1
|
Pinho JO, Matias M, Godinho-Santos A, Amaral JD, Mendes E, Jesus Perry M, Paula Francisco A, Rodrigues CMP, Manuela Gaspar M. A step forward on the in vitro and in vivo assessment of a novel nanomedicine against melanoma. Int J Pharm 2023; 640:123011. [PMID: 37146952 DOI: 10.1016/j.ijpharm.2023.123011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Melanoma is the most aggressive form of skin cancer, with increasing incidence and mortality rates. To overcome current treatment limitations, a hybrid molecule (HM) combining a triazene and a ʟ-tyrosine analogue, was recently synthesized, incorporated in long blood circulating liposomes (LIP HM) and validated in an immunocompetent melanoma model. The present work constitutes a step forward in the therapeutic assessment of HM formulations. Here, human melanoma cells, A375 and MNT-1, were used and dacarbazine (DTIC), a triazene drug clinically available as first-line treatment for melanoma, constituted the positive control. In cell cycle analysis, A375 cells, after 24-h incubation with HM (60 μM) and DTIC (70 μM), resulted in a 1.2 fold increase (related to control) in the percentage of cells in G0/G1 phase. The therapeutic activity was evaluated in a human murine melanoma model (subcutaneously injected with A375 cells) to most closely resemble the human pathology. Animals treated with LIP HM exhibited the highest antimelanoma effect resulting in a 6-, 5- and 4-fold reduction on tumor volume compared to negative control, Free HM and DTIC groups, respectively. No toxic side effects were detected. Overall, these results constitute another step forward in the validation of the antimelanoma activity of LIP HM, using a murine model that more accurately simulates the pathology that occurs in human patients.
Collapse
Affiliation(s)
- Jacinta O Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Ana Godinho-Santos
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Joana D Amaral
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Eduarda Mendes
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Jesus Perry
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Ana Paula Francisco
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Cecília M P Rodrigues
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - M Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
2
|
Mohammadi A, Najafi S, Amini M, Baradaran B, Firouzamandi M. B7H6 silencing increases chemosensitivity to dacarbazine and suppresses cell survival and migration in cutaneous melanoma. Melanoma Res 2023; 33:173-183. [PMID: 37053079 DOI: 10.1097/cmr.0000000000000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cutaneous melanoma (CM) is a highly metastatic cancer whose incidence rate is heightening worldwide. B7H6, as one of the co-stimulatory ligands of the B7 family, is expressed in malignant cells, involved in tumorigenesis. This study aimed to investigate the significance of B7H6 in CM cell chemosensitivity and metastatic ability. A375 CM cells were transfected with B7H6-siRNA and treated with dacarbazine individually or combined. The MTT assay to estimate half-maximal inhibitory concentration of dacarbazine and cell viability, the apoptotic induction using Annexin V/PI, cell cycle progression via flow cytometry, and wound healing assay for determining the migration ability of cells and assessing the clonogenic potential of A375 cells were executed. Functional analyses were performed to evaluate changes in A375 cells. The results illustrated that B7H6 suppression significantly increased the chemosensitivity of A375 cells to dacarbazine. Apoptosis induction by dacarbazine was enhanced after B7H6 knockdown through modulating Caspase-3, Bax, and Bcl-2 mRNA levels. Western blotting indicated enhancement of cleaved caspase-3 protein expression in treatment groups. A375 cells were arrested at the sub-G1 and S phases when using B7H6-siRNA and dacarbazine. B7H6 suppression combined with dacarbazine restrained cell migration through suppression of matrix metalloproteinase (MMP) expression, including MMP2, MMP3, and MMP9. In addition, the clonogenic ability of A375 cells was decreased by downregulating Sox2, Nanog, and CD44 mRNA levels. A visible decrement in STAT3 protein expression was observed in the combination group. Hence, our findings revealed that B7H6 knockdown with dacarbazine could be a promising treatment approach for cutaneous melanoma.
