1
|
Pramanik SD, Kumar Halder A, Mukherjee U, Kumar D, Dey YN, R M. Potential of histone deacetylase inhibitors in the control and regulation of prostate, breast and ovarian cancer. Front Chem 2022; 10:948217. [PMID: 36034650 PMCID: PMC9411967 DOI: 10.3389/fchem.2022.948217] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a role in chromatin remodeling and epigenetics. They belong to a specific category of enzymes that eliminate the acetyl part of the histones' -N-acetyl lysine, causing the histones to be wrapped compactly around DNA. Numerous biological processes rely on HDACs, including cell proliferation and differentiation, angiogenesis, metastasis, gene regulation, and transcription. Epigenetic changes, specifically increased expression and activity of HDACs, are commonly detected in cancer. As a result, HDACi could be used to develop anticancer drugs. Although preclinical outcomes with HDACs as monotherapy have been promising clinical trials have had mixed results and limited success. In both preclinical and clinical trials, however, combination therapy with different anticancer medicines has proved to have synergistic effects. Furthermore, these combinations improved efficacy, decreased tumor resistance to therapy, and decreased toxicity. In the present review, the detailed modes of action, classification of HDACs, and their correlation with different cancers like prostate, breast, and ovarian cancer were discussed. Further, the different cell signaling pathways and the structure-activity relationship and pharmaco-toxicological properties of the HDACi, and their synergistic effects with other anticancer drugs observed in recent preclinical and clinical studies used in combination therapy were discussed for prostate, breast, and ovarian cancer treatment.
Collapse
Affiliation(s)
- Siddhartha Das Pramanik
- Department of Pharmaceutical Engineering and Technology, IIT-BHU, Varanasi, Uttar Pradesh, India
| | - Amit Kumar Halder
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Ushmita Mukherjee
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Dharmendra Kumar
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram, Bihar, India
| | - Yadu Nandan Dey
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Mogana R
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI Education SDN.BHD., Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Pattarawat P, Hunt JT, Poloway J, Archibald CJ, Wang HCR. A triple combination gemcitabine + romidepsin + cisplatin to effectively control triple-negative breast cancer tumor development, recurrence, and metastasis. Cancer Chemother Pharmacol 2021; 88:415-425. [PMID: 34043046 DOI: 10.1007/s00280-021-04298-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/15/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive, lethal, heterogeneous type of breast cancer (BC). TNBC tends to have a lower response rate to chemotherapy and a lower 5-year survival rate than other types of BC due to recurrence and metastasis. Our previous study revealed that a combination of gemcitabine, romidepsin, and cisplatin was efficacious in controlling TNBC tumor development. In this study, we extended our investigation of gemcitabine + romidepsin + cisplatin in controlling TNBC tumor recurrence and metastasis. METHODS We investigated the ability of gemcitabine + romidepsin + cisplatin to control cell survival and invasiveness using cell viability, soft agar colony formation, and transwell invasion assays. We determined the efficacy of gemcitabine + romidepsin + cisplatin in controlling tumor recurrence and metastasis using cell-derived xenograft animal models. We used immunoblotting to study signaling modulators regulated by gemcitabine + romidepsin + cisplatin in TNBC cells and tumor tissues. RESULTS Treatment with gemcitabine + romidepsin + cisplatin reduced the TNBC MDA-MB231 and MDA-MB468 cell survival to ~ 50% and ~ 15%, as well as invasiveness to ~ 31% and ~ 13%, respectively. Gemcitabine + romidepsin + cisplatin suppressed modulators involved in epithelial-mesenchymal transition in an ROS-dependent manner. Controlling tumor recurrence, the Gem plus Rom + Cis regimen (~ 112%) was more efficacious than the Gem plus Cis regimen (~ 21%) in tumor growth inhibition. The Gem plus Rom + Cis regimen efficaciously reduced the development of metastatic nodules to 20% in animals. CONCLUSION The gemcitabine plus romidepsin + cisplatin regimen was highly efficacious in controlling TNBC tumor development, recurrence, and metastasis in animals. The combination regimen should be poised for efficient translation into clinical trials for controlling the recurrence and metastasis, ultimately contributing to reducing mortality and improving TNBC patients' quality of life.
