1
|
Shi Q, Hu T, Xu L, Fu J, Fang Y, Lan Y, Fan W, Wu Q, Tong X, Yan H. Fingolimod Suppresses NLRP3 Inflammasome Activation and Alleviates Oxidative Stress in Traumatic Brain Injury-Induced Acute Lung Injury. J Inflamm Res 2025; 18:2229-2245. [PMID: 39974815 PMCID: PMC11835775 DOI: 10.2147/jir.s503428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/08/2025] [Indexed: 02/21/2025] Open
Abstract
Background Acute lung injury (ALI) is a serious yet common complication in patients with traumatic brain injury (TBI), often associated with poor prognosis. The development of TBI-induced ALI is closely associated with excessive oxidative stress and NLRP3 inflammasome activation. Fingolimod, an immunomodulatory agent, has been reported to attenuate inflammatory responses, restore blood-brain barrier integrity, reduce cerebral edema, and mitigate associated neurological deficits. Objective This study aimed to investigate the mechanistic role of NLRP3 inflammasome activation in TBI-induced ALI and to evaluate the therapeutic potential of fingolimod in targeting this inflammatory pathway. Results A rat TBI model was established using the classical free-fall method, and animals were treated with fingolimod (0.5 or 1 mg/kg) daily for three days. The TBI model rats presented with clear signs of histopathological pulmonary damage, an increase in the permeability of capillaries in the lung, and pulmonary edema that coincided with significantly increased NLRP3, caspase-1, and ASC expression in lung tissue samples. This overexpression of NLRP3 inflammasome machinery resulted in the release of IL-1β. Fingolimod treatment, however, reversed all of these effects such that it suppressed NLRP3 activity and normalized levels of IL-1β, leading to the alleviation of inflammation. In line with these results, LPS and nigericin (NLRP3 agonist)-treated NR8383 cells treated using fingolimod exhibited reductions in reactive oxygen species production and NLRP3 inflammasome activation. Conclusion These findings suggest that NLRP3 inflammasome activation and oxidative stress are key mediators of TBI-induced ALI. Fingolimod exerts protective effects against this condition by inhibiting NLRP3 inflammasome activation, highlighting its potential as a therapeutic agent for TBI-associated pulmonary complications.
Collapse
Affiliation(s)
- Qi Shi
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Tingting Hu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
| | - Lixia Xu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
| | - Jiayuanyuan Fu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Yehong Fang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Yu Lan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Weijia Fan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
| | - Qiaoli Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
| |
Collapse
|
2
|
Wang Y, Zhu CL, Li P, Liu Q, Li HR, Yu CM, Deng XM, Wang JF. The role of G protein-coupled receptor in neutrophil dysfunction during sepsis-induced acute respiratory distress syndrome. Front Immunol 2023; 14:1112196. [PMID: 36891309 PMCID: PMC9986442 DOI: 10.3389/fimmu.2023.1112196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sepsis is defined as a life-threatening dysfunction due to a dysregulated host response to infection. It is a common and complex syndrome and is the leading cause of death in intensive care units. The lungs are most vulnerable to the challenge of sepsis, and the incidence of respiratory dysfunction has been reported to be up to 70%, in which neutrophils play a major role. Neutrophils are the first line of defense against infection, and they are regarded as the most responsive cells in sepsis. Normally, neutrophils recognize chemokines including the bacterial product N-formyl-methionyl-leucyl-phenylalanine (fMLP), complement 5a (C5a), and lipid molecules Leukotriene B4 (LTB4) and C-X-C motif chemokine ligand 8 (CXCL8), and enter the site of infection through mobilization, rolling, adhesion, migration, and chemotaxis. However, numerous studies have confirmed that despite the high levels of chemokines in septic patients and mice at the site of infection, the neutrophils cannot migrate to the proper target location, but instead they accumulate in the lungs, releasing histones, DNA, and proteases that mediate tissue damage and induce acute respiratory distress syndrome (ARDS). This is closely related to impaired neutrophil migration in sepsis, but the mechanism involved is still unclear. Many studies have shown that chemokine receptor dysregulation is an important cause of impaired neutrophil migration, and the vast majority of these chemokine receptors belong to the G protein-coupled receptors (GPCRs). In this review, we summarize the signaling pathways by which neutrophil GPCR regulates chemotaxis and the mechanisms by which abnormal GPCR function in sepsis leads to impaired neutrophil chemotaxis, which can further cause ARDS. Several potential targets for intervention are proposed to improve neutrophil chemotaxis, and we hope that this review may provide insights for clinical practitioners.
Collapse
Affiliation(s)
- Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Cheng-long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Peng Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui-ru Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Chang-meng Yu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-ming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Jia-feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Politowicz AL, Burks AT, Dong Y, Htwe YM, Dudek SM, Elisabeta Marai G, Belvitch P. Alveolus analysis: a web browser-based tool to analyze lung intravital microscopy. BMC Pulm Med 2022; 22:480. [PMID: 36528564 PMCID: PMC9759058 DOI: 10.1186/s12890-022-02274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Acute lung injury and the acute respiratory distress syndrome are characterized by pulmonary inflammation, reduced endothelial barrier integrity and filling of the alveolar space with protein rich edema fluid and infiltrating leukocytes. Animal models are critical to uncovering the pathologic mechanisms of this devastating syndrome. Intravital imaging of the intact lung via two-photon intravital microscopy has proven a valuable method to investigate lung injury in small rodent models through characterization of inflammatory cells and vascular changes in real time. However, respiratory motion complicates the analysis of these time series images and requires selective data extraction to stabilize the image. Consequently, analysis of individual alveoli may not provide a complete picture of the integrated mechanical, vascular and inflammatory processes occurring simultaneously in the intact lung. To address these challenges, we developed a web browser-based visualization application named Alveolus Analysis to process, analyze and graphically display intravital lung microscopy data. RESULTS The designed tool takes raw temporal image data as input, performs image preprocessing and feature extraction offline, and visualizes the extracted information in a web browser-based interface. The interface allows users to explore multiple experiments in three panels corresponding to different levels of detail: summary statistics of alveolar/neutrophil behavior, characterization of alveolar dynamics including lung edema and inflammatory cells at specific time points, and cross-experiment analysis. We performed a case study on the utility of the visualization with two members or our research team and they found the tool useful because of its ability to preprocess data consistently and visualize information in a digestible and informative format. CONCLUSIONS Application of our software tool, Alveolus Analysis, to intravital lung microscopy data has the potential to enhance the information gained from these experiments and provide new insights into the pathologic mechanisms of inflammatory lung injury.