Collapse
Affiliation(s)
- Alaleh Mohammadi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz
- Immunology Research Center
| | | | | | - Behzad Baradaran
- Immunology Research Center
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
Aziz B, Khurshid A, Mahmood R, Khan JA, Javaid S, Alam M, Mujtaba Ul Hassan S, Ikram M. Study of synergistic effects of Ficus Carica leaves extract mediated chemo-photodynamic therapy on rhabdomyosarcoma cells. Photodiagnosis Photodyn Ther 2021; 36:102565. [PMID: 34614426 DOI: 10.1016/j.pdpdt.2021.102565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chemotherapy for rhabdomyosarcoma (RD) is effective, but it has critical side effects and unavoidable challenges. Photodynamic therapy (PDT) is an approach to treating cancer with relatively moderate side effects. Plant products are a rich source of polyphenols, which have potent antioxidant and anticancer activities. Therefore, their research has become an emerging field in recent decades. PURPOSE This work aimed to evaluate the potential of hydrophobic extract of Ficus Carica (FC) to determine whether FC in the presence of low dose chemo and Aluminium Phthalocyanine (Photosense®) mediated photodynamic therapy synergistically enhances the treatment efficacy of RD cells. METHOD FC with and without combination with individual therapeutic modalities like photosense mediated photodynamic therapy, chemotherapy, and their combinations were studied for cell viability and morphological changes in invitro RD cells. A semiconductor diode laser (630 nm) was used as a light source in PDT. The cytotoxic effect of FC on cell viability and cellular morphological changes were investigated by MTT reagent and a camera attached to an inverted visible light microscope. The effect of FC, followed by di-combination with low dose chemo (doxorubicin-HCl, and dacarbazine), Photosense® mediated PDT and chemo-Photosense® mediated PDT (tri-combination) at 630 nm diode laser and 10 J/cm2 fluency were also investigated by MTT reagent. The combination index method is used to identify the synergistic effect of combination therapy by using CompuSyn software based on the Chou-Talalay method. RESULTS The dose-dependent effect of FC on cell viability and cellular morphological changes were observed in the RD cell line. It was found that the pre incubation of FC potentiated the anticancer effect as a neoadjuvant agent for doxorubicin-HCl and decarbazine based chemotherapy, Photosense® mediated PDT and chemo-PDT (tri-combination) with synergistic effect (CI<1). CONCLUSION These results suggest a possible thread that the low dose combination of the aforementioned therapeutic modalities in the presence of FC remarkably enhances the treatment efficacy of RD in comparison with a single-agent treatment modality. The proposed sequence of FC with chemo and PDT might present better therapeutic outcomes in RD therapies and may provide result for RD metastasis. FC may also be used in the application of phyto-PDT to cancer in the future.
Collapse
Affiliation(s)
- Bushra Aziz
- Photonanomedicine Research Laboratory, Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan; Department of Physics, Women University of Azad Jammu & Kashmir, Bagh, Azad Kashmir, Pakistan
| | - Ahmat Khurshid
- Photonanomedicine Research Laboratory, Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan.
| | - Rashid Mahmood
- Photonanomedicine Research Laboratory, Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan
| | - Junaid Ahmad Khan
- Photonanomedicine Research Laboratory, Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan
| | - Sumbal Javaid
- Photonanomedicine Research Laboratory, Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan; Department of Animal Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Masroor Alam
- Department of Virology and Imunology, National Institute of Health, Park Road, Islamabad, Pakistan
| | - Syed Mujtaba Ul Hassan
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan
| | - Masroor Ikram
- Photonanomedicine Research Laboratory, Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan
| |
Collapse
|
4
|
Lee SG, Lee DG, Joo YH, Chung N. Synergistic inhibitory effects of the oxyresveratrol and dacarbazine combination against melanoma cells. Oncol Lett 2021; 22:667. [PMID: 34386089 PMCID: PMC8299023 DOI: 10.3892/ol.2021.12928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Various therapies have been developed to target malignant melanoma, which is associated with a high mortality rate worldwide. Although dacarbazine (DTIC) is employed for treating melanoma, it is associated with several side effects. Hence, patients with melanoma are co-treated with additional drugs to mitigate the side effects of DTIC. In the present study, synergistic therapeutic effects of the DTIC/oxyresveratrol (ORT) combination were examined using the human malignant melanoma WM-266-4 cell line. Treatment with ORT and DTIC inhibited the proliferation of WM-266-4 cells. Compared with those in the ORT- and DTIC-treated groups, the proportion of cells arrested at the S phase, as well as apoptotic rates, were increased in the ORT and DTIC co-treatment group. In WM-266-4 cells, synergistic proliferation-inhibitory activities of the ORT/DTIC combination were assessed based on cell viability and migration, antioxidant capacity, cytokine production, cell cycle arrest, apoptotic rate and protein expression through WST-1 assay, wound healing assay, flow cytometry and western blotting. Furthermore, the expression levels of proteins, including NOTCH, involved in the pathogenesis of solid cancers, such as melanoma, were examined. Overall, the ORT/DTIC combination synergistically promoted cell cycle arrest at the S phase and the apoptosis of WM-266-4 cells. Thus, this combination treatment may serve as a novel therapeutic strategy for treating malignant melanoma.
