (Pfirrmann grades I-II) or 2) degenerative group (Pfirrmann grades III-V). Histology slides of the collected IVD specimens were prepared and immunohistochemical staining was performed to assess ALK3, BMP-2, pSMAD1/5/8, and MMP-13 expression levels in the control and degenerative specimens. Expression levels were also correlated to the Pfirrmann criteria. Lastly, the degenerative specimens were stratified according to their vertebral level and expression levels between the degenerative lumbar and cervical discs were compared. RESULTS Fifty-two patients were enrolled; however, 2 control and 2 degenerative patients were excluded due to incomplete data sets. Of the remaining 48 patients, there were 12 control and 36 degenerative specimens. Degenerative specimens had increased expression levels of BMP-2 (p=.0006) and pSMAD1/5/8 (p<.0001). Pfirrmann grade 3 (p=.0365) and grade 4 (p=.0008) discs had significantly higher BMP-2 expression as compared to grade 2 discs. Pfirrmann grade 4 discs had higher pSMAD1/5/8 expression as compared to grade 2 discs (p<.0001). There were no differences in ALK3 or MMP-13 expression between the control and degenerative discs (p>.05). Stratifying the degenerative specimens according to their vertebral level showed no significant differences in expression levels between the lumbar and cervical discs (p>.05). CONCLUSIONS BMP-2 and pSMAD1/5/8 signaling activity was significantly upregulated in the human degenerative specimens, while ALK3 and MMP-13 expression were not significantly changed. The expression levels of BMP-2 and pSMAD1/5/8 correlate positively with the degree of disc degeneration measured according to the Pfirrmann MRI grading system. CLINICAL SIGNIFICANCE BMP-SMAD signaling represents a promising therapeutic target to restore IVD composition and function in the setting of disc degeneration.
Collapse
Affiliation(s)
- Alex M Hollenberg
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Noorullah Maqsoodi
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Amy Phan
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aric Huber
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ayodeji Jubril
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Avionna L Baldwin
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Noriaki Yokogawa
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Roman A Eliseev
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Addisu Mesfin
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
3
|
Melo CM, Nader HB, Justo GZ, Pinhal MAS. Heparanase modulation by Wingless/INT (Wnt). Mol Biol Rep 2021; 48:3117-3125. [PMID: 33891270 DOI: 10.1007/s11033-021-06348-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/08/2021] [Indexed: 11/28/2022]
Abstract
Heparanase is an endo-beta-glucuronidase, the only enzyme in mammals capable of cleaving heparan sulfate/heparin chains from proteoglycans. The oligosaccharides generated by heparanase present extensive biological functions since such oligosaccharides interact with adhesion molecules, growth factors, angiogenic factors and cytokines, modulating cell proliferation, migration, inflammation, and carcinogenesis. However, the regulation of heparanase activity is not fully understood. It is known that heparanase is synthesized as an inactive 65 kDa isoform and that post-translation processing forms an active 50 kDa enzyme. In the present study, we are interested in investigating whether heparanase is regulated by its own substrate as observed with many other enzymes. Wild-type Chinese hamster (Cricetulus griséus) ovary cells (CHO-K1) were treated with different doses of heparin. Heparanase expression was analyzed by Real-time PCR and flow cytometry. Also, heparanase activity was measured. The heparanase activity assay was performed using a coated plate with biotinylated heparan sulfate. In the present assay, a competitive heparin inhibition scenario was set aside. Exogenous heparin trigged a cell signaling pathway that increased heparanase mRNA and protein levels. The Wnt/beta-catenin pathway, judged by TCF-driven luciferase activity, seems to be involved to enhance heparanase profile during treatment with exogenous heparin. Lithium chloride treatment, an activator of the Wnt/beta-catenin pathway, confirmed such mechanism of transduction in vivo using zebrafish embryos and in vitro using CHO-K1 cells. Taken together the results suggest that heparin modulates heparanase expression by Wnt/beta-catenin.
Collapse
Affiliation(s)
- Carina Mucciolo Melo
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, 4a. andar, Biologia Molecular, São Paulo, SP, 04044-020, Brazil.,Department of Biochemistry, Faculdade de Medicina do ABC, Avenida Príncipe de Gales, 821, Bioquímica, Santo André, SP, 09060-650, Brazil
| | - Helena Bonciani Nader
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, 4a. andar, Biologia Molecular, São Paulo, SP, 04044-020, Brazil
| | - Giselle Zenker Justo
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, 4a. andar, Biologia Molecular, São Paulo, SP, 04044-020, Brazil.,Department of Biochemistry, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, no. 275 - Jd. Eldorado, Diadema, SP, CEP: 09972-270, Brazil
| | - Maria Aparecida Silva Pinhal
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, 4a. andar, Biologia Molecular, São Paulo, SP, 04044-020, Brazil. .,Department of Biochemistry, Faculdade de Medicina do ABC, Avenida Príncipe de Gales, 821, Bioquímica, Santo André, SP, 09060-650, Brazil.