Collapse
Affiliation(s)
- Alexander L Politowicz
- Department of Computer Science, College of Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Andrew T Burks
- Department of Computer Science, College of Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Yushen Dong
- Department of Mathematics, Statistics, and Computer Science, University of Illinois Chicago, Chicago, IL, USA
| | - Yu Maw Htwe
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, CSB 915, 840 S. Wood St., Chicago, IL, 60612, USA
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, CSB 915, 840 S. Wood St., Chicago, IL, 60612, USA
| | - G Elisabeta Marai
- Department of Computer Science, College of Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, CSB 915, 840 S. Wood St., Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Hach T, Shakeri-Nejad K, Bigaud M, Dahlke F, de Micco M, Petricoul O, Graham G, Piani-Meier D, Turrini R, Brinkmann V, Nicoletti F. Rationale for Use of Sphingosine-1-Phosphate Receptor Modulators in COVID-19 Patients: Overview of Scientific Evidence. J Interferon Cytokine Res 2022. [DOI: 10.1089/jir.2022.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Thomas Hach
- Patient Engagement, Novartis Pharma AG, Basel, Switzerland
| | - Kasra Shakeri-Nejad
- Department of Clinical Pharmacology; Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marc Bigaud
- Department of Autoimmunity, Transplantation & Inflammation; Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Frank Dahlke
- Patient Engagement, Novartis Pharma AG, Basel, Switzerland
| | | | - Olivier Petricoul
- Department of Neuroscience; Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gordon Graham
- Patient Engagement, Novartis Pharma AG, Basel, Switzerland
| | | | - Renato Turrini
- Department of Autoimmunity, Transplantation & Inflammation; Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University Sapienza of Rome, Rome, Italy
- Department of Molecular Neuropharmacology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
5
|
Milford EM, Meital L, Kuballa A, Reade MC, Russell FD. Fingolimod does not prevent syndecan-4 shedding from the endothelial glycocalyx in a cultured human umbilical vein endothelial cell model of vascular injury. Intensive Care Med Exp 2022; 10:34. [PMID: 35980492 PMCID: PMC9388705 DOI: 10.1186/s40635-022-00462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Background Shedding of the endothelial glycocalyx (EG) is associated with poor outcomes in a range of conditions including sepsis. Fresh frozen plasma (FFP) restores the damaged EG to baseline thickness, however the mechanism for this effect is unknown, and some components of FFP have adverse effects unrelated to the EG. There is some limited evidence that sphingosine-1-phosphate (S1P) within FFP restores the EG by activating the endothelial cell S1P receptor 1 (S1PR1). However, there are disadvantages to using S1P clinically as an EG restorative therapy. A potential alternative is the S1PR agonist fingolimod (FTY720). The aim of this study was to assess whether FTY720 prevents EG shedding in injured cultured human umbilical vein endothelial cells. Methods Shedding of the EG was induced in cultured human umbilical vein endothelial cells (HUVECs) by exposure to adrenaline, TNF-α and H2O2. The cells were then assigned to one of six conditions for 4 h: uninjured and untreated, injured and untreated, injured and treated with FTY720 with and without the S1PR1 inhibitor W146, and injured and treated with 25% FFP with and without W146. Syndecan-4, a component of the EG, was measured in cell supernatants, and syndecan-4 and thrombomodulin mRNA expression was quantitated in cell lysates. Results The injury resulted in a 2.1-fold increase in syndecan-4 (p < 0.001), consistent with EG shedding. Syndecan-4 and thrombomodulin mRNA expression was increased (p < 0.001) and decreased (p < 0.05), respectively, by the injury. Syndecan-4 shedding was not affected by treatment with FTY720, whereas FFP attenuated syndecan-4 shedding back to baseline levels in the injured cells and this was unaffected by W146. Neither treatment affected syndecan-4 or thrombomodulin mRNA expression. Conclusions FTY720 did not prevent syndecan-4 shedding from the EG in the HUVEC model of endothelial injury, suggesting that activation of S1PR does not prevent EG damage. FFP prevented syndecan-4 shedding from the EG via a mechanism that was independent of S1PR1 and upregulation of SDC-4 production. Further studies to examine whether FTY720 or another S1PR agonist might have EG-protective effects under different conditions are warranted, as are investigations seeking the mechanism of EG protection conferred by FFP in this experimental model.
Collapse
Affiliation(s)
- Elissa M Milford
- Faculty of Medicine, University of Queensland, Herston, QLD, Australia. .,Intensive Care Unit, Royal Brisbane and Women's Hospital, Butterfield St., Herston, QLD, Australia.
| | - Lara Meital
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Anna Kuballa
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Michael C Reade
- Faculty of Medicine, University of Queensland, Herston, QLD, Australia.,Intensive Care Unit, Royal Brisbane and Women's Hospital, Butterfield St., Herston, QLD, Australia.,Joint Health Command, Australian Defence Force, Canberra, ACT, Australia
| | - Fraser D Russell
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
6
|
Pournajaf S, Dargahi L, Javan M, Pourgholami MH. Molecular Pharmacology and Novel Potential Therapeutic Applications of Fingolimod. Front Pharmacol 2022; 13:807639. [PMID: 35250559 PMCID: PMC8889014 DOI: 10.3389/fphar.2022.807639] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Fingolimod is a well-tolerated, highly effective disease-modifying therapy successfully utilized in the management of multiple sclerosis. The active metabolite, fingolimod-phosphate, acts on sphingosine-1-phosphate receptors (S1PRs) to bring about an array of pharmacological effects. While being initially recognized as a novel agent that can profoundly reduce T-cell numbers in circulation and the CNS, thereby suppressing inflammation and MS, there is now rapidly increasing knowledge on its previously unrecognized molecular and potential therapeutic effects in diverse pathological conditions. In addition to exerting inhibitory effects on sphingolipid pathway enzymes, fingolimod also inhibits histone deacetylases, transient receptor potential cation channel subfamily M member 7 (TRMP7), cytosolic phospholipase A2α (cPLA2α), reduces lysophosphatidic acid (LPA) plasma levels, and activates protein phosphatase 2A (PP2A). Furthermore, fingolimod induces apoptosis, autophagy, cell cycle arrest, epigenetic regulations, macrophages M1/M2 shift and enhances BDNF expression. According to recent evidence, fingolimod modulates a range of other molecular pathways deeply rooted in disease initiation or progression. Experimental reports have firmly associated the drug with potentially beneficial therapeutic effects in immunomodulatory diseases, CNS injuries, and diseases including Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and even cancer. Attractive pharmacological effects, relative safety, favorable pharmacokinetics, and positive experimental data have collectively led to its testing in clinical trials. Based on the recent reports, fingolimod may soon find its way as an adjunct therapy in various disparate pathological conditions. This review summarizes the up-to-date knowledge about molecular pharmacology and potential therapeutic uses of fingolimod.
Collapse
Affiliation(s)
- Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
7
|
Wang L, Letsiou E, Wang H, Belvitch P, Meliton LN, Brown ME, Bandela M, Chen J, Garcia JGN, Dudek SM. MRSA-induced endothelial permeability and acute lung injury are attenuated by FTY720 S-phosphonate. Am J Physiol Lung Cell Mol Physiol 2022; 322:L149-L161. [PMID: 35015568 PMCID: PMC8794017 DOI: 10.1152/ajplung.00100.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Disruption of the lung endothelial barrier is a hallmark of acute respiratory distress syndrome (ARDS), for which no effective pharmacologic treatments exist. Prior work has demonstrated that FTY720 S-phosphonate (Tys), an analog of sphingosine-1-phosphate (S1P) and FTY720, exhibits potent endothelial cell (EC) barrier protective properties. In this study, we investigated the in vitro and in vivo efficacy of Tys against methicillin-resistant Staphylococcus aureus (MRSA), a frequent bacterial cause of ARDS. Tys-protected human lung EC from barrier disruption induced by heat-killed MRSA (HK-MRSA) or staphylococcal α-toxin and attenuated MRSA-induced cytoskeletal changes associated with barrier disruption, including actin stress fiber formation and loss of peripheral VE-cadherin and cortactin. Tys-inhibited Rho and myosin light chain (MLC) activation after MRSA and blocked MRSA-induced NF-κB activation and release of the proinflammatory cytokines, IL-6 and IL-8. In vivo, intratracheal administration of live MRSA in mice caused significant vascular leakage and leukocyte infiltration into the alveolar space. Pre- or posttreatment with Tys attenuated MRSA-induced lung permeability and levels of alveolar neutrophils. Posttreatment with Tys significantly reduced levels of bronchoalveolar lavage (BAL) VCAM-1 and plasma IL-6 and KC induced by MRSA. Dynamic intravital imaging of mouse lungs demonstrated Tys attenuation of HK-MRSA-induced interstitial edema and neutrophil infiltration into lung tissue. Tys did not directly inhibit MRSA growth or viability in vitro. In conclusion, Tys inhibits lung EC barrier disruption and proinflammatory signaling induced by MRSA in vitro and attenuates acute lung injury induced by MRSA in vivo. These results support the potential utility of Tys as a novel ARDS therapeutic strategy.
Collapse
Affiliation(s)
- Lichun Wang
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Eleftheria Letsiou
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Huashan Wang
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Patrick Belvitch
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Lucille N. Meliton
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Mary E. Brown
- 2Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Mounica Bandela
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jiwang Chen
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | - Steven M. Dudek
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
8
|
Shi ZA, Li TT, Kang DL, Su H, Tu FP. Fingolimod attenuates renal ischemia/reperfusion-induced acute lung injury by inhibiting inflammation and apoptosis and modulating S1P metabolism. J Int Med Res 2021; 49:3000605211032806. [PMID: 34340580 PMCID: PMC8358582 DOI: 10.1177/03000605211032806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective This study examined whether the immunomodulator fingolimod (FTY720) could alleviate renal ischemia/reperfusion (I/R)-induced lung injury and explored the potential mechanisms. Methods Renal I/R was established in a rat model, and FTY720 (0.5, 1, or 2 mg/kg) was injected intraperitoneally after 15 minutes of ischemia. Pro-inflammatory cytokine levels, oxidative stress, apoptosis, and the mRNA expression of the sphingosine-1-phosphate (S1P)-related signaling pathway genes sphingosine kinase-1 (SphK1) and sphingosine kinase-2 were analyzed in lung tissue. Results Increased pro-inflammatory cytokine levels; decreased total superoxide dismutase, catalase, and glutathione peroxidase levels; increased apoptosis; and increased S1P lyase and SphK1 expression were observed following renal I/R. FTY720 reversed renal I/R-induced changes and effectively attenuated lung injury. Conclusion FTY720 protected against acute lung injury in rats subjected to renal I/R by decreasing pulmonary inflammation and apoptosis, increasing oxidative stress, and modulating S1P metabolism.
