1
|
Malikov A, Rahimli T, Khalilzada R, Etibarli S, Ocal O. Patient-Specific Highly Realistic Spine Surgery Phantom Trainers. J Neurol Surg A Cent Eur Neurosurg 2025. [PMID: 40199501 DOI: 10.1055/a-2576-7222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
A realistic phantom created from a three-dimensional (3D)-reconstructed digital patient model would enable researchers to investigate the morphological aspects of the pathological spine, thereby resolving the issue of scarce cadaveric specimens. We designed a patient-specific, human-like, reliable, and cost-effective prototype of the examined pathological spine through open-source editing software analysis, a desktop 3D printer, and alginate material. We aimed to validate that the major surgical steps and anatomy replicated the real surgery as it would be conducted in actual patients.We cover the fundamental principles and procedures involved in 3D printing, from spine imaging to phantom manufacturing. Three representative simulation cases were included in the study. All phantoms were sequentially evaluated by surgeons for fidelity. Following each surgery, participants were given a survey that included 20 questions regarding the fidelity of the training phantom.We validated this simulation model by analyzing neurosurgeons' performance on the phantom trainer. Based on a 20-item survey to test content validity and reliability, there was little variation among participants' ratings, and the feedback was consistently positive. The gross appearance of the phantom was analogous to the cadaveric specimen and the phantoms demonstrated an excellent ability to imitate the intraoperative condition. The plastic material expenditure ranged from 170 to 470 g, and the alginate expenditure was 450 g. The total cost of acrylonitrile butadiene styrene (ABS) varied from $5.1 to $17.6 ($0.03 per gram of ABS), whereas the total cost of alginate was $14.3. The average cost of our phantoms was approximately $25.7, and the 3D printer used in this study costs approximately $200.The basic properties of this phantom were similar to cadaveric tissue during manipulation. We believe our phantoms have the potential to improve skills and minimize risk for patients when integrated into trainee education.
Collapse
Affiliation(s)
- Azad Malikov
- Department of Neurosurgery, Azerbaijan Medical University, Baku, Azerbaijan
| | - Tural Rahimli
- Department of Neurosurgery, Azerbaijan Medical University, Baku, Azerbaijan
| | - Rovshan Khalilzada
- Department of Neurosurgery, Azerbaijan Medical University, Baku, Azerbaijan
| | - Sabir Etibarli
- Department of Neurosurgery, Azerbaijan Medical University, Baku, Azerbaijan
| | - Ozgur Ocal
- Department of Neurosurgery, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Jiang M, Coles-Black J, Chen G, Alexander M, Chuen J, Hardidge A. 3D Printed Patient-Specific Complex Hip Arthroplasty Models Streamline the Preoperative Surgical Workflow: A Pilot Study. Front Surg 2021; 8:687379. [PMID: 34513912 PMCID: PMC8427196 DOI: 10.3389/fsurg.2021.687379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/28/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction: Surgical planning for complex total hip arthroplasty (THA) often presents a challenge. Definitive plans can be difficult to decide upon, requiring unnecessary equipment to be ordered and a long theatre list booked. We present a pilot study utilising patient-specific 3D printed models as a method of streamlining the pre-operative planning process. Methods: Complex patients presenting for THA were referred to the research team. Patient-specific 3D models were created from routine Computed Tomography (CT) imaging. Simulated surgery was performed to guide prosthesis selection, sizing and the surgical plan. Results: Seven patients were referred for this pilot study, presenting with complex conditions with atypical anatomy. Surgical plans provided by the 3D models were more detailed and accurate when compared to 2D CT and X ray imaging. Streamlined equipment selection was of great benefit, with augments avoided post simulation in three cases. The ability to tackle complex surgical problems outside of the operating theatre also flagged potential complications, while also providing teaching opportunities in a low risk environment. Conclusion: This study demonstrated that 3D printed models can improve the surgical plan and streamline operative logistics. Further studies investigating the optimal 3D printing material and workflow, along with cost-benefit analyses are required before this process is ready for routine use.
