1
|
Shuford S, Lipinski L, Abad A, Smith AM, Rayner M, O'Donnell L, Stuart J, Mechtler LL, Fabiano AJ, Edenfield J, Kanos C, Gardner S, Hodge P, Lynn M, Butowski NA, Han SJ, Redjal N, Crosswell HE, Vibat CRT, Holmes L, Gevaert M, Fenstermaker RA, DesRochers TM. Prospective prediction of clinical drug response in high-grade gliomas using an ex vivo 3D cell culture assay. Neurooncol Adv 2021; 3:vdab065. [PMID: 34142085 PMCID: PMC8207705 DOI: 10.1093/noajnl/vdab065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Clinical outcomes in high-grade glioma (HGG) have remained relatively unchanged over the last 3 decades with only modest increases in overall survival. Despite the validation of biomarkers to classify treatment response, most newly diagnosed (ND) patients receive the same treatment regimen. This study aimed to determine whether a prospective functional assay that provides a direct, live tumor cell-based drug response prediction specific for each patient could accurately predict clinical drug response prior to treatment. Methods A modified 3D cell culture assay was validated to establish baseline parameters including drug concentrations, timing, and reproducibility. Live tumor tissue from HGG patients were tested in the assay to establish response parameters. Clinical correlation was determined between prospective ex vivo response and clinical response in ND HGG patients enrolled in 3D-PREDICT (ClinicalTrials.gov Identifier: NCT03561207). Clinical case studies were examined for relapsed HGG patients enrolled on 3D-PREDICT, prospectively assayed for ex vivo drug response, and monitored for follow-up. Results Absent biomarker stratification, the test accurately predicted clinical response/nonresponse to temozolomide in 17/20 (85%, P = .007) ND patients within 7 days of their surgery, prior to treatment initiation. Test-predicted responders had a median overall survival post-surgery of 11.6 months compared to 5.9 months for test-predicted nonresponders (P = .0376). Case studies provided examples of the clinical utility of the assay predictions and their impact upon treatment decisions resulting in positive clinical outcomes. Conclusion This study both validates the developed assay analytically and clinically and provides case studies of its implementation in clinical practice.
Collapse
Affiliation(s)
| | - Lindsay Lipinski
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ajay Abad
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | | | | | | | | | - Laszlo L Mechtler
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Andrew J Fabiano
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Jeff Edenfield
- Department of Medicine, Prisma Health Cancer Institute, Greenville, South Carolina, USA
| | - Charles Kanos
- Deparment of Surgery, Prisma Health Southeastern Neurosurgical and Spine Institute, Greenville, South Carolina, USA
| | - Stephen Gardner
- Deparment of Surgery, Prisma Health Southeastern Neurosurgical and Spine Institute, Greenville, South Carolina, USA
| | - Philip Hodge
- Deparment of Surgery, Prisma Health Southeastern Neurosurgical and Spine Institute, Greenville, South Carolina, USA
| | - Michael Lynn
- Deparment of Surgery, Prisma Health Southeastern Neurosurgical and Spine Institute, Greenville, South Carolina, USA
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Seunggu J Han
- Department of Neurological Surgery, Oregon Health Sciences University, Portland, Oregon, USA
| | - Navid Redjal
- Department of Neurosurgery, Capital Health Institute for Neurosciences, Pennington, New Jersey, USA
| | | | | | | | | | - Robert A Fenstermaker
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | | |
Collapse
|
2
|
Lv D, Yu SC, Ping YF, Wu H, Zhao X, Zhang H, Cui Y, Chen B, Zhang X, Dai J, Bian XW, Yao XH. A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics. Oncotarget 2018; 7:56904-56914. [PMID: 27486877 PMCID: PMC5302961 DOI: 10.18632/oncotarget.10885] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022] Open
Abstract
Three-dimensional (3D) culture, which can simulate in vivo microenvironments, has been increasingly used to study tumor cell biology. Since most preclinical anti-glioma drug tests still rely on conventional 2D cell culture, we established a collagen scaffold for 3D glioma cell culture. Glioma cells cultured on these 3D scaffolds showed greater degree of dedifferentiation and quiescence than cells in 2D culture. 3D-cultured cells also exhibited enhanced resistance to chemotherapeutic alkylating agents, with a much higher proportion of glioma stem cells and upregulation of O6-methylguanine DNA methyltransferase (MGMT). Importantly, tumor cells in 3D culture showed chemotherapy resistance patterns similar to those observed in glioma patients. Our results suggest that 3D collagen scaffolds are promising in vitro research platforms for screening new anti-glioma therapeutics.
Collapse
Affiliation(s)
- Donglai Lv
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Haibo Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xilong Zhao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Huarong Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Bing Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, School of Military Preventive Medicine, Third Military Medical University, Chongqing, China.,Institute of Genetics and Development, Chinese Academy of Sciences, Beijing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jianwu Dai
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, School of Military Preventive Medicine, Third Military Medical University, Chongqing, China.,Institute of Genetics and Development, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| |
Collapse
|
3
|
Halfter K, Mayer B. Bringing 3D tumor models to the clinic - predictive value for personalized medicine. Biotechnol J 2017; 12. [PMID: 28098436 DOI: 10.1002/biot.201600295] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 12/17/2022]
Abstract
Current decision-guiding algorithms in cancer drug treatment are based on decades of research and numerous clinical trials. For the majority of patients, this data is successfully applied for a systemic disease management. For a number of patients however, treatment stratification according to clinically based risk criteria will not be sufficient. The most effective treatment options are ideally identified prior to the start of clinical drug therapy. This review will discuss the implementation of three-dimensional (3D) cell culture models as a preclinical testing paradigm for the efficacy of clinical cancer treatment. Patient tumor-derived cells in 3D cultures duplicate the individual tumor microenvironment with a minimum of confounding factors. Clinical implementation of such personalized tumor models requires a high quality of methodological and clinical validation comparable to other biomarkers. A non-systematic literature search demonstrated the small number of prospective studies that have been conducted in this area of research. This may explain the current reluctance of many physicians and insurance providers in implementing this type of assay into the clinical diagnostic routine despite potential benefit for patients. Achieving valid and reproducible results with a high level of evidence is central in improving the acceptance of preclinical 3D tumor models.
Collapse
Affiliation(s)
| | - Barbara Mayer
- SpheroTec GmbH, Martinsried, Germany.,Department of General, Visceral, and Transplantation Surgery, Hospital of the LMU Munich, Munich, Germany
| |
Collapse
|