Collapse
Affiliation(s)
- Zu-An Shi
- Department of Anesthesiology, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, Nanchong, P.R. China
| | - Ting-Ting Li
- Department of Pharmacy, the Second Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China
| | - Dao-Ling Kang
- Department of Anesthesiology, 117913Affiliated Hospital of North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China
| | - Hang Su
- Department of Anesthesiology, 117913Affiliated Hospital of North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China
| | - Fa-Ping Tu
- Department of Anesthesiology, 117913Affiliated Hospital of North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China
| |
Collapse
|
9
|
Ziegler AC, Gräler MH. Barrier maintenance by S1P during inflammation and sepsis. Tissue Barriers 2021; 9:1940069. [PMID: 34152926 DOI: 10.1080/21688370.2021.1940069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a multifaceted lipid signaling molecule that activates five specific G protein-coupled S1P receptors. Despite the fact that S1P is known as one of the strongest barrier-enhancing molecules for two decades, no medical application is available yet. The reason for this lack of translation into clinical practice may be the complex regulatory network of S1P signaling, metabolism and transportation.In this review, we will provide an overview about the physiology and the network of S1P signaling with the focus on endothelial barrier maintenance in inflammation. We briefly describe the physiological role of S1P and the underlying S1P signaling in barrier maintenance, outline differences of S1P signaling and metabolism in inflammatory diseases, discuss potential targets and compounds for medical intervention, and summarize our current knowledge regarding the role of S1P in the maintenance of specialized barriers like the blood-brain barrier and the placenta.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
10
|
Amunugama K, Pike DP, Ford DA. The lipid biology of sepsis. J Lipid Res 2021; 62:100090. [PMID: 34087197 PMCID: PMC8243525 DOI: 10.1016/j.jlr.2021.100090] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Sepsis, defined as the dysregulated immune response to an infection leading to organ dysfunction, is one of the leading causes of mortality around the globe. Despite the significant progress in delineating the underlying mechanisms of sepsis pathogenesis, there are currently no effective treatments or specific diagnostic biomarkers in the clinical setting. The perturbation of cell signaling mechanisms, inadequate inflammation resolution, and energy imbalance, all of which are altered during sepsis, are also known to lead to defective lipid metabolism. The use of lipids as biomarkers with high specificity and sensitivity may aid in early diagnosis and guide clinical decision making. In addition, identifying the link between specific lipid signatures and their role in sepsis pathology may lead to novel therapeutics. In this review, we discuss the recent evidence on dysregulated lipid metabolism both in experimental and human sepsis focused on bioactive lipids, fatty acids, and cholesterol as well as the enzymes regulating their levels during sepsis. We highlight not only their potential roles in sepsis pathogenesis but also the possibility of using these respective lipid compounds as diagnostic and prognostic biomarkers of sepsis.
Collapse
Affiliation(s)
- Kaushalya Amunugama
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel P Pike
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Lysophospholipids in Lung Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:373-391. [PMID: 33788203 DOI: 10.1007/978-3-030-63046-1_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lysophospholipids (LPLs) belong to a group of bioactive lipids that play pivotal roles in several physiological and pathological processes. LPLs are derivatives of phospholipids and consist of a single hydrophobic fatty acid chain, a hydrophilic head, and a phosphate group with or without a large molecule attached. Among the LPLs, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are the simplest, and have been shown to be involved in lung inflammatory symptoms and diseases such as acute lung injury, asthma, and chronic obstructive pulmonary diseases. G protein-coupled receptors (GPCRs) mediate LPA and S1P signaling. In this chapter, we will discuss on the role of LPA, S1P, their metabolizing enzymes, inhibitors or agonists of their receptors, and their GPCR-mediated signaling in lung inflammatory symptoms and diseases, focusing specially on acute respiratory distress syndrome, asthma, and chronic obstructive pulmonary disease.
Collapse
|
12
|
Saber M, Rice AD, Christie I, Roberts RG, Knox KS, Nakaji P, Rowe RK, Wang T, Lifshitz J. Remote Ischemic Conditioning Reduced Acute Lung Injury After Traumatic Brain Injury in the Mouse. Shock 2021; 55:256-267. [PMID: 32769821 PMCID: PMC8878575 DOI: 10.1097/shk.0000000000001618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT Traumatic brain injury (TBI) can induce acute lung injury (ALI). The exact pathomechanism of TBI-induced ALI is poorly understood, limiting treatment options. Remote ischemic conditioning (RIC) can mitigate detrimental outcomes following transplants, cardiac arrests, and neurological injuries. In this study, we hypothesized that RIC would reduce TBI-induced ALI by regulating the sphingosine-1-phosphate (S1P)-dependent pathway, a central regulator of endothelial barrier integrity, lymphocyte, and myokine trafficking. Male mice were subjected to either diffuse TBI by midline fluid percussion or control sham injury and randomly assigned among four groups: sham, TBI, sham RIC, or TBI RIC; RIC was performed 1 h prior to TBI. Mice were euthanized at 1-h postinjury or 7 days post-injury (DPI) and lung tissue, bronchoalveolar lavage (BAL) fluid, and blood were collected. Lung tissue was analyzed for histopathology, irisin myokine levels, and S1P receptor levels. BAL fluid and blood were analyzed for cellularity and myokine/S1P levels, respectively. One-hour postinjury, TBI damaged lung alveoli and increased neutrophil infiltration; RIC preserved alveoli. BAL from TBI mice had more neutrophils and higher neutrophil/monocyte ratios compared with sham, where TBI RIC mice showed no injury-induced change. Further, S1P receptor 3 and irisin-associated protein levels were significantly increased in the lungs of TBI mice compared with sham, which was prevented by RIC. However, there was no RIC-associated change in plasma irisin or S1P. At 7 DPI, ALI in TBI mice was largely resolved, with evidence for residual lung pathology. Thus, RIC may be a viable intervention for TBI-induced ALI to preserve lung function and facilitate clinical management.
Collapse
Affiliation(s)
- Maha Saber
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
| | - Amanda D. Rice
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Immaculate Christie
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
| | - Rebecca G. Roberts
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Kenneth S. Knox
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Peter Nakaji
- Neurosurgery, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Rachel K. Rowe
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Phoenix VA Health Care System, Phoenix, AZ
| | - Ting Wang
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Jonathan Lifshitz
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Phoenix VA Health Care System, Phoenix, AZ
| |
Collapse
|
13
|
Tasat DR, Yakisich JS. Rationale for the use of sphingosine analogues in COVID-19 patients. Clin Med (Lond) 2020; 21:e84-e87. [PMID: 33144402 DOI: 10.7861/clinmed.2020-0309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite the recent announcement of promising drug candidates to treat COVID-19, there is currently no effective antiviral drug or vaccine. There is strong evidence that acute lung injury/acute respiratory distress syndrome (ALI/ARDS), likely triggered by a cytokine storm, is responsible for the severity of disease seen in COVID-19 patients. In support of this hypothesis, pilot studies using IL-6 receptor inhibitors such as tocilizumab have shown promising results. Therefore, the use of drugs or cocktails of drugs with broader ability to inhibit these cytokine receptors is likely to be effective. In this article, we propose the use of sphingosine analogues, which have been shown to mitigate acute lung damage in animal models of ALI/ARDS, as early adjuvant therapies to prevent and/or mitigate the cytokine response in COVID-19 patients. This proposal is based on the ability of these drugs to decrease the production of IL-6 and other cytokines. The potential application of fingolimod (FTY720), the oldest sphingosine analogue approved for the treatment of multiple sclerosis, in the early stages of COVID-19 is discussed in more detail as a prototype drug.