Collapse
Affiliation(s)
- Sang Gyu Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dong Gun Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yong Hoon Joo
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Namhyun Chung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Antibody-Based Immunotherapy: Alternative Approaches for the Treatment of Metastatic Melanoma. Biomedicines 2020; 8:biomedicines8090327. [PMID: 32899183 PMCID: PMC7555584 DOI: 10.3390/biomedicines8090327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the least common form of skin cancer and is associated with the highest mortality. Where melanoma is mostly unresponsive to conventional therapies (e.g., chemotherapy), BRAF inhibitor treatment has shown improved therapeutic outcomes. Photodynamic therapy (PDT) relies on a light-activated compound to produce death-inducing amounts of reactive oxygen species (ROS). Their capacity to selectively accumulate in tumor cells has been confirmed in melanoma treatment with some encouraging results. However, this treatment approach has not reached clinical fruition for melanoma due to major limitations associated with the development of resistance and subsequent side effects. These adverse effects might be bypassed by immunotherapy in the form of antibody–drug conjugates (ADCs) relying on the ability of monoclonal antibodies (mAbs) to target specific tumor-associated antigens (TAAs) and to be used as carriers to specifically deliver cytotoxic warheads into corresponding tumor cells. Of late, the continued refinement of ADC therapeutic efficacy has given rise to photoimmunotherapy (PIT) (a light-sensitive compound conjugated to mAbs), which by virtue of requiring light activation only exerts its toxic effect on light-irradiated cells. As such, this review aims to highlight the potential clinical benefits of various armed antibody-based immunotherapies, including PDT, as alternative approaches for the treatment of metastatic melanoma.
Collapse
|
6
|
Szubert M, Rogut M, Ziętara M, Wierzbowski T, Wilczyński J, Czyż M. Expression of nerve growth factor (NGF) in endometrium as a potential biomarker for endometriosis - Single tertiary care centre study. J Gynecol Obstet Hum Reprod 2020; 50:101895. [PMID: 32827836 DOI: 10.1016/j.jogoh.2020.101895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE to identify novel biomarkers for peritoneal endometriosis in eutopic endometrium thus giving an oportunity for non-invasive diagnosis. DESIGN A cross-sectional single-center study SETTING: tertiary care hospital PATIENTS: 49 patients subjected to laparoscopy because of suspected endometriosis, 33 patients out of the group qualified to the study had sufficient endometrial tissue taken and were in their follicular phase of menstrual cycle. INTERVENTIONS biopsy sampling of eutopic endometrial tissue during diagnostic or diagnostic and terapeutic laparoscopy, questionaires, MAIN OUTCOME MEASURE(S): qRT-PCR to evaluate the mRNA expression of selected candidate marker genes in endometrium: ARO1 (aromatase), CXCL8 (interleukin 8), NGF (nerve growth factor), VEGF-A (vascular endothelial growth factor A), PDGF-A (platelet-derived growth factor A). RESULTS mRNA expression of ARO1, CXCL8, VEGF-A and PDGF-A did not differ significantly between women with and without endometriosis. NGF mRNA expression was decreased in women with endometriosis. CONCLUSIONS Observed preliminary results suggest a possible role of NGF in early diagnosis of peritoneal endometriosis. The role of NGF changes in eutopic endometrium of patients with peritoneal endometriosis needs further evaluation.
Collapse
Affiliation(s)
- Maria Szubert
- Department of Surgical and Oncological Gynecology, 1stDepartment of Gynecology and Obstetrics, Medical University of Lodz, Poland; M. Pirogow's Teaching Hospital, Wileńska 37 Street, 94-029, Lodz, Poland.
| | - Magdalena Rogut
- Department of Molecular Biology of Cancer of Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Magdalena Ziętara
- Department of Surgical and Oncological Gynecology, 1stDepartment of Gynecology and Obstetrics, Medical University of Lodz, Poland; M. Pirogow's Teaching Hospital, Wileńska 37 Street, 94-029, Lodz, Poland
| | - Tomasz Wierzbowski
- Department of Surgical and Oncological Gynecology, 1stDepartment of Gynecology and Obstetrics, Medical University of Lodz, Poland; M. Pirogow's Teaching Hospital, Wileńska 37 Street, 94-029, Lodz, Poland
| | - Jacek Wilczyński
- Department of Surgical and Oncological Gynecology, 1stDepartment of Gynecology and Obstetrics, Medical University of Lodz, Poland; M. Pirogow's Teaching Hospital, Wileńska 37 Street, 94-029, Lodz, Poland
| | - Małgorzata Czyż
- Department of Molecular Biology of Cancer of Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
7
|
Parthenolide as Cooperating Agent for Anti-Cancer Treatment of Various Malignancies. Pharmaceuticals (Basel) 2020; 13:ph13080194. [PMID: 32823992 PMCID: PMC7466132 DOI: 10.3390/ph13080194] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Primary and acquired resistance of cancer to therapy is often associated with activation of nuclear factor kappa B (NF-κB). Parthenolide (PN) has been shown to inhibit NF-κB signaling and other pro-survival signaling pathways, induce apoptosis and reduce a subpopulation of cancer stem-like cells in several cancers. Multimodal therapies that include PN or its derivatives seem to be promising approaches enhancing sensitivity of cancer cells to therapy and diminishing development of resistance. A number of studies have demonstrated that several drugs with various targets and mechanisms of action can cooperate with PN to eliminate cancer cells or inhibit their proliferation. This review summarizes the current state of knowledge on PN activity and its potential utility as complementary therapy against different cancers.