| |
Collapse
|
4
|
Genome-wide analysis of DNA methylation profile identifies differentially methylated loci associated with human intervertebral disc degeneration. PLoS One 2019; 14:e0222188. [PMID: 31513634 PMCID: PMC6742346 DOI: 10.1371/journal.pone.0222188] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Environmental and endogenous factors under genetic predisposition are considered to initiate the human intervertebral disc (IVD) degeneration. DNA methylation is an essential mechanism to ensure cell-specific gene expression for normal development and tissue stability. Aberrant epigenetic alterations play a pivotal role in several diseases, including osteoarthritis. However, epigenetic alternations, including DNA methylation, in IVD degeneration have not been evaluated. The purpose of this study was to comprehensively compare the genome-wide DNA methylation profiles of human IVD tissues, specifically nucleus pulpous (NP) tissues, with early and advanced stages of disc degeneration. METHODS Human NP tissues were used in this study. The samples were divided into two groups: early stage degeneration (n = 8, Pfirrmann's MRI grade: I-III) and advanced stage degeneration (n = 8, grade: IV). Genomic DNA was processed for genome-wide DNA methylation profiling using the Infinium MethylationEPIC BeadChip array. Extraction of raw methylation data, clustering and scatter plot of each group values of each sample were performed using a methylation module in GenomeStudio software. The identification of differentially methylated loci (DMLs) and the Gene Ontology (GO) analysis were performed using R software with the ChAMP package. RESULTS Unsupervised hierarchical clustering revealed that early and advanced stage degenerated IVD samples segregated into two main clusters by their DNA methylome. A total of 220 DMLs were identified between early and advanced disc degeneration stages. Among these, four loci were hypomethylated and 216 loci were hypermethylated in the advanced disc degeneration stage. The GO enrichment analysis of genes containing DMLs identified two significant GO terms for biological processes, hemophilic cell adhesion and cell-cell adhesion. CONCLUSIONS We conducted a genome-wide DNA methylation profile comparative study and observed significant differences in DNA methylation profiles between early and advanced stages of human IVD degeneration. These results implicate DNA methylation in the process of human IVD degeneration.
Collapse
|
5
|
Abstract
STUDY DESIGN This is a retrospective clinical case series (case-control study). OBJECTIVE To clarify the influence of facet joint osteoarthritis (FJOA) on the pathology of degenerative spondylolisthesis (DS) using in vivo 3-dimensional image analysis. SUMMARY OF BACKGROUND DATA There are no radical treatments to prevent progression of DS in patients with lumbar spinal canal stenosis associated with DS. Therefore, an effective treatment method based on the pathology of DS should be developed. PATIENTS AND METHODS In total, 50 patients with lumbar spinal canal stenosis involving L4/5 who underwent dynamic computed tomography were divided into 2 groups: with DS [spondylolisthesis (Sp) group; 12 male, 14 female; mean age, 74 y]; and without DS (non-Sp group; 15 male, 9 female; mean age, 70 y). Degeneration of the intervertebral disk and FJOA at L4/5 were evaluated using magnetic resonance imaging. Disk and intervertebral foramen heights, the distance between the craniocaudal edges of the facet joint, and the interspinous distance were measured on dynamic computed tomographic images. Also, in vivo 3-dimensional segmental motion was evaluated using the volume merge method. RESULTS There were no significant differences in degenerative findings for the intervertebral disk; however, progressive FJOA was detected in the Sp group. Dynamic changes in the distance between the craniocaudal edges of the facet joints were significantly larger in the Sp group. CONCLUSIONS In this study, progressive FJOA and larger segmental motion in the distance between the craniocaudal edges of the facet joints were found in the Sp group. We clarified for the first time that DS involves ligament laxity due to FJOA that affects spinal segmental motion in vivo. We consider that a treatment method based on FJOA would be useful for treating patients with DS. LEVEL OF EVIDENCE Level IV.