Collapse
Affiliation(s)
- Deborah R Tasat
- National University of San Martin, San Martin, and University of Buenos Aires
| | | |
Collapse
|
14
|
Risiken und Chancen von Immuntherapien in Zeiten der Coronavirus-2019-Pandemie. DGNEUROLOGIE 2020. [PMCID: PMC7284681 DOI: 10.1007/s42451-020-00205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Immuntherapien stellen die essenzielle Grundlage der Behandlung von neuroinflammatorischen Erkrankungen dar. In Zeiten der Coronavirus-2019 (COVID-19)-Pandemie ergibt sich im klinischen Alltag jedoch zunehmend die Frage, ob eine Immuntherapie bei neurologischen Patienten aufgrund des potenziellen Infektionsrisikos eingeleitet, intensiviert, pausiert oder gar beendet werden sollte. Unsicherheit besteht v. a. deshalb, weil verschiedene nationale und internationale Fachgesellschaften diesbezüglich unterschiedliche Empfehlungen veröffentlichten. In diesem Artikel soll ein Überblick über die Wirkmechanismen von Immuntherapien und den daraus abzuleitenden Infektionsrisiken in Bezug auf COVID-19 (durch den Coronavirus verursachte Erkrankung) gegeben werden. Potenzielle Chancen und vorteilhafte Effekte einzelner Substrate in der Akuttherapie von COVID-19 werden diskutiert.
Collapse
|
15
|
Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124257. [PMID: 32549377 PMCID: PMC7352853 DOI: 10.3390/ijms21124257] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.
Collapse
|
16
|
Qian Y, Gao C, Zhao X, Song Y, Luo H, An S, Huang J, Zhang J, Jiang R. Fingolimod Attenuates Lung Injury and Cardiac Dysfunction after Traumatic Brain Injury. J Neurotrauma 2020; 37:2131-2140. [PMID: 32434456 DOI: 10.1089/neu.2019.6951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Acute lung injury (ALI) and cardiac dysfunction are common in traumatic brain injury (TBI) patients and always indicate poor outcomes. Inflammatory responses play important roles in TBI-induced cardiac and pulmonary damage. Fingolimod, an immunomodulatory agent, alleviates brain edema, restores the integrity of the blood-brain barrier (BBB), and improves functional deficits by inhibiting multiple inflammatory responses. Fingolimod (1 mg/kg) was injected intraperitoneally at 2 h after the controlled cortical impact (CCI) model was established in adult male mice. The concentration of inflammatory cytokines in the lung and heart after TBI was measured with a cytokine array. The lung wet/dry weight ratio and Evans blue dye leakage were used to quantify pulmonary edema and capillary leakage. Immunofluorescence, electron microscopy, and echocardiographic examination were used to assess the pathology and functional deficits in hearts. We found that TBI caused significant heart and lung damage. The administration of fingolimod significantly reduced the elevated inflammatory cytokine production, neutrophil infiltration, the leakage of protein in bronchoalveolar lavage fluid (BALF), and the wet/dry weight ratio in lung tissue at 3 days after TBI. In addition, fingolimod treatment also alleviated the inflammatory response in the heart; decreased cardiac apoptosis, fibrosis, and histological microstructural changes; and improved cardiac function from 3 days after TBI and maintained it for 30 days after TBI as measured by echocardiography. These results suggest that TBI resulted in significant cardiac and pulmonary damage accompanied by significant inflammatory responses in heart and lung tissue. Fingolimod treatment reduced the inflammatory response and alleviated TBI-induced lung and heart injury.
Collapse
Affiliation(s)
- Yu Qian
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Chuang Gao
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Yiming Song
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongliang Luo
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuo An
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinhao Huang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Rongcai Jiang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
Pawlitzki M, Zettl UK, Ruck T, Rolfes L, Hartung HP, Meuth SG. Merits and culprits of immunotherapies for neurological diseases in times of COVID-19. EBioMedicine 2020; 56:102822. [PMID: 32535547 PMCID: PMC7286830 DOI: 10.1016/j.ebiom.2020.102822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Immunosuppression and immunomodulation are valuable therapeutic approaches for managing neuroimmunological diseases. In times of the Coronavirus disease 2019 (COVID-19) pandemic, clinicians must deal with the question of whether immunotherapy should currently be initiated or discontinued in neurological patients. Uncertainty exists especially because different national medical associations publish different recommendations on the extent to which immunotherapies must be continued, monitored, or possibly switched during the current pandemic. Based on the most recently available data both about the novel coronavirus and the approved immunotherapies for neurological diseases, we provide an updated overview that includes current treatment strategies and the associated COVID-19 risk, but also the potential of immunotherapies to treat COVID-19.
Collapse
Affiliation(s)
- Marc Pawlitzki
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| | - Uwe K Zettl
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Leoni Rolfes
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
18
|
Marciniak A, Camp SM, Garcia JGN, Polt R. In silico Docking Studies of Fingolimod and S1P 1 Agonists. Front Pharmacol 2020; 11:247. [PMID: 32210822 PMCID: PMC7076195 DOI: 10.3389/fphar.2020.00247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
The sphingosine-1-phosphate receptor 1 (S1P1), originally the endothelial differentiation gene 1 receptor (EDG-1), is one of five G protein–coupled receptors (GPCRs) S1P1–5 that bind to and are activated by sphingosine-1-phosphate (S1P). The lipid S1P is an intermediate in sphingolipid homeostasis, and S1P1 is a major medical target for immune system modulation; agonism of the receptor produces a myriad of biological responses, including endothelial cell barrier integrity, chemotaxis, lymphocyte trafficking/targeting, angiogenesis, as well as regulation of the cardiovascular system. Use of in silico docking simulations on the crystal structure of S1P1 allows for pinpointing the residues within the receptor’s active site that actively contribute to the binding of S1P, and point to how these specific interactions can be exploited to design more effective synthetic analogs to specifically target S1P1 in the presence of the closely related receptors S1P2, S1P3, S1P4, and S1P5. We examined the binding properties of the endogenous substrate as well as a selection of synthetic sphingosine-derived S1P1 modulators of S1P1 with in silico docking simulations using the software package Molecular Operating Environment® (MOE®). The modeling studies reveal the relevance of phosphorylation, i.e., the presence of a phosphate or phosphonate moiety within the substrate for successful binding to occur, and indicate which residues are responsible for S1P1 binding of the most prominent sphingosine-1-phosphate receptor (S1PR) modulators, including fingolimod and its structural relatives. Furthermore, trends in steric preferences as for the binding of enantiomers to S1P1 could be observed, facilitating future design of receptor-specific substrates to precisely target the active site of S1P1.
Collapse
Affiliation(s)
- Alexander Marciniak
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, United States
| | - Sara M Camp
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
19
|
Camp SM, Marciniak A, Chiang ET, Garcia AN, Bittman R, Polt R, Perez RG, Dudek SM, Garcia JGN. Sphingosine-1-phosphate receptor-independent lung endothelial cell barrier disruption induced by FTY720 regioisomers. Pulm Circ 2020; 10:10.1177_2045894020905521. [PMID: 32095229 PMCID: PMC7011338 DOI: 10.1177/2045894020905521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Vascular permeability is a hallmark of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury pathobiology; however, the mechanisms underlying this vascular dysregulation remain unclear, thereby impairing the development of desperately needed effective therapeutics. We have shown that sphingosine-1-phosphate (S1P) and 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720) analogues are useful tools for exploring vascular barrier regulation mechanisms. OBJECTIVE To experimentally define the effects of FTY720 regioisomers on lung endothelial cell barrier regulation. METHODS Specific barrier-regulatory receptor and kinase inhibitors were utilized to probe signaling mechanisms involved in FTY720 regioisomer-mediated human lung endothelial cell barrier responses (trans-endothelial electrical resistance, TER). Docking simulations with the S1P1 receptor were performed to further evaluate FTY720 regioisomer signaling. RESULTS FTY720 regioisomers produced potent endothelial cell barrier disruption reflected by declines in TER alterations. Pharmacologic inhibition of Gi-coupled S1P receptors (S1P1, S1P2, S1P3) failed to alter FTY720 regioisomer-mediated barrier disruption; findings that were corroborated by docking simulations demonstrating FTY720 regiosomers were repelled from S1P1 docking, in contrast to strong S1P1 binding elicited by S1P. Inhibition of either the barrier-disrupting PAR-1 receptor, the VEGF receptor, Rho-kinase, MAPK, NFkB, or PI3K failed to alter FTY720 regioisomer-induced endothelial cell barrier disruption. While FTY720 regioisomers significantly increased protein phosphatase 2 (PP2A) activity, PP2A inhibitors failed to alter FTY720 regioisomer-induced endothelial cell barrier disruption. CONCLUSIONS Together, these results imply a vexing model of pulmonary vascular barrier dysregulation in response to FTY720-related compounds and highlight the need for further insights into mechanisms of vascular integrity required to promote the development of novel therapeutic tools to prevent or reverse the pulmonary vascular leak central to ARDS outcomes.