Collapse
Affiliation(s)
- Pawat Pattarawat
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Jessica T Hunt
- Animal Resource Laboratory, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Jacob Poloway
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Collin J Archibald
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
Pattarawat P, Hong T, Wallace S, Hu Y, Donnell R, Wang TH, Tsai CL, Wang J, Wang HCR. Compensatory combination of romidepsin with gemcitabine and cisplatin to effectively and safely control urothelial carcinoma. Br J Cancer 2020; 123:226-239. [PMID: 32390005 PMCID: PMC7374627 DOI: 10.1038/s41416-020-0877-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Human urothelial carcinoma (UC) has a high tendency to recur and progress to life-threatening advanced diseases. Advanced therapeutic regimens are needed to control UC development and recurrence. METHODS We pursued in vitro and in vivo studies to understand the ability of a triple combination of gemcitabine, romidepsin, and cisplatin (Gem+Rom+Cis) to modulate signalling pathways, cell death, drug resistance, and tumour development. RESULTS Our studies verified the ability of Gem+Rom+Cis to synergistically induce apoptotic cell death and reduce drug resistance in various UC cells. The ERK pathway and reactive oxygen species (ROS) played essential roles in mediating Gem+Rom+Cis-induced caspase activation, DNA oxidation and damage, glutathione reduction, and unfolded protein response. Gem+Rom+Cis preferentially induced death and reduced drug resistance in oncogenic H-Ras-expressing UC vs. counterpart cells that was associated with transcriptomic profiles related to ROS, cell death, and drug resistance. Our studies also verified the efficacy and safety of the Gem plus Rom+Cis regimen in controlling UC cell-derived xenograft tumour development and resistance. CONCLUSIONS More than 80% of UCs are associated with aberrant Ras-ERK pathway. Thus the compensatory combination of Rom with Gem and Cis should be seriously considered as an advanced regimen for treating advanced UCs, especially Ras-ERK-activated UCs.
Collapse
Affiliation(s)
- Pawat Pattarawat
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.,UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Shelby Wallace
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Yanchun Hu
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Robert Donnell
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Tzu-Hao Wang
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Lung Tsai
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Jinquan Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA. .,UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
4
|
Pattarawat P, Wallace S, Pfisterer B, Odoi A, Wang HCR. Formulation of a triple combination gemcitabine plus romidepsin + cisplatin regimen to efficaciously and safely control triple-negative breast cancer tumor development. Cancer Chemother Pharmacol 2019; 85:141-152. [PMID: 31865420 DOI: 10.1007/s00280-019-04013-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive, lethal, and heterogeneous subtype of breast cancers, tending to have lower 5-year survival rates than other BC subtypes in response to conventional chemotherapies. This study's aim was to identify advanced regimens to effectively control TNBC tumor development. METHODS We investigated the combination of the DNA synthesis inhibitor gemcitabine, the DNA-damaging agent cisplatin, and the histone deacetylase inhibitor romidepsin to control a variety of breast cells in vitro. We studied the toxicity of drug doses and administration schedules to determine tolerable combination regimens in immune-deficient nude and -competent BALB/c mice. We then studied the efficacy of tolerable regimens in controlling TNBC cell-derived xenograft development in nude mice. By reducing clinically equivalent doses of each agent in combination, we formulated tolerable regimens in animals. We verified that the tolerable triple combination gemcitabine plus romidepsin + cisplatin regimen more efficacious than double combination regimens in controlling xenograft tumor development in nude mice. RESULTS A triple combination of gemcitabine + romidepsin + cisplatin synergistically induced death of the TNBC M.D. Anderson-Metastatic Breast cancer (MDA-MB) 231 and MDA-MB468, as well as Michigan Cancer Foundation (MCF) 7, MCF10A, and MCF10A-Ras cells. Cell death induced by gemcitabine + romidepsin + cisplatin was in a reactive oxygen species-dependent manner. CONCLUSION Considering the high costs for developing a new anticancer agent, we used the FDA-approved drugs gemcitabine, romidepsin (is approved for T-cell lymphoma and is under clinical trial for TNBC), and cisplatin to economically formulate an efficacious and safe combination regimen. The highly efficacious gemcitabine plus romidepsin + cisplatin regimen should be poised for efficient translation into clinical trials, ultimately contributing to reduced mortality and improved quality of life for TNBC patients.