Collapse
|
8
|
17-Aminogeldanamycin Inhibits Constitutive Nuclear Factor-Kappa B (NF-κB) Activity in Patient-Derived Melanoma Cell Lines. Int J Mol Sci 2020; 21:ijms21113749. [PMID: 32466509 PMCID: PMC7312877 DOI: 10.3390/ijms21113749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma remains incurable skin cancer, and targeting heat shock protein 90 (HSP90) is a promising therapeutic approach. In this study, we investigate the effect of 17-aminogeldanamycin, a potent HSP90 inhibitor, on nuclear factor-kappa B (NF-κB) activity in BRAFV600E and NRASQ61R patient-derived melanoma cell lines. We performed time-lapse microscopy and flow cytometry to monitor changes in cell confluence and viability. The NF-κB activity was determined by immunodetection of phospho-p65 and assessment of expression of NF-κB-dependent genes by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Constitutive activity of p65/NF-κB was evident in all melanoma cell lines. Differences in its level might be associated with genetic alterations in CHUK, IL1B, MAP3K14, NFKBIE, RIPK1, and TLR4, while differences in transcript levels of NF-κB-inducible genes revealed by PCR array might result from the contribution of other regulatory mechanisms. 17-Aminogeldanamycin markedly diminished the level of phospho-p65, but the total p65 protein level was unaltered, indicating that 17-aminogeldanamycin inhibited activation of p65/NF-κB. This conclusion was supported by significantly reduced expression of selected NF-κB-dependent genes: cyclin D1 (CCND1), C-X-C motif chemokine ligand 8 (CXCL8), and vascular endothelial growth factor (VEGF), as shown at transcript and protein levels, as well as secretion of IL-8 and VEGF. Our study indicates that 17-aminogeldanamycin can be used for efficient inhibition of NF-κB activity and the simultaneous diminution of IL-8 and VEGF levels in the extracellular milieu of melanoma.
Collapse
|
9
|
Al-Qatati A, Aliwaini S. Combined pitavastatin and dacarbazine treatment activates apoptosis and autophagy resulting in synergistic cytotoxicity in melanoma cells. Oncol Lett 2017; 14:7993-7999. [PMID: 29344241 DOI: 10.3892/ol.2017.7189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/01/2017] [Indexed: 01/10/2023] Open
Abstract
Melanoma is an aggressive skin cancer and its incidence is increasing faster than any other type of cancer. Whilst dacarbazine (DTIC) is the standard chemotherapy for metastatic melanoma, it has limited success. Statins, including pitavastatin, have been demonstrated to have a range of anti-cancer effects in a number of human cancer cell lines. The present study therefore explored the anti-cancer activity of combined DTIC and pitavastatin in A375 and WM115 human melanoma cells. Cell survival assays demonstrated that combined DTIC and pitavastatin treatment resulted in synergistic cell death. Cell cycle analyses further revealed that this combined treatment resulted in a G1 cell cycle arrest, as well as a sub-G1 population, indicative of apoptosis. Activation of apoptosis was confirmed by Annexin V-fluorescein isothiocyanate/propidium iodide double-staining and an increase in the levels of active caspase 3 and cleaved poly (ADP-ribose) polymerase. Furthermore, it was demonstrated that apoptosis occurs through the intrinsic pathway, evident from the release of cytochrome c. Finally, combined DTIC and pitavastatin treatment was demonstrated to also activate autophagy as part of a cell death mechanism. The present study provides novel evidence to suggest that the combined treatment of DTIC and pitavastatin may be effective in the treatment of melanoma.