Collapse
Affiliation(s)
- Michael Jiang
- 3dMedLab, Austin Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Jasamine Coles-Black
- 3dMedLab, Austin Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Gordon Chen
- 3dMedLab, Austin Health, The University of Melbourne, Parkville, VIC, Australia
| | - Matthew Alexander
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Jason Chuen
- 3dMedLab, Austin Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Andrew Hardidge
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
3
|
Wallace N, Schaffer NE, Aleem IS, Patel R. 3D-printed Patient-specific Spine Implants: A Systematic Review. Clin Spine Surg 2020; 33:400-407. [PMID: 32554986 DOI: 10.1097/bsd.0000000000001026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
STUDY DESIGN Systematic review. OBJECTIVE To review the current clinical use of 3-dimensional printed (3DP) patient-specific implants in the spine. SUMMARY OF BACKGROUND DATA Additive manufacturing is a transformative manufacturing method now being applied to spinal implants. Recent innovations in technology have allowed the production of medical-grade implants with unprecedented structure and customization, and the complex anatomy of the spine is ideally suited for patient-specific devices. Improvement in implant design through the process of 3DP may lead to improved osseointegration, lower subsidence rates, and faster operative times. METHODS A comprehensive search of the literature was conducted using Ovid MEDLINE, EMBASE, Scopus, and other sources that resulted in 1842 unique articles. All manuscripts describing the use of 3DP spinal implants in humans were included. Two independent reviewers (N.W. and N.E.S.) assessed eligibility for inclusion. The following outcomes were collected: pain score, Japanese Orthopedic Association (JOA) score, subsidence, fusion, Cobb angle, vertebral height, and complications. No conflicts of interest existed. No funding was received for this work. RESULTS A total of 17 studies met inclusion criteria with a total of 35 patients. Only case series and case reports were identified. Follow-up times ranged from 3 to 36 months. Implant types included vertebral body replacement cages, interbody cages, sacral reconstruction prostheses, iliolumbar rods, and a posterior cervical plate. All studies reported improvement in both clinical and radiographic outcomes. 11 of 35 cases showed subsidence >3 mm, but only 1 case required a revision procedure. No migration, loosening, or pseudarthrosis occurred in any patient on the basis of computed tomography or flexion-extension radiographs. CONCLUSIONS Results of the systematic review indicate that 3DP technology is a viable means to fabricate patient-matched spinal implants. The effects on clinical and radiographic outcome measures are still in question, but these devices may produce favorable subsidence and pseudoarthrosis rates. Currently, the technology is ideally suited for complex tumor pathology and atypical bone defects. Future randomized controlled trials and cost analyses are still needed. LEVEL OF EVIDENCE IV-systematic review.
Collapse
Affiliation(s)
- Nicholas Wallace
- Department of Orthopedic Surgery, Division of Spine Surgery, University of Michigan, Ann Arbor, MI
| | | | | | | |
Collapse
|
4
|
Three-dimensional Printed Drill Guides Versus Fluoroscopic-guided Freehand Technique for Pedicle Screw Placement: A Systematic Review and Meta-analysis of Radiographic, Operative, and Clinical Outcomes. Clin Spine Surg 2020; 33:314-322. [PMID: 32496309 DOI: 10.1097/bsd.0000000000001023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
STUDY DESIGN A systematic review and meta-analysis. OBJECTIVE The objective of this study was to compare surgical, clinical, and radiographic outcomes of 3-dimensional printed (3DP) drill guides to the fluoroscopic-guided, freehand placement of pedicle screws in the spine. SUMMARY OF BACKGROUND DATA 3DP is a budding technology in spine surgery and has recently been applied to patient-specific drill guides for pedicle screw placement. Several authors have reported the benefits of these drill guides, but no clear consensus exists on their utility. MATERIALS AND METHODS A comprehensive search of the literature was conducted and independent reviewers assessed eligibility for included studies. Outcomes analyzed included: total operation time, estimated blood loss, screw accuracy, pain score, Japanese Orthopedic Association score, and postoperative complications. Weighted mean differences (WMD) and weighted risk differences were calculated using a random-effects model. RESULTS Six studies with a total of 205 patients were included. There were significantly lower operation times [WMD=-32.32 min, 95% confidence interval (CI)=-53.19 to -11.45] and estimated blood loss (WMD=-51.42 mL, 95% CI=-81.12 to -21.72) in procedures performed with 3DP drill guides as compared with freehand technique. The probability of "excellent" screw placement was significantly higher in 3DP guides versus freehand (weighted risk difference=-0.12, 95% CI=-0.17 to 0.07); however, no differences were observed in "poor" or "good" screw placement. There were no significant differences between groups in pain scores or Japanese Orthopedic Association scores. No difference in the rate of surgical complications was noted between the groups. CONCLUSIONS Pedicle screws placed with 3DP drill guides may result in shorter operative time, less blood loss, and a greater probability of excellent screw placement as compared with those placed with freehand techniques. We conclude that 3DP guides may potentially develop into an efficient and accurate option for pedicle screw placement. However, more prospective, randomized controlled trials are needed to strengthen the confidence of these conclusions. LEVEL OF EVIDENCE Level III.