Collapse
|
6
|
Song XX, Shi S, Guo Z, Li XF, Yu BW. Estrogen receptors involvement in intervertebral discogenic pain of the elderly women: colocalization and correlation with the expression of Substance P in nucleus pulposus. Oncotarget 2018; 8:38136-38144. [PMID: 28430617 PMCID: PMC5503520 DOI: 10.18632/oncotarget.15421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/08/2017] [Indexed: 11/25/2022] Open
Abstract
Estrogenic modulation of pain is an exceedingly complex phenomenon. However, whether estrogen is involved in discogenic low back pain still remains unclear. Here, immunoreactivity staining technique was used to examine the expression level of the estrogen receptors (ERα and ERβ) and a pain related neuropeptide, Substance P in the lumbar intervertebral discs to analyze the relationship between the ERs and Substance P. Nucleus pulposus tissues of 23 elderly female patients were harvested during spinal surgeries and made to detect the immunoreactivity staining of ERα, ERβ and Substance P. The colocalization and intensities of ERs and Substance P were explored and evaluated respectively. The correlations between changes of ERα, ERβ and Substance P were also assessed.Our results revealed that Substance P colocalized with ERα and ERβ both in cytoplasm and nucleus of the nucleus pulposus cells. HSCORE analysis indicated that Substance P negatively correlated with both ERα and ERβ expression. Collectively, the crosstalk between ERs and Substance P might exist in the disc tissue. Estrogen-dependent pain mechanism might partly be mediated through ERs and Substance P in the nucleus pulposus of the elderly females. Estrogen and its receptors might be drug targets in discogenic low back pain diseases.
Collapse
Affiliation(s)
- Xiao-Xing Song
- Department of Anesthesiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Orthopaedic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Shi
- Department of Orthopaedic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Guo
- Department of Orthopaedic Surgery, Yang Pu Hospital, Tongji University, Shanghai, China
| | - Xin-Feng Li
- Department of Orthopaedic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bu-Wei Yu
- Department of Anesthesiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Zhang Y, Hu J, Duan C, Hu P, Lu H, Peng X. Correlation study between facet joint cartilage and intervertebral discs in early lumbar vertebral degeneration using T2, T2* and T1ρ mapping. PLoS One 2017; 12:e0178406. [PMID: 28570641 PMCID: PMC5453520 DOI: 10.1371/journal.pone.0178406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/14/2017] [Indexed: 01/31/2023] Open
Abstract
Recent advancements in magnetic resonance imaging have allowed for the early detection of biochemical changes in intervertebral discs and articular cartilage. Here, we assessed the feasibility of axial T2, T2* and T1ρ mapping of the lumbar facet joints (LFJs) to determine correlations between cartilage and intervertebral discs (IVDs) in early lumbar vertebral degeneration. We recruited 22 volunteers and examined 202 LFJs and 101 IVDs with morphological (sagittal and axial FSE T2-weighted imaging) and axial biochemical (T2, T2* and T1ρ mapping) sequences using a 3.0T MRI scanner. IVDs were graded using the Pfirrmann system. Mapping values of LFJs were recorded according to the degeneration grades of IVDs at the same level. The feasibility of T2, T2* and T1ρ in IVDs and LFJs were analyzed by comparing these mapping values across subjects with different rates of degeneration using Kruskal-Wallis tests. A Pearson's correlation analysis was used to compare T2, T2* and T1ρ values of discs and LFJs. We found excellent reproducibility in the T2, T2* and T1ρ values for the nucleus pulposus (NP), anterior and posterior annulus fibrosus (PAF), and LFJ cartilage (intraclass correlation coefficients 0.806-0.955). T2, T2* and T1ρ mapping (all P<0.01) had good Pfirrmann grade performances in the NP with IVD degeneration. LFJ T2* values were significantly different between grades I and IV (PL = 0.032, PR = 0.026), as were T1ρ values between grades II and III (PL = 0.002, PR = 0.006) and grades III and IV (PL = 0.006, PR = 0.001). Correlations were moderately negative for T1ρ values between LFJ cartilage and NP (rL = -0.574, rR = -0.551), and between LFJ cartilage and PAF (rL = -0.551, rR = -0.499). T1ρ values of LFJ cartilage was weakly correlated with T2 (r = 0.007) and T2* (r = -0.158) values. Overall, we show that axial T1ρ effectively assesses early LFJ cartilage degeneration. Using T1ρ analysis, we propose a link between LFJ degeneration and IVD NP or PAF changes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Chunyue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ping Hu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Hongbin Lu
- Department of Sports Medicine and Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xianjing Peng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- * E-mail:
| |
Collapse
|
8
|
Campos MFD, Oliveira CPD, Neff CB, Correa OMDT, Pinhal MAS, Rodrigues LMR. STUDIES OF MOLECULAR CHANGES IN INTERVERTEBRAL DISC DEGENERATION IN ANIMAL MODEL. ACTA ORTOPEDICA BRASILEIRA 2016; 24:16-21. [PMID: 26997908 PMCID: PMC4775483 DOI: 10.1590/1413-785220162401152960] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: To evaluate the structural and molecular changes in the extracellular matrix (ECM) during the process of intervertebral disc degeneration, using animal model. Methods: Wistar rats underwent intervertebral disc degeneration through 20-gauge needle puncture, and 360° rotation applied for 30 sec, representing the degenerated group, while control group was not submitted to this procedure. Histological parameters and expression of extracellular matrix molecules were evaluated in the 15th and 28th days after degenerative induction. Results: Fifteen days after the induction of intervertebral disc degeneration, significant changes were observed, such as reduction in the expression metalloprotease-9 (MMP9) and interleukins (IL-6 and IL-10). There was a significant increase in the expression of vascular endothelial growth factor (VEGF) and caspase-3. However, different alterations in the ECM were observed at 28 days, the level of collagen I, metalloprotease-2 (MMP2) and caspase-3 were enhanced. Furthermore, expression of heparanase isoforms (HPSE1 and HPSE2) mRNA were increased in the degenerative intervertebral disc. Conclusion: The different profiles of ECM molecules observed during the intervertebral disc degeneration suggest that molecular processes such as ECM remodeling, neovascularization, apoptosis and inflammation occur. Experimental Study.