Collapse
Affiliation(s)
- Sara M. Camp
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Alexander Marciniak
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Eddie T. Chiang
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Alexander N. Garcia
- Department of Radiation Oncology, The University of Arizona, Tucson, AZ, USA
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, NY, USA
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Ruth G. Perez
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neuroscience, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Steven M. Dudek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G. N. Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
20
|
Burg N, Swendeman S, Worgall S, Hla T, Salmon JE. Sphingosine 1-Phosphate Receptor 1 Signaling Maintains Endothelial Cell Barrier Function and Protects Against Immune Complex-Induced Vascular Injury. Arthritis Rheumatol 2019; 70:1879-1889. [PMID: 29781582 DOI: 10.1002/art.40558] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/10/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Immune complex (IC) deposition activates polymorphonuclear neutrophils (PMNs), increases vascular permeability, and leads to organ damage in systemic lupus erythematosus and rheumatoid arthritis. The bioactive lipid sphingosine 1-phosphate (S1P), acting via S1P receptor 1 (S1P1 ), is a key regulator of endothelial cell (EC) barrier function. This study was undertaken to investigate whether augmenting EC integrity via S1P1 signaling attenuates inflammatory injury mediated by ICs. METHODS In vitro barrier function was assessed in human umbilical vein endothelial cells (HUVECs) by electrical cell-substrate impedance sensing. Phosphorylation of myosin light chain 2 (p-MLC-2) and VE-cadherin staining in HUVECs were assessed by immunofluorescence. A reverse Arthus reaction (RAR) was induced in the skin and lungs of mice with S1P1 deleted from ECs (S1P1 EC-knockout [ECKO] mice) and mice treated with S1P1 agonists and antagonists. RESULTS S1P1 agonists prevented loss of barrier function in HUVECs treated with IC-activated PMNs. S1P1 ECKO and wild-type (WT) mice treated with S1P1 antagonists had amplified RAR, whereas specific S1P1 agonists attenuated skin and lung RAR in WT mice. ApoM-Fc, a novel S1P chaperone, mitigated EC cell barrier dysfunction induced by activated PMNs in vitro and attenuated lung RAR. Expression levels of p-MLC-2 and disruption of VE-cadherin, each representing manifestations of cell contraction and destabilization of adherens junctions, respectively, that were induced by activated PMNs, were markedly reduced by treatment with S1P1 agonists and ApoM-Fc. CONCLUSION Our findings indicate that S1P1 signaling in ECs modulates vascular responses to IC deposition. S1P1 agonists and ApoM-Fc enhance the EC barrier, limit leukocyte escape from capillaries, and provide protection against inflammatory injury. The S1P/S1P1 axis is a newly identified target to attenuate tissue responses to IC deposition and mitigate end-organ damage.
Collapse
Affiliation(s)
- Nathalie Burg
- Hospital for Special Surgery and Weill Cornell Medicine, New York, New York
| | | | | | - Timothy Hla
- Boston Children's Hospital, Boston, Massachusetts
| | - Jane E Salmon
- Hospital for Special Surgery and Weill Cornell Medicine, New York, New York
| |
Collapse
|
21
|
Fu P, Shaaya M, Harijith A, Jacobson JR, Karginov A, Natarajan V. Sphingolipids Signaling in Lamellipodia Formation and Enhancement of Endothelial Barrier Function. CURRENT TOPICS IN MEMBRANES 2018; 82:1-31. [PMID: 30360778 DOI: 10.1016/bs.ctm.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipids, first described in the brain in 1884, are important structural components of biological membranes of all eukaryotic cells. In recent years, several lines of evidence support the critical role of sphingolipids such as sphingosine, sphingosine-1-phosphate (S1P), and ceramide as anti- or pro-inflammatory bioactive lipid mediators in a variety of human pathologies including pulmonary and vascular disorders. Among the sphingolipids, S1P is a naturally occurring agonist that exhibits potent barrier enhancing property in the endothelium by signaling via G protein-coupled S1P1 receptor. S1P, S1P analogs, and other barrier enhancing agents such as HGF, oxidized phospholipids, and statins also utilize the S1P/S1P1 signaling pathway to generate membrane protrusions or lamellipodia, which have been implicated in resealing of endothelial gaps and maintenance of barrier integrity. A better understanding of sphingolipids mediated regulation of lamellipodia formation and barrier enhancement of the endothelium will be critical for the development of sphingolipid-based therapies to alleviate pulmonary disorders such as sepsis-, radiation-, and mechanical ventilation-induced acute lung injury.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Mark Shaaya
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Andrei Karginov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States; Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
22
|
Han X, Wu YC, Meng M, Sun QS, Gao SM, Sun H. Linarin prevents LPS‑induced acute lung injury by suppressing oxidative stress and inflammation via inhibition of TXNIP/NLRP3 and NF‑κB pathways. Int J Mol Med 2018; 42:1460-1472. [PMID: 29845284 PMCID: PMC6089707 DOI: 10.3892/ijmm.2018.3710] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/09/2018] [Indexed: 11/16/2022] Open
Abstract
Acute lung injury (ALI) is an important cause of morbidity and mortality for critically ill patients, and linarin (LR) may be a potential treatment for ALI as it reportedly has antioxidant, anti-inflammatory and apoptotic-regulating activity. In the present study, the authors report that saline and LR (12.5, 25 and 50 mg/kg) were applied to male C57BL/6 mice via gavage. Then, mice were intratracheally injected with either saline or lipopolysaccharide (LPS). LR-pretreatment attenuated LPS-induced ALI and platelet activation and reduced CD41 expression levels and neutrophil platelet aggregates. Additionally, LPS-triggered pulmonary myeloperoxidase activity and neutrophil infiltration in lung tissues, and this was eliminated by LR dose-dependently. Furthermore, LPS-induced oxidative stress and pro-inflammatory cytokine release were downregulated by LR by inhibiting thioredoxin-interacting protein and nuclear factor-κB signaling pathways, including their downstream and upstream signals, such as xanthine oxidase, NLR family WHAT, pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), caspase-1, IκB kinase-α (IKK-α) and IκBα. Moreover, in LPS-induced mice, the mitogen-activated protein kinase pathway was inactivated by LR. In vitro, LR reduced LPS-induced inflammation and oxidative stress, which was linked to reduction of ROS. In conclusion, LR pretreatment may be protective against LPS-induced ALI.
Collapse
Affiliation(s)
- Xiang Han
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yi-Chen Wu
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Min Meng
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Qing-Song Sun
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Su-Min Gao
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hong Sun
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
23
|
Sphingosine-1-Phosphate: A Potential Biomarker and Therapeutic Target for Endothelial Dysfunction and Sepsis? Shock 2018; 47:666-672. [PMID: 27922551 DOI: 10.1097/shk.0000000000000814] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sepsis is an acute life-threatening multiple organ failure caused by a dysregulated host response to infection. Endothelial dysfunction, particularly barrier disruption leading to increased vascular permeability, edema, and insufficient tissue oxygenation, is critical to sepsis pathogenesis. Sphingosine-1-phosphate (S1P) is a signaling lipid that regulates important pathophysiological processes including vascular endothelial cell permeability, inflammation, and coagulation. It is present at high concentrations in blood and lymph and at very low concentrations in tissues due to the activity of the S1P-degrading enzyme S1P-lyase in tissue cells. Recently, four preclinical observational studies determined S1P levels in serum or plasma of sepsis patients, and all found reduced S1P levels associated with the disease. Based on these findings, this review summarizes S1P-regulated processes pertaining to endothelial functions, discusses the possible use of S1P as a marker and possibilities how to manipulate S1P levels and S1P receptor activation to restore endothelial integrity, dampens the inflammatory host response, and improves organ function in sepsis.