Collapse
Affiliation(s)
- Pawat Pattarawat
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA.,UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Shelby Wallace
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Bianca Pfisterer
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Agricola Odoi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA. .,UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
5
|
Ediriweera MK, Tennekoon KH, Samarakoon SR. Emerging role of histone deacetylase inhibitors as anti-breast-cancer agents. Drug Discov Today 2019; 24:685-702. [DOI: 10.1016/j.drudis.2019.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/05/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
|
6
|
Pluchino LA, Choudhary S, Wang HCR. Reactive oxygen species-mediated synergistic and preferential induction of cell death and reduction of clonogenic resistance in breast cancer cells by combined cisplatin and FK228. Cancer Lett 2016; 381:124-32. [PMID: 27477899 DOI: 10.1016/j.canlet.2016.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 02/02/2023]
Abstract
Safe and effective combination chemotherapy regimens against breast cancer are lacking. We used our cellular system, consisting of the non-cancerous human breast epithelial MCF10A cell line and its derived tumorigenic, oncogenic H-Ras-expressing, MCF10A-Ras cell line, to investigate the effectiveness of a combination chemotherapy regimen in treating breast cancer cells using two FDA-approved agents, cisplatin and FK228. Cisplatin and FK228 significantly, synergistically, and preferentially induced death and reduced drug resistance of MCF10A-Ras versus MCF10A cells. The ERK-Nox-ROS pathway played a major role in both synergistic cell death induction and GSH-level reduction, which contributed to the synergistic suppression of drug resistance in cells. Enhancement of the Ras-ERK-Nox pathway by combined cisplatin and FK228 significantly increased ROS levels, leading to induction of death, reduction of drug resistance, and induction of DNA damage and oxidation in cancerous MCF10A-Ras cells. Furthermore, synergistic induction of cell death and reduction of drug resistance by combined cisplatin and FK228 in breast cells is independent of their estrogen receptor status. Our study suggests that combined cisplatin and FK228 should be considered in clinical trials as a new regimen for therapeutic control of breast cancers.
Collapse
Affiliation(s)
- Lenora Ann Pluchino
- Anticancer Molecular Oncology Laboratory, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Shambhunath Choudhary
- Anticancer Molecular Oncology Laboratory, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Hwa-Chain Robert Wang
- Anticancer Molecular Oncology Laboratory, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
7
|
Abstract
Redox agents have been historically considered pathological agents which can react with and damage many biological macromolecules including DNA, proteins, and lipids. However, a growing number of reports have suggested that mammalian cells can rapidly respond to ligand stimulation with a change in intracellular ROS thus indicating that the production of intracellular redox agents is tightly regulated and that they serve as intracellular signaling molecules being involved in a variety of cell signaling pathways. Numerous observations have suggested that some members of the Ras GTPase superfamily appear to regulate the production of redox agents and that oxidants can function as effector molecules for the small GTPases, thus contributing to their overall biological function. In addition, many of the Ras superfamily small GTPases have been shown to be redox sensitive, thanks to the presence of redox-sensitive sequences in their primary structure. The action of redox agents on these redox-sensitive GTPases is similar to that of guanine nucleotide exchange factors in that they perturb GTPase nucleotide-binding interactions that result in the enhancement of the guanine nucleotide exchange of small GTPases. Thus, Ras GTPases may act both as upstream regulators and downstream effectors of redox agents. Here we overview current understanding concerning the interplay between Ras GTPases and redox agents, also taking into account pathological implications of misregulation of this cross talk and highlighting the potentiality of these cellular pathways as new therapeutical targets for different pathologies.