Collapse
Affiliation(s)
- Abeer Al-Qatati
- Faculty of Applied Medical Sciences, Al-Azhar University, Gaza 1277, Palestine
| | - Saeb Aliwaini
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Islamic University of Gaza, Gaza 108, Palestine
| |
Collapse
|
10
|
Zalesna I, Osrodek M, Hartman ML, Rozanski M, Sztiller-Sikorska M, Niewinna K, Nejc D, Czyz M. Exogenous growth factors bFGF, EGF and HGF do not influence viability and phenotype of V600EBRAF melanoma cells and their response to vemurafenib and trametinib in vitro. PLoS One 2017; 12:e0183498. [PMID: 28829835 PMCID: PMC5568748 DOI: 10.1371/journal.pone.0183498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/05/2017] [Indexed: 12/29/2022] Open
Abstract
It has been shown that the response of V600EBRAF melanoma cells to targeted therapeutics is affected by growth factors. We have investigated the influence of three different growth factors, bFGF, EGF and HGF used either alone or in combination, on the response of V600EBRAF melanoma cell populations established from surgical specimens to vemurafenib and trametinib, targeting V600EBRAF and MEK1/2, respectively. We report that proliferation and phenotype of V600EBRAF melanoma cell populations were not detectably influenced by exogenous growth factors. Neither cell distribution in cell cycle and CCND1 expression nor activity of signaling pathways crucial for melanoma development and maintenance, including the RAF/MEK/ERK pathway, WNT/β-catenin pathway and NF-κB signaling, were affected by the presence of different growth factors. We furthermore show that vemurafenib and trametinib abrogated the activity of ERK1/2, arrested cells in G0/G1 cell cycle phase, triggered apoptosis, induced changes in the expression of CXCL8, CCND1 and CTGF and the frequency of Ki-67high and CD271high cells. These effects were, however, similar in the presence of different growth factors. Interestingly, comparable results were also obtained for melanoma cells grown without exogenous growth factors bFGF, EGF and HGF for a period as long as 4 months prior the drug treatment. We conclude that the composition or lack of exogenous growth factors bFGF, EGF and HGF do not markedly influence viability and phenotype of V600EBRAF melanoma cells and their response to vemurafenib and trametinib in vitro. Our results question the necessity of these growth factors in the medium that is used for culturing V600EBRAF melanoma cells.
Collapse
Affiliation(s)
- Izabela Zalesna
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Marta Osrodek
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Mariusz L. Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Michal Rozanski
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | | | - Karolina Niewinna
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Dariusz Nejc
- Department of Surgical Oncology, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|
11
|
Ciprofloxacin-mediated induction of S-phase cell cycle arrest and apoptosis in COLO829 melanoma cells. Pharmacol Rep 2017; 70:6-13. [PMID: 29306115 DOI: 10.1016/j.pharep.2017.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Low effectiveness of anti-melanoma therapies makes it necessary to search for new drugs that could improve or replace the standard chemotherapy. Fluoroquinolones are a group of synthetic antibiotics, used in the treatment of wide range of bacterial infections. Moreover, this class of antibiotics has shown promising anti-tumor activity in several cancer cell lines. The aim of this study was to examine the effect of ciprofloxacin on cell viability, apoptosis and cell cycle distribution in COLO829 melanoma cells. METHODS Cell viability was evaluated by the WST-1 assay. Cell cycle distribution and apoptosis in cells exposed to ciprofloxacin was analyzed by the use of fluorescence image cytometer NucleoCounter NC-3000. RESULTS Ciprofloxacin decreased the cell viability in a dose- and time-dependent manner. For COLO829 cells treated with ciprofloxacin for 24 h, 48 h and 72 h the values of IC50 were found to be 0.74 mM, 0.17 mM and 0.10 mM, respectively. The oligonucleosomal DNA fragmentation was observed when the cells were exposed to ciprofloxacin in concentration of 1.0 mM for 48 h and 72 h. At lower ciprofloxacin concentrations (0.01 mM and 0.1 mM) cells were arrested in S-phase suggesting a mechanism related to topoisomerase II inhibition. Moreover, it was demonstrated that ciprofloxacin induced apoptosis as a result of mitochondrial membrane breakdown. CONCLUSIONS The obtained results for COLO829 melanoma cells were compared with data for normal dark pigmented melanocytes and the use of ciprofloxacin as a potential anticancer drug for the treatment of melanoma in vivo was considered.