Collapse
|
24
|
Doggett TM, Alves NG, Yuan SY, Breslin JW. Sphingosine-1-Phosphate Treatment Can Ameliorate Microvascular Leakage Caused by Combined Alcohol Intoxication and Hemorrhagic Shock. Sci Rep 2017; 7:4078. [PMID: 28642485 PMCID: PMC5481382 DOI: 10.1038/s41598-017-04157-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/10/2017] [Indexed: 11/09/2022] Open
Abstract
Fluid resuscitation following hemorrhagic shock is often problematic, with development of prolonged hypotension and edema. In addition, many trauma patients are also intoxicated, which generally worsens outcomes. We directly investigated how alcohol intoxication impacts hemorrhagic shock and resuscitation-induced microvascular leakage using a rat model with intravital microscopic imaging. We also tested the hypothesis that an endothelial barrier-protective bioactive lipid, sphingosine-1-phosphate (S1P), could ameliorate the microvascular leakage following alcohol intoxication plus hemorrhagic shock and resuscitation. Our results show that alcohol intoxication exacerbated hemorrhagic shock and resuscitation-induced hypotension and microvascular leakage. We next found that S1P effectively could reverse alcohol-induced endothelial barrier dysfunction using both cultured endothelial cell monolayer and in vivo models. Lastly, we observed that S1P administration ameliorated hypotension and microvascular leakage following combined alcohol intoxication and hemorrhagic shock, in a dose-related manner. These findings suggest the viability of using agonists that can improve microvascular barrier function to ameliorate trauma-induced hypotension, offering a novel therapeutic opportunity for potentially improving clinical outcomes in patients with multi-hit injuries.
Collapse
Affiliation(s)
- Travis M Doggett
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Natascha G Alves
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
25
|
Brown RV, Wang T, Chappeta VR, Wu G, Onel B, Chawla R, Quijada H, Camp SM, Chiang ET, Lassiter QR, Lee C, Phanse S, Turnidge MA, Zhao P, Garcia JGN, Gokhale V, Yang D, Hurley LH. The Consequences of Overlapping G-Quadruplexes and i-Motifs in the Platelet-Derived Growth Factor Receptor β Core Promoter Nuclease Hypersensitive Element Can Explain the Unexpected Effects of Mutations and Provide Opportunities for Selective Targeting of Both Structures by Small Molecules To Downregulate Gene Expression. J Am Chem Soc 2017; 139:7456-7475. [PMID: 28471683 PMCID: PMC5977998 DOI: 10.1021/jacs.6b10028] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The platelet-derived growth factor receptor β (PDGFR-β) signaling pathway is a validated and important target for the treatment of certain malignant and nonmalignant pathologies. We previously identified a G-quadruplex-forming nuclease hypersensitive element (NHE) in the human PDGFR-β promoter that putatively forms four overlapping G-quadruplexes. Therefore, we further investigated the structures and biological roles of the G-quadruplexes and i-motifs in the PDGFR-β NHE with the ultimate goal of demonstrating an alternate and effective strategy for molecularly targeting the PDGFR-β pathway. Significantly, we show that the primary G-quadruplex receptor for repression of PDGFR-β is the 3'-end G-quadruplex, which has a GGA sequence at the 3'-end. Mutation studies using luciferase reporter plasmids highlight a novel set of G-quadruplex point mutations, some of which seem to provide conflicting results on effects on gene expression, prompting further investigation into the effect of these mutations on the i-motif-forming strand. Herein we characterize the formation of an equilibrium between at least two different i-motifs from the cytosine-rich (C-rich) sequence of the PDGFR-β NHE. The apparently conflicting mutation results can be rationalized if we take into account the single base point mutation made in a critical cytosine run in the PDGFR-β NHE that dramatically affects the equilibrium of i-motifs formed from this sequence. We identified a group of ellipticines that targets the G-quadruplexes in the PDGFR-β promoter, and from this series of compounds, we selected the ellipticine analog GSA1129, which selectively targets the 3'-end G-quadruplex, to shift the dynamic equilibrium in the full-length sequence to favor this structure. We also identified a benzothiophene-2-carboxamide (NSC309874) as a PDGFR-β i-motif-interactive compound. In vitro, GSA1129 and NSC309874 downregulate PDGFR-β promoter activity and transcript in the neuroblastoma cell line SK-N-SH at subcytotoxic cell concentrations. GSA1129 also inhibits PDGFR-β-driven cell proliferation and migration. With an established preclinical murine model of acute lung injury, we demonstrate that GSA1129 attenuates endotoxin-mediated acute lung inflammation. Our studies underscore the importance of considering the effects of point mutations on structure formation from the G- and C-rich sequences and provide further evidence for the involvement of both strands and associated structures in the control of gene expression.
Collapse
Affiliation(s)
- Robert V. Brown
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Ting Wang
- College of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, Arizona 85724, United States
| | | | - Guanhui Wu
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Buket Onel
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Reena Chawla
- BIO5 Institute, 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Hector Quijada
- College of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Sara M. Camp
- College of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Eddie T. Chiang
- College of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Quinea R. Lassiter
- College of Agriculture & Life Sciences, University of Arizona, 1117 East Lowell Street, Tucson, Arizona 85721, United States
| | - Carmen Lee
- College of Agriculture & Life Sciences, University of Arizona, 1117 East Lowell Street, Tucson, Arizona 85721, United States
- College of Science, University of Arizona, 1040 East Fourth Street, Tucson, Arizona 85721, United States
| | - Shivani Phanse
- College of Science, University of Arizona, 1040 East Fourth Street, Tucson, Arizona 85721, United States
| | - Megan A. Turnidge
- College of Science, University of Arizona, 1040 East Fourth Street, Tucson, Arizona 85721, United States
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Education Mega Centre, Guanzhou 510006, Peoples Republic of China
| | - Joe G. N. Garcia
- College of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Vijay Gokhale
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
- BIO5 Institute, 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Danzhou Yang
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
- BIO5 Institute, 1657 East Helen Street, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Laurence H. Hurley
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
- BIO5 Institute, 1657 East Helen Street, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| |
Collapse
|
26
|
Sun X, Mathew B, Sammani S, Jacobson JR, Garcia JGN. Simvastatin-induced sphingosine 1-phosphate receptor 1 expression is KLF2-dependent in human lung endothelial cells. Pulm Circ 2017; 7:117-125. [PMID: 28680571 PMCID: PMC5448536 DOI: 10.1177/2045893217701162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/03/2017] [Indexed: 11/18/2022] Open
Abstract
We have demonstrated that simvastatin and sphingosine 1−phosphate (S1P) both attenuate increased vascular permeability in preclinical models of acute respiratory distress syndrome. However, the underlying mechanisms remain unclear. As Krüppel-like factor 2 (KLF2) serves as a critical regulator for cellular stress response in endothelial cells (EC), we hypothesized that simvastatin enhances endothelial barrier function via increasing expression of the barrier-promoting S1P receptor, S1PR1, via a KLF2-dependent mechanism. S1PR1 luciferase reporter promoter activity in human lung artery EC (HPAEC) was tested after simvastatin (5 μM), and S1PR1 and KLF2 protein expression detected by immunoblotting. In vivo, transcription and expression of S1PR1 and KLF2 in mice lungs were detected by microarray profiling and immunoblotting after exposure to simvastatin (10 mg/kg). Endothelial barrier function was measured by trans-endothelial electrical resistance with the S1PR1 agonist FTY720-(S)-phosphonate. Both S1PR1 and KLF2 gene expression (mRNA, protein) were significantly increased by simvastatin in vitro and in vivo. S1PR1 promoter activity was significantly increased by simvastatin (P < 0.05), which was significantly attenuated by KLF2 silencing (siRNA). Simvastatin induced KLF2 recruitment to the S1PR1 promoter, and consequently, significantly augmented the effects of the S1PR1 agonist on EC barrier enhancement (P < 0.05), which was significantly attenuated by KLF2 silencing (P < 0.05). These results suggest that simvastatin upregulates S1PR1 transcription and expression via the transcription factor KLF2, and consequently augments the effects of S1PR1 agonists on preserving vascular barrier integrity. These results may lead to novel combinatorial therapeutic strategies for lung inflammatory syndromes.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Biji Mathew
- Division of Pulmonary, Critical Care, Sleep & Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jeffrey R Jacobson
- Division of Pulmonary, Critical Care, Sleep & Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| |
Collapse
|
27
|
Abstract
Sphingosine-1-phosphate (S1P), a simple, bioactive sphingolipid metabolite, plays a key role, both intracellularly and extracellularly, in various cellular processes such as proliferation, survival, migration, inflammation, angiogenesis, and endothelial barrier integrity. The cellular S1P level is low and is tightly regulated by its synthesis and degradation. Sphingosine Kinases (SphKs) 1 and 2, catalyze the ATP-dependent phosphorylation of sphingosine to S1P, while the degradation is mediated by the reversible dephosphorylation catalyzed by the S1P phosphatases and lipid phosphate phosphatases and the irreversible degradation to hexadecenal and ethanolamine phosphate by sphingosine-1-phosphate lyase (S1PL). As a ligand for specific G-protein-coupled receptors, S1P1-5, which are differentially expressed in different cell types, S1P generates downstream signals that play crucial role in developmental and disease related pathologies. In addition to acting extracellularly on receptors located on the plasma membrane, S1P can also act intracellularly, independently of S1P1-5, affecting calcium homeostasis and cell proliferation. The SphKs /S1P /S1PL metabolic pathway is implicated in numerous human pathologies including respiratory disorders, thereby raising the possibility that manipulating intracellular S1P levels could offer therapeutic potential in ameliorating lung diseases. This review focuses on the prospects of targeting S1P signaling and S1P metabolizing enzymes using small molecule inhibitors, receptor agonists, and antagonists in the treatment of lung diseases.