Collapse
|
8
|
Choudhary S, Sood S, Wang HCR. Synergistic induction of cancer cell death and reduction of clonogenic resistance by cisplatin and FK228. Biochem Biophys Res Commun 2013; 436:325-30. [PMID: 23743194 DOI: 10.1016/j.bbrc.2013.05.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/23/2013] [Indexed: 01/29/2023]
Abstract
Human urinary bladder cancer is the fifth most common cancer in the United States, and the long-term disease-free survival in patients is still suboptimal with current chemotherapeutic regimens. Development of effective chemotherapeutic regimens is crucial to decrease the morbidity and mortality of this cancer. The goal of this study was to investigate the effectiveness of FK228 in increasing cisplatin's ability to induce bladder cancer cell death and reduce drug resistance. Our study revealed that FK228 combined with cisplatin synergistically induced cell death and reduced clonogenic survival of human urinary bladder cancer cells. The Erk-Nox pathway played an important role in mediating signals highly increased by this combined treatment to induce significantly-elevated levels of reactive oxygen species, leading to substantially-induced caspase activation and synergistically-increased death in cancer cells. Cisplatin was able to enhance the ability of FK228 to significantly reduce glutathione, indicating a novel activity of combined FK228 and cisplatin in reducing drug resistance. The ability of combined FK228 and cisplatin to synergistically induce cell death and reduce clonogenic survival was also applicable to colon cancer cells. Hence, combined use of FK228 with cisplatin should be considered in development of therapeutic strategies to control urinary bladder cancer and other cancer development and recurrence.
Collapse
Affiliation(s)
- Shambhunath Choudhary
- Anticancer Molecular Oncology Laboratory, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, United States
| | | | | |
Collapse
|
9
|
Rathore K, Wang HCR. Mesenchymal and stem-like cell properties targeted in suppression of chronically-induced breast cell carcinogenesis. Cancer Lett 2013; 333:113-23. [PMID: 23352646 DOI: 10.1016/j.canlet.2013.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 02/07/2023]
Abstract
Stem-like cells and the epithelial-to-mesenchymal transition (EMT) program are postulated to play important roles in various stages of cancer development, but their roles in breast cell carcinogenesis and intervention remain to be clarified. We investigated stem-like cell- and EMT-associated properties and markers in breast epithelial cells chronically exposed to low-dose 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene in the presence and absence of the preventive agents green tea catechins and grape seed extract. Our results indicate that stem-like cell- and EMT-associated properties and markers should be seriously considered as new cancer-associated indicators for detecting breast cell carcinogenesis and as endpoints for intervention of carcinogenesis.
Collapse
Affiliation(s)
- Kusum Rathore
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|
10
|
Choudhary S, Sood S, Wang HCR. Dipyridamole intervention of breast cell carcinogenesis. Mol Carcinog 2012; 53:243-52. [DOI: 10.1002/mc.21970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/16/2012] [Accepted: 09/22/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Shambhunath Choudhary
- Anticancer Molecular Oncology Laboratory; Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee; Knoxville Tennessee
| | - Shilpa Sood
- Anticancer Molecular Oncology Laboratory; Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee; Knoxville Tennessee
| | - Hwa-Chain Robert Wang
- Anticancer Molecular Oncology Laboratory; Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee; Knoxville Tennessee
| |
Collapse
|
11
|
Choudhary S, Sood S, Donnell RL, Wang HCR. Intervention of human breast cell carcinogenesis chronically induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Carcinogenesis 2012; 33:876-85. [PMID: 22307971 DOI: 10.1093/carcin/bgs097] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
More than 85% of breast cancers are sporadic and attributable to long-term exposure to environmental carcinogens, such as those in the diet, through a multistep disease process progressing from non-cancerous to premalignant and malignant stages. The chemical carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is one of the most abundant heterocyclic amines found in high-temperature cooked meats and is recognized as a mammary carcinogen. However, the PhIP's mechanism of action in breast cell carcinogenesis is not clear. Here, we demonstrated, for the first time, that cumulative exposures to PhIP at physiologically achievable, pico to nanomolar concentrations effectively induced progressive carcinogenesis of human breast epithelial MCF10A cells from a non-cancerous stage to premalignant and malignant stages in a dose- and exposure-dependent manner. Progressive carcinogenesis was measured by increasingly- acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth, acinar-conformational disruption, proliferation, migration, invasion, tumorigenicity with metastasis and increased stem-like cell populations. These biological changes were accompanied by biochemical and molecular changes, including upregulated H-Ras gene expression, extracellular signal-regulated kinase (ERK) pathway activation, Nox-1 expression, reactive oxygen species (ROS) elevation, increased HIF-1α, Sp1, tumor necrosis factor-α, matrix metalloproteinase (MMP)-2, MMP-9, aldehyde dehydrogenase activity and reduced E-cadherin. The Ras-ERK-Nox-ROS pathway played an important role in not only initiation but also maintenance of cellular carcinogenesis induced by PhIP. Using biological, biochemical and molecular changes as targeted endpoints, we identified that the green tea catechin components epicatechin-3-gallate and epigallocatechin-3-gallate, at non-cytotoxic doses, were capable of suppressing PhIP-induced cellular carcinogenesis and tumorigenicity.