Collapse
|
12
|
Vemurafenib and trametinib reduce expression of CTGF and IL-8 in V600EBRAF melanoma cells. J Transl Med 2017; 97:217-227. [PMID: 28067893 DOI: 10.1038/labinvest.2016.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 02/05/2023] Open
Abstract
Clinical evidence has revealed that while RAS/RAF/MEK/ERK pathway is a crucial component of melanomagenesis, other signaling pathways can also contribute to the malignant growth and development of resistance to targeted therapies. We explored the response of V600EBRAF melanoma cells derived from surgical specimens and grown in stem cell medium to vemurafenib and trametinib, drugs targeting the activity of V600EBRAF and MEK1/2, respectively. Cell growth and apoptosis were monitored by real-time imaging system, immunophenotype and cell cycle by flow cytometry, gene expression by quantitative real-time PCR, immunoblotting and enzyme-linked immunosorbent assay. The V600EBRAF melanoma cell populations were diverse. Differences in morphology, pigmentation, cell cycle profiles, and immunophenotype were observed. At the molecular level, melanoma cells differed in the phosphorylation of ERK1/2, NF-κB, and β-catenin, and expression of several relevant genes, including MITF-M, DKK1, CCND1, BRAF, CXCL8, and CTGF. Despite having different characteristics, melanoma cells responded similarly to vemurafenib and trametinib. Both drugs reduced ERK1/2 phosphorylation and percentages of cells expressing Ki-67 at high level, inhibited expression of CCND1 and induced cell cycle arrest in the Go/G1 phase. These expected cytostatic effects were accompanied by increased CD271 expression, a marker of stem-like cells. NF-κB activity was reduced by both drugs, however, not completely abolished, whereas the level of active β-catenin was increased by drugs in three out of six cell populations. Interestingly, expression of IL-8 and CTGF was significantly reduced by treatment with vemurafenib and trametinib. Simultaneous inhibition of NF-κB activity and induction of ERK1/2 phosphorylation revealed that CTGF expression depends on ERK1/2 activity but not on NF-κB activity. Both, the positive effects of treatment with vemurafenib and trametinib such as the newly identified CTGF suppression and undesired effects such as increased CD271 expression suggesting selection of melanoma stem-like cells should be considered in the development of combination treatment for melanoma patients.
Collapse
|
13
|
Seca AM, Silva AM, Pinto DC. Parthenolide and Parthenolide-Like Sesquiterpene Lactones as Multiple Targets Drugs. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63931-8.00009-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Hartman ML, Talar B, Sztiller-Sikorska M, Nejc D, Czyz M. Parthenolide induces MITF-M downregulation and senescence in patient-derived MITF-M(high) melanoma cell populations. Oncotarget 2016; 7:9026-40. [PMID: 26824319 PMCID: PMC4891023 DOI: 10.18632/oncotarget.7030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022] Open
Abstract
The activity of the M isoform of microphthalmia-associated transcription factor (MITF-M) has been attributed to regulation of differentiation, proliferation, survival and senescence of melanoma cells. MITF expression was shown to be antagonized by the activation of transcription factor NF-κB. Parthenolide, an inhibitor of NF-κB, has not been yet reported to affect MITF-M expression. Our results obtained in patient-derived melanoma cell populations indicate that parthenolide efficiently decreases the MITF-M level. This is neither dependent on p65/NF-κB signaling nor RAF/MEK/ERK pathway activity as inhibition of MEK by GSK1120212 (trametinib) and induction of ERK1/2 activity by parthenolide itself do not interfere with parthenolide-triggered depletion of MITF-M in both wild-type BRAF and BRAFV600E melanoma populations. Parthenolide activity is not prevented by inhibitors of caspases, proteasomal and lysosomal pathways. As parthenolide reduces MITF-M transcript level and HDAC1 protein level, parthenolide-activated depletion of MITF-M protein may be considered as a result of transcriptional regulation, however, the influence of parthenolide on other elements of a dynamic control over MITF-M cannot be ruled out. Parthenolide induces diverse effects in melanoma cells, from death to senescence. The mode of the response to parthenolide is bound to the molecular characteristics of melanoma cells, particularly to the basal MITF-M expression level but other cell-autonomous differences such as NF-κB activity and MCL-1 level might also contribute. Our data suggest that parthenolide can be developed as a drug used in combination therapy against melanoma when simultaneous inhibition of MITF-M, NF-κB and HDAC1 is needed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Beata Talar