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, IL, USA
| | - Viswanathan Natarajan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, IL, USA; Department of Medicine, University of Illinois at Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
28
|
Mo ZC, Ren K, Liu X, Tang ZL, Yi GH. A high-density lipoprotein-mediated drug delivery system. Adv Drug Deliv Rev 2016; 106:132-147. [PMID: 27208399 DOI: 10.1016/j.addr.2016.04.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/13/2016] [Accepted: 04/27/2016] [Indexed: 01/08/2023]
Abstract
High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier.
Collapse
Affiliation(s)
- Zhong-Cheng Mo
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China; Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, China
| | - Kun Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Xing Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 100005 Beijing, China
| | - Zhen-Li Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China.
| |
Collapse
|
29
|
Cai Y, Bolte C, Le T, Goda C, Xu Y, Kalin TV, Kalinichenko VV. FOXF1 maintains endothelial barrier function and prevents edema after lung injury. Sci Signal 2016; 9:ra40. [PMID: 27095594 DOI: 10.1126/scisignal.aad1899] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiple signaling pathways, structural proteins, and transcription factors are involved in the regulation of endothelial barrier function. The forkhead protein FOXF1 is a key transcriptional regulator of embryonic lung development, and we used a conditional knockout approach to examine the role of FOXF1 in adult lung homeostasis, injury, and repair. Tamoxifen-regulated deletion of both Foxf1 alleles in endothelial cells of adult mice (Pdgfb-iCreER/Foxf1(-/-)) caused lung inflammation and edema, leading to respiratory insufficiency and death. Deletion of a single Foxf1 allele made heterozygous Pdgfb-iCreER/Foxf1(+/-)mice more susceptible to acute lung injury. FOXF1 abundance was decreased in pulmonary endothelial cells of human patients with acute lung injury. Gene expression analysis of pulmonary endothelial cells with homozygous FOXF1 deletion indicated reduced expression of genes critical for maintenance and regulation of adherens junctions. FOXF1 knockdown in vitro and in vivo disrupted adherens junctions, enhanced lung endothelial permeability, and increased the abundance of the mRNA and protein for sphingosine 1-phosphate receptor 1 (S1PR1), a key regulator of endothelial barrier function. Chromatin immunoprecipitation and luciferase reporter assays demonstrated that FOXF1 directly bound to and induced the transcriptional activity of the S1pr1 promoter. Pharmacological administration of S1P to injured Pdgfb-iCreER/Foxf1(+/-)mice restored endothelial barrier function, decreased lung edema, and improved survival. Thus, FOXF1 promotes normal lung homeostasis and repair, in part, by enhancing endothelial barrier function through activation of the S1P/S1PR1 signaling pathway.
Collapse
Affiliation(s)
- Yuqi Cai
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Craig Bolte
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tien Le
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Chinmayee Goda
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yan Xu
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. The Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. The Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|
30
|
Role of Sphingolipids in the Pathobiology of Lung Inflammation. Mediators Inflamm 2015; 2015:487508. [PMID: 26770018 PMCID: PMC4681829 DOI: 10.1155/2015/487508] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022] Open
Abstract
Sphingolipid bioactivities in the respiratory airways and the roles of the proteins that handle them have been extensively investigated. Gas or inhaled particles or microorganisms come into contact with mucus components, epithelial cells, blood barrier, and immune surveillance within the airways. Lung structure and functionality rely on a complex interplay of polar and hydrophobic structures forming the surfactant layer and governing external-internal exchanges, such as glycerol-phospholipids sphingolipids and proteins. Sphingolipids act as important signaling mediators involved in the control of cell survival and stress response, as well as secreted molecules endowed with inflammation-regulatory activities. Most successful respiratory infection and injuries evolve in the alveolar compartment, the critical lung functional unit involved in gas exchange. Sphingolipid altered metabolism in this compartment is closely related to inflammatory reaction and ceramide increase, in particular, favors the switch to pathological hyperinflammation. This short review explores a few mechanisms underlying sphingolipid involvement in the healthy lung (surfactant production and endothelial barrier maintenance) and in a selection of lung pathologies in which the impact of sphingolipid synthesis and metabolism is most apparent, such as acute lung injury, or chronic pathologies such as cystic fibrosis and chronic obstructive pulmonary disease.
Collapse
|
31
|
Petrache I, Berdyshev EV. Ceramide Signaling and Metabolism in Pathophysiological States of the Lung. Annu Rev Physiol 2015; 78:463-80. [PMID: 26667073 DOI: 10.1146/annurev-physiol-021115-105221] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Following the discovery of ceramide as the central signaling and metabolic relay among sphingolipids, studies of its involvement in lung health and pathophysiology have exponentially increased. In this review, we highlight key studies in the context of recent progress in metabolomics and translational research methodologies. Evidence points toward an important role for the ceramide/sphingosine-1-phosphate rheostat in maintaining lung cell survival, vascular barrier function, and proper host response to airway microbial infections. Sphingosine kinase 1 has emerged as an important determinant of sphingosine-1-phosphate lung levels, which, when aberrantly high, contribute to lung fibrosis, maladaptive vascular remodeling, and allergic asthma. New sphingolipid metabolites have been discovered as potential biomarkers of several lung diseases. Although multiple acute and chronic lung pathological conditions involve perturbations in sphingolipid signaling and metabolism, there are specific patterns, unique sphingolipid species, enzymes, metabolites, and receptors, which have emerged that deepen our understanding of lung pathophysiology and inform the development of new therapies for lung diseases.
Collapse
Affiliation(s)
- Irina Petrache
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado 80206; ,
| | - Evgeny V Berdyshev
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado 80206; ,
| |
Collapse
|
32
|
A reflection of the lasting contributions from Dr. Robert Bittman to sterol trafficking, sphingolipid and phospholipid research. Prog Lipid Res 2015; 61:19-29. [PMID: 26584871 DOI: 10.1016/j.plipres.2015.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
With the passing of Dr. Robert Bittman from pancreatic cancer on the 1st October 2014, the lipid research field lost one of the most influential and significant personalities. Robert Bittman's genius was in chemical design and his contribution to the lipid research field was truly immense. The reagents and chemicals he designed and synthesised allowed interrogation of the role of lipids in constituting complex biophysical membranes, sterol transfer and in cellular communication networks. Here we provide a review of these works which serve as a lasting memory to his life.