Collapse
Affiliation(s)
- Shambhunath Choudhary
- Anticancer Molecular Oncology Laboratory, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
12
|
The Interplay between ROS and Ras GTPases: Physiological and Pathological Implications. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:365769. [PMID: 22175014 PMCID: PMC3235814 DOI: 10.1155/2012/365769] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/18/2011] [Indexed: 01/23/2023]
Abstract
The members of the RasGTPase superfamily are involved in various signaling networks responsible for fundamental cellular processes. Their activity is determined by their guanine nucleotide-bound state. Recent evidence indicates that some of these proteins may be regulated by redox agents. Reactive oxygen species (ROSs) and reactive nitrogen species (RNSs) have been historically considered pathological agents which can react with and damage many biological macromolecules including DNA, proteins, and lipids. However, a growing number of reports have suggested that the intracellular production of ROS is tightly regulated and that these redox agents serve as signaling molecules being involved in a variety of cell signaling pathways. Numerous observations have suggested that some Ras GTPases appear to regulate ROS production and that oxidants function as effector molecules for the small GTPases, thus contributing to their overall biological function. Thus, redox agents may act both as upstream regulators and as downstream effectors of Ras GTPases. Here we discuss current understanding concerning mechanisms and physiopathological implications of the interplay between GTPases and redox agents.
Collapse
|
13
|
|
14
|
Current world literature. Curr Opin Support Palliat Care 2011; 5:174-83. [PMID: 21521986 DOI: 10.1097/spc.0b013e3283473351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Choudhary S, Wang KKA, Wang HCR. Oncogenic H-Ras, FK228, and exogenous H2O2 cooperatively activated the ERK pathway in selective induction of human urinary bladder cancer J82 cell death. Mol Carcinog 2010; 50:215-9. [PMID: 21344509 DOI: 10.1002/mc.20708] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 12/11/2022]
Abstract
More than 35% of human urinary bladder cancers involve oncogenic H-Ras activation. The goal of this study was to investigate the role of the ERK pathway in mediating apoptotic signals induced by oncogenic H-Ras, FK228 treatment, and exogenous H(2) O(2) treatment to increase Nox-1 elevation, leading to production of intracellular reactive oxygen species (ROS) for inducing apoptosis in human bladder cancer J82 cells. Our study revealed that FK228 combined with exogenous H(2)O(2) cooperatively induced activation of Mek1/2 and Erk1/2 to increase Nox-1 elevation, intracellular ROS production, caspase activation, and cell death. Expression of oncogenic H-Ras significantly increased these FK228- and exogenous H(2)O(2)-induced effects. Oncogenic H-Ras-increased cell susceptibility to FK228 could be alternately achieved by additional treatment with exogenous H(2)O(2). Hence, combined use of FK228 with ROS-generating agents may apply to therapeutic strategies to preferentially kill malignant cells with or without oncogenic H-Ras activation.
Collapse
Affiliation(s)
- Shambhunath Choudhary
- Department of Comparative Medicine, Anticancer Molecular Oncology Laboratory, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|