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | | | - Dariusz Nejc
- Department of Surgical Oncology, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
Talar B, Gajos-Michniewicz A, Talar M, Chouaib S, Czyz M. Pentoxifylline Inhibits WNT Signalling in β-Cateninhigh Patient-Derived Melanoma Cell Populations. PLoS One 2016; 11:e0158275. [PMID: 27351373 PMCID: PMC4924839 DOI: 10.1371/journal.pone.0158275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/13/2016] [Indexed: 11/18/2022] Open
Abstract
Background The heterogeneity of melanoma needs to be addressed and combination therapies seem to be necessary to overcome intrinsic and acquired resistance to newly developed immunotherapies and targeted therapies. Although the role of WNT/β-catenin pathway in melanoma was early demonstrated, its contribution to the lack of the melanoma patient response to treatment was only recently recognized. Using patient-derived melanoma cell populations, we investigated the influence of pentoxifylline on melanoma cells with either high or low expression of β-catenin. Findings Our results indicate that pentoxifylline inhibits the activity of the canonical WNT pathway in melanoma cell populations with high basal activity of this signalling. This is supported by lowered overall activity of transcription factors TCF/LEF and reduced nuclear localisation of active β-catenin. Moreover, treatment of β-cateninhigh melanoma cell populations with pentoxifylline induces downregulation of genes that are targets of the WNT/β-catenin pathway including connective tissue growth factor (CTGF) and microphthalmia-associated transcription factor (MITF-M), a melanocyte- and melanoma cell-specific regulator. Conclusions These results suggest that pentoxifylline, a drug approved by the FDA in the treatment of peripheral arterial disease, might be tested in a subset of melanoma patients with elevated activity of β-catenin. This pharmaceutical might be tested as an adjuvant drug in combination therapies when the response to immunotherapy is prevented by high activity of the WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Beata Talar
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | | | - Marcin Talar
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Salem Chouaib
- Unité INSERM U1186, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|
16
|
Pastuszko A, Majchrzak K, Czyz M, Kupcewicz B, Budzisz E. The synthesis, lipophilicity and cytotoxic effects of new ruthenium(II) arene complexes with chromone derivatives. J Inorg Biochem 2016; 159:133-41. [DOI: 10.1016/j.jinorgbio.2016.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/27/2016] [Accepted: 02/23/2016] [Indexed: 02/01/2023]
|
17
|
Hartman ML, Talar B, Gajos-Michniewicz A, Czyz M. MCL-1, BCL-XL and MITF Are Diversely Employed in Adaptive Response of Melanoma Cells to Changes in Microenvironment. PLoS One 2015; 10:e0128796. [PMID: 26035829 PMCID: PMC4452715 DOI: 10.1371/journal.pone.0128796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/30/2015] [Indexed: 01/07/2023] Open
Abstract
Melanoma cells can switch their phenotypes in response to microenvironmental insults. Heterogeneous melanoma populations characterized by long-term growth and a high self-renewal capacity can be obtained in vitro in EGF(+)bFGF(+) medium whilst invasive potential of melanoma cells is increased in serum-containing cultures. In the present study, we have shown that originally these patient-derived melanoma populations exhibit variable expression of pro-survival genes from the BCL-2 family and inhibitors of apoptosis (IAPs), and differ in the baseline MCL-1 transcript stability as well. While being transferred to serum-containing medium, melanoma cells are well protected from death. Immediate adaptive response of melanoma cells selectively involves a temporary MCL-1 increase, both at mRNA and protein levels, and BCL-XL can complement MCL-1, especially in MITFlow populations. Thus, the extent of MCL-1 and BCL-XL contributions seems to be cell context-dependent. An increase in MCL-1 level results from a transiently enhanced stability of its transcript, but not from altered protein turnover. Inhibition of MCL-1 preceding transfer to serum-containing medium caused the induction of cell death in a subset of melanoma cells, which confirms the involvement of MCL-1 in melanoma cell survival during the rapid alteration of growth conditions. Additionally, immediate response to serum involves the transient increase in MITF expression and inhibition of ERK-1/2 activity. Uncovering the mechanisms of adaptive response to rapid changes in microenvironment may extend our knowledge on melanoma biology, especially at the stage of dissemination.