Collapse
|
5
|
Jiang M, Chen G, Coles‐Black J, Chuen J, Hardidge A. Three‐dimensional printing in orthopaedic preoperative planning improves intraoperative metrics: a systematic review. ANZ J Surg 2019; 90:243-250. [DOI: 10.1111/ans.15549] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Michael Jiang
- 3DMedLab, Austin HealthThe University of Melbourne Melbourne Victoria Australia
- Department of Orthopaedic SurgeryAustin Health Melbourne Victoria Australia
| | - Gordon Chen
- 3DMedLab, Austin HealthThe University of Melbourne Melbourne Victoria Australia
| | - Jasamine Coles‐Black
- 3DMedLab, Austin HealthThe University of Melbourne Melbourne Victoria Australia
- Department of SurgeryThe University of Melbourne Melbourne Victoria Australia
- Department of Vascular SurgeryAustin Health Melbourne Victoria Australia
| | - Jason Chuen
- 3DMedLab, Austin HealthThe University of Melbourne Melbourne Victoria Australia
- Department of SurgeryThe University of Melbourne Melbourne Victoria Australia
- Department of Vascular SurgeryAustin Health Melbourne Victoria Australia
| | - Andrew Hardidge
- Department of Orthopaedic SurgeryAustin Health Melbourne Victoria Australia
- Department of SurgeryThe University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
6
|
Creation of 3-Dimensional Life Size: Patient-Specific C1 Fracture Models for Screw Fixation. World Neurosurg 2018; 114:e173-e181. [DOI: 10.1016/j.wneu.2018.02.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
7
|
3-Dimensional printing guide template assisted percutaneous vertebroplasty: Technical note. J Clin Neurosci 2018; 52:159-164. [PMID: 29605276 DOI: 10.1016/j.jocn.2018.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
Percutaneous vertebroplasty (PVP) is currently considered as an effective treatment for pain caused by acute osteoporotic vertebral compression fracture. Recently, puncture-related complications are increasingly reported. It's important to find a precise technique to reduce the puncture-related complications. We report a case and discussed the novel surgical technique with step-by-step operating procedures, to introduce the precise PVP assisted by a 3-dimensional printing guide template. Based on the preoperative CT scan and infrared scan data, a well-designed individual guide template could be established in a 3-dimensional reconstruction software and printed out by a 3-dimensional printer. In real operation, by matching the guide template to patient's back skin, cement needles' insertion orientation and depth were easily established. Only 14 times C-arm fluoroscopy with HDF mode (total exposure dose was 4.5 mSv) were required during the procedure. The operation took only 17 min. Cement distribution in the vertebral body was very good without any puncture-related complications. Pain was significantly relieved after surgery. In conclusion, the novel precise 3-dimensional printing guide template system may allow (1) comprehensive visualization of the fractured vertebral body and the individual surgical planning, (2) the perfect fitting between skin and guide template to ensure the puncture stability and accuracy, and (3) increased puncture precision and decreased puncture-related complications, surgical time and radiation exposure.
Collapse
|
8
|
Wilcox B, Mobbs RJ, Wu AM, Phan K. Systematic review of 3D printing in spinal surgery: the current state of play. JOURNAL OF SPINE SURGERY 2017; 3:433-443. [PMID: 29057355 DOI: 10.21037/jss.2017.09.01] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Three-dimensional printing (3DP), also known as "Additive Manufacturing", is a rapidly growing industry, particularly in the area of spinal surgery. Given the complex anatomy of the spine and delicate nature of surrounding structures, 3DP has the potential to aid surgical planning and procedural accuracy. We perform a systematic review of current literature on the applications of 3DP in spinal surgery. Six electronic databases were searched for original published studies reporting cases or outcomes for 3DP surgical models, guides or implants for spinal surgery. The findings of these studies were synthesized and summarized. These searches returned a combined 2,411 articles. Of these, 54 were included in this review. 3DP is currently used for surgical planning, intra-operative surgical guides, customised prostheses as well as "Off-the-Shelf" implants. The technology has the potential for enhanced implant properties, as well as decreased surgical time and better patient outcomes. The majority of the data thus far is from low-quality studies with inherent biases linked with the excitement of a new field. As the body of literature continues to expand, larger scale studies to evaluate advantages and disadvantages, and longer-term follow up will enhance our knowledge of the effect 3DP has in spinal surgery. In addition, issues such as financial impact, time to design and print, materials selection and bio-printing will evolve as this rapidly expanding field matures.
Collapse
Affiliation(s)
- Ben Wilcox
- NeuroSpine Surgery Research Group, Prince of Wales Private Hospital, Sydney, Australia.,Faculty of Medicine, University of New South Wales (UNSW), Randwick, Sydney, Australia
| | - Ralph J Mobbs
- NeuroSpine Surgery Research Group, Prince of Wales Private Hospital, Sydney, Australia.,Faculty of Medicine, University of New South Wales (UNSW), Randwick, Sydney, Australia
| | - Ai-Min Wu
- Department of Spine Surgery, Orthopaedic Hospital, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, The Second Medical School of the Wenzhou Medical University, Zhejiang Spine Center, Wenzhou 325027, China
| | - Kevin Phan
- NeuroSpine Surgery Research Group, Prince of Wales Private Hospital, Sydney, Australia.,Faculty of Medicine, University of New South Wales (UNSW), Randwick, Sydney, Australia
| |
Collapse
|