Collapse
|
9
|
Matos LL, Suarez ER, Theodoro TR, Trufelli DC, Melo CM, Garcia LF, Oliveira OCG, Matos MGL, Kanda JL, Nader HB, Martins JRM, Pinhal MAS. The Profile of Heparanase Expression Distinguishes Differentiated Thyroid Carcinoma from Benign Neoplasms. PLoS One 2015; 10:e0141139. [PMID: 26488476 PMCID: PMC4619411 DOI: 10.1371/journal.pone.0141139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 10/04/2015] [Indexed: 01/21/2023] Open
Abstract
Introduction The search for a specific marker that could help to distinguish between differentiated thyroid carcinoma and benign lesions remains elusive in clinical practice. Heparanase (HPSE) is an endo-beta-glucoronidase implicated in the process of tumor invasion, and the heparanase-2 (HPSE2) modulates HPSE activity. The aim of this study was to evaluate the role of heparanases in the development and differential diagnosis of follicular pattern thyroid lesions. Methods HPSE and HPSE2 expression by qRT-PCR, immunohistochemistry evaluation, western blot analysis and HPSE enzymatic activity were evaluated. Results The expression of heparanases by qRT-PCR showed an increase of HPSE2 in thyroid carcinoma (P = 0.001). HPSE activity was found to be higher in the malignant neoplasms than in the benign tumors (P<0.0001). On Western blot analysis, HPSE2 isoforms were detected only in malignant tumors. The immunohistochemical assay allowed us to establish a distinct pattern for malignant and benign tumors. Carcinomas showed a typical combination of positive labeling for neoplastic cells and negative immunostaining in colloid, when compared to benign tumors (P<0.0001). The proposed diagnostic test presents sensitivity and negative predictive value of around 100%, showing itself to be an accurate test for distinguishing between malignant and benign lesions. Conclusions This study shows, for the first time, a distinct profile of HPSE expression in thyroid carcinoma suggesting its role in carcinogenesis.
Collapse
Affiliation(s)
- Leandro Luongo Matos
- Biochemistry Department, Faculdade de Medicina do ABC, Santo André, Brazil
- Head and Neck Surgery Department, Faculdade de Medicina do ABC, Santo André, Brazil
- Biochemistry Department, Universidade Federal de São Paulo, São Paulo, Brazil
- * E-mail: (LLM); (JRMM)
| | - Eloah Rabello Suarez
- Biochemistry Department, Faculdade de Medicina do ABC, Santo André, Brazil
- Biochemistry Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | - Jossi Ledo Kanda
- Head and Neck Surgery Department, Faculdade de Medicina do ABC, Santo André, Brazil
| | | | - João Roberto Maciel Martins
- Biochemistry Department, Universidade Federal de São Paulo, São Paulo, Brazil
- Laboratory of Molecular and Translational Endocrinology, Endocrinology and Metabolism Discipline, Universidade Federal de São Paulo, São Paulo, Brazil
- * E-mail: (LLM); (JRMM)
| | - Maria Aparecida Silva Pinhal
- Biochemistry Department, Faculdade de Medicina do ABC, Santo André, Brazil
- Biochemistry Department, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Song XX, Yu YJ, Li XF, Liu ZD, Yu BW, Guo Z. Estrogen receptor expression in lumbar intervertebral disc of the elderly: Gender- and degeneration degree-related variations. Joint Bone Spine 2014; 81:250-3. [DOI: 10.1016/j.jbspin.2013.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/04/2013] [Indexed: 10/25/2022]
|