Collapse
Affiliation(s)
- Mariusz L. Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Beata Talar
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | | | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|
18
|
Phenotypic diversity of patient-derived melanoma populations in stem cell medium. J Transl Med 2015; 95:672-83. [PMID: 25867763 DOI: 10.1038/labinvest.2015.48] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/08/2015] [Accepted: 01/26/2015] [Indexed: 12/20/2022] Open
Abstract
Melanomas are highly heterogeneous tumors and there is no treatment effective at achieving long-term remission for metastatic melanoma patients. Thus, an appropriate model system for studying melanoma biology and response to drugs is necessary. It has been shown that composition of the medium is a critical factor in preserving the complexity of the tumor in in vitro settings, and melanospheres maintained in stem cell medium are a good model in this respect. In the present study, we observed that not all nodular melanoma patient-derived cell populations grown in stem cell medium were capable of forming melanospheres, and cell aggregates and anchorage-independent single-cell cultures emerged instead. Self-renewing capacity and unlimited growth potential indicated the presence of cells with stem-like properties in all patient-derived populations but immunophenotype and MITF expression exhibited variability. Enhanced MITF expression and activity was observed in melanospheres in comparison with cell aggregates and single-cell culture, and hypoxic-like conditions that increased the ability of single-cell population to form melanospheres enhanced MITF expression and cell pigmentation as well. Thus, MITF seems to be a critical transcription factor for formation of both patient-derived and hypoxia-induced melanospheres. After 2 years of continuous culturing, melanospheres progressively underwent transition into cell aggregates that was accompanied by changes in expression of several MITF-dependent genes associated with melanogenesis and survival and alterations in the composition of subpopulations but not in the frequency of ABCB5-positive cells. Several biological properties of parent tumor are well preserved in patient-derived melanospheres, but during prolonged culturing the heterogeneity is substantially lost when the melanospheres are substituted by cell aggregates. This should be considered when cell aggregates instead of melanospheres are used in the study of melanoma biology and cell response to drugs.
Collapse
|
19
|
Hartman ML, Talar B, Noman MZ, Gajos-Michniewicz A, Chouaib S, Czyz M. Gene expression profiling identifies microphthalmia-associated transcription factor (MITF) and Dickkopf-1 (DKK1) as regulators of microenvironment-driven alterations in melanoma phenotype. PLoS One 2014; 9:e95157. [PMID: 24733089 PMCID: PMC3986414 DOI: 10.1371/journal.pone.0095157] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/24/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The diversity of functional phenotypes observed within a tumor does not exclusively result from intratumoral genetic heterogeneity but also from the response of cancer cells to the microenvironment. We have previously demonstrated that the morphological and functional phenotypes of melanoma can be dynamically altered upon external stimuli. FINDINGS In the present study, transcriptome profiles were generated to explore the molecules governing phenotypes of melanospheres grown in the bFGF(+)EGF(+) serum-free cultures and monolayers maintained in the serum-containing medium. Higher expression levels of MITF-dependent genes that are responsible for differentiation, e.g., TYR and MLANA, and stemness-related genes, e.g., ALDH1A1, were detected in melanospheres. These results were supported by the observation that the melanospheres contained more pigmented cells and cells exerting the self-renewal capacity than the monolayers. In addition, the expression of the anti-apoptotic, MITF-dependent genes e.g., BCL2A1 was also higher in the melanospheres. The enhanced activity of MITF in melanospheres, as illustrated by the increased expression of 74 MITF-dependent genes, identified MITF as a central transcriptional regulator in melanospheres. Importantly, several genes including MITF-dependent ones were expressed in melanospheres and original tumors at similar levels. The reduced MITF level in monolayers might be partially explained by suppression of the Wnt/β-catenin pathway, and DKK1, a secreted inhibitor of this pathway, was highly up-regulated in monolayers in comparison to melanospheres and original tumors. Furthermore, the silencing of DKK1 in monolayers increased the percentage of cells with self-renewing capacity. CONCLUSIONS Our study indicates that melanospheres can be used to unravel the molecular pathways that sustain intratumoral phenotypic heterogeneity. Melanospheres directly derived from tumor specimens more accurately mirrored the morphology and gene expression profiles of the original tumors compared to monolayers. Therefore, melanospheres represent a relevant preclinical tool to study new anticancer treatment strategies.
Collapse
Affiliation(s)
- Mariusz L. Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Beata Talar
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | | | | | - Salem Chouaib
- Unité INSERM U753, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
20
|
Sztiller-Sikorska M, Koprowska K, Majchrzak K, Hartman M, Czyz M. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells. PLoS One 2014; 9:e90783. [PMID: 24595456 PMCID: PMC3940936 DOI: 10.1371/journal.pone.0090783] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/04/2014] [Indexed: 12/21/2022] Open
Abstract
Background Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. Methods We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. Findings Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5)-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF) and proto-oncogene c-MYC. Conclusion Selected anti-clonogenic compounds might be further investigated as potential adjuvants targeting melanoma stem-like cells in the combined anti-melanoma therapy, whereas selected cytotoxic but not anti-clonogenic compounds, which increased the frequency of ABCB5-positive cells and remained slow-cycling cells unaffected, might be considered as a tool to enrich cultures with cells exhibiting melanoma stem cell characteristics.
Collapse
Affiliation(s)
| | - Kamila Koprowska
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Kinga Majchrzak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Mariusz Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|