Collapse
|
33
|
Camp SM, Chiang ET, Sun C, Usatyuk PV, Bittman R, Natarajan V, Garcia JGN, Dudek SM. "Pulmonary Endothelial Cell Barrier Enhancement by Novel FTY720 Analogs: Methoxy-FTY720, Fluoro-FTY720, and β-Glucuronide-FTY720". Chem Phys Lipids 2015; 194:85-93. [PMID: 26496151 DOI: 10.1016/j.chemphyslip.2015.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/28/2022]
Abstract
Effective therapeutic agents are lacking for the prevention and reversal of vascular leak, a frequent pathophysiologic result of inflammatory processes such as acute respiratory distress syndrome (ARDS) and sepsis. We previously demonstrated the potent barrier-enhancing effects of related compounds sphingosine 1-phosphate (S1P), the pharmaceutical agent FTY720, and its analog (S)-FTY720 phosphonate (Tys) in models of inflammatory lung injury. In this study, we characterize additional novel FTY720 analogs for their potential to reduce vascular leak as well as utilize them as tools to better understand the mechanisms by which this class of agents modulates permeability. Transendothelial resistance (TER) and labeled dextran studies demonstrate that (R)-methoxy-FTY720 ((R)-OMe-FTY), (R)/(S)-fluoro-FTY720 (FTY-F), and β-glucuronide-FTY720 (FTY-G) compounds display in vitro barrier-enhancing properties comparable or superior to FTY720 and S1P. In contrast, the (S)-methoxy-FTY720 ((S)-OMe-FTY) analog disrupts lung endothelial cell (EC) barrier integrity in TER studies in association with actin stress fiber formation and robust intracellular calcium release, but independent of myosin light chain or ERK phosphorylation. Additional mechanistic studies with (R)-OMe-FTY, FTY-F, and FTY-G suggest that lung EC barrier enhancement is mediated through lipid raft signaling, Gi-linked receptor coupling to downstream tyrosine phosphorylation events, and S1PR1-dependent receptor ligation. These results provide important mechanistic insights into modulation of pulmonary vascular barrier function by FTY720-related compounds and highlight common signaling events that may assist the development of novel therapeutic tools in the prevention or reversal of the pulmonary vascular leak that characterizes ARDS.
Collapse
Affiliation(s)
- Sara M Camp
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, AZ, United States
| | - Eddie T Chiang
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, AZ, United States
| | - Chaode Sun
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, New York, NY, United States
| | - Peter V Usatyuk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, New York, NY, United States
| | - Viswanathan Natarajan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Joe G N Garcia
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, AZ, United States
| | - Steven M Dudek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
34
|
Arish M, Husein A, Kashif M, Saleem M, Akhter Y, Rub A. Sphingosine-1-phosphate signaling: unraveling its role as a drug target against infectious diseases. Drug Discov Today 2015; 21:133-142. [PMID: 26456576 DOI: 10.1016/j.drudis.2015.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022]
Abstract
Sphingosine-1-phosphate (S1P) signaling is reported in variety of cell types, including immune, endothelial and cancerous cells. It is emerging as a crucial regulator of cellular processes, such as apoptosis, cell proliferation, migration, differentiation and so on. This signaling pathway is initiated by the intracellular production and secretion of S1P through a cascade of enzymatic reactions. Binding of S1P to different S1P receptors (S1PRs) activates different downstream signaling pathways that regulate the cellular functions differentially depending upon the cell type. An accumulating body of evidence suggests that S1P metabolism and signaling is often impaired during infectious diseases; thus, its manipulation might be helpful in the treatment of such diseases. In this review, we summarize recent advances in our understanding of the S1P signaling pathway and its candidature as a novel drug target against infectious diseases.
Collapse
Affiliation(s)
- Mohd Arish
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Atahar Husein
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohammad Kashif
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohammed Saleem
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Temporary Academic Block, Shahpur, Kangra, HP 176216, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
35
|
Camp SM, Chiang ET, Sun C, Usatyuk PV, Bittman R, Natarajan V, Garcia JGN, Dudek SM. Pulmonary endothelial cell barrier enhancement by novel FTY720 analogs: methoxy-FTY720, fluoro-FTY720, and β-glucuronide-FTY720. Chem Phys Lipids 2015; 191:16-24. [PMID: 26272033 DOI: 10.1016/j.chemphyslip.2015.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Abstract
Effective therapeutic agents are lacking for the prevention and reversal of vascular leak, a frequent pathophysiologic result of inflammatory processes such as acute respiratory distress syndrome (ARDS) and sepsis. We previously demonstrated the potent barrier-enhancing effects of related compounds sphingosine 1-phosphate (S1P), the pharmaceutical agent FTY720, and its analog (S)-FTY720 phosphonate (Tys) in models of inflammatory lung injury. In this study, we characterize additional novel FTY720 analogs for their potential to reduce vascular leak as well as utilize them as tools to better understand the mechanisms by which this class of agents modulates permeability. Transendothelial resistance (TER) and labeled dextran studies demonstrate that (R)-methoxy-FTY720 ((R)-OMe-FTY), (R)/(S)-fluoro-FTY720 (FTY-F), and β-glucuronide-FTY720 (FTY-G) compounds display in vitro barrier-enhancing properties comparable or superior to FTY720 and S1P. In contrast, the (S)-methoxy-FTY720 ((S)-OMe-FTY) analog disrupts lung endothelial cell (EC) barrier integrity in TER studies in association with actin stress fiber formation and robust intracellular calcium release, but independent of myosin light chain or ERK phosphorylation. Additional mechanistic studies with (R)-OMe-FTY, FTY-F, and FTY-G suggest that lung EC barrier enhancement is mediated through lipid raft signaling, Gi-linked receptor coupling to downstream tyrosine phosphorylation events, and S1PR1-dependent receptor ligation. These results provide important mechanistic insights into modulation of pulmonary vascular barrier function by FTY720-related compounds and highlight common signaling events that may assist the development of novel therapeutic tools in the prevention or reversal of the pulmonary vascular leak that characterizes ARDS.
Collapse
Affiliation(s)
- Sara M Camp
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, AZ, United States
| | - Eddie T Chiang
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, AZ, United States
| | - Chaode Sun
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, New York, NY, United States
| | - Peter V Usatyuk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, New York, NY, United States
| | - Viswanathan Natarajan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Joe G N Garcia
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, AZ, United States
| | - Steven M Dudek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
36
|
Abstract
Recent research has identified promising targets for therapeutic interventions aimed at modulating the inflammatory response in sepsis. Herein, the authors describe mechanisms involved in the clearance of pathogen toxin from the circulation and potential interventions aimed at enhancing clearance mechanisms. The authors also describe advances in the understanding of the innate immune response as potential therapeutic targets. Finally, novel potential treatment strategies aimed at decreasing vascular leak are discussed.
Collapse
Affiliation(s)
- Peter Bentzer
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada; Department of Anesthesiology and Intensive Care, Lund University, Lund SE-221 85, Sweden
| | - James A Russell
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada
| | - Keith R Walley
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada.
| |
Collapse
|
37
|
Schweitzer KS, Chen SX, Law S, Van Demark M, Poirier C, Justice MJ, Hubbard WC, Kim ES, Lai X, Wang M, Kranz WD, Carroll CJ, Ray BD, Bittman R, Goodpaster J, Petrache I. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am J Physiol Lung Cell Mol Physiol 2015; 309:L175-87. [PMID: 25979079 DOI: 10.1152/ajplung.00411.2014] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/04/2015] [Indexed: 11/22/2022] Open
Abstract
The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1-20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10-20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation.
Collapse
Affiliation(s)
- Kelly S Schweitzer
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven X Chen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sarah Law
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary Van Demark
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christophe Poirier
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matthew J Justice
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Walter C Hubbard
- Department of Clinical Pharmacology, The Johns Hopkins University, Baltimore, Maryland
| | - Elena S Kim
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xianyin Lai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - William D Kranz
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University, Indianapolis, Indiana
| | - Clinton J Carroll
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University, Indianapolis, Indiana
| | - Bruce D Ray
- Department of Physics, Indiana University-Purdue University, Indianapolis, Indiana
| | - Robert Bittman
- Queens College, City University of New York, Flushing, New York; and
| | - John Goodpaster
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University, Indianapolis, Indiana
| | - Irina Petrache
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
38
|
Wang L, Bittman R, Garcia JGN, Dudek SM. Junctional complex and focal adhesion rearrangement mediates pulmonary endothelial barrier enhancement by FTY720 S-phosphonate. Microvasc Res 2015; 99:102-9. [PMID: 25862132 DOI: 10.1016/j.mvr.2015.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 12/16/2022]
Abstract
RATIONALE Modulation of pulmonary vascular barrier function is an important clinical goal given the devastating effects of vascular leak in acute lung injury (ALI). We previously demonstrated that FTY720 S-phosphonate (Tys), an analog of sphingosine 1-phosphate (S1P) and FTY720, has more potent pulmonary barrier protective effects than these agents in vitro and in mouse models of ALI. Tys preserves expression of the barrier-promoting S1P1 receptor (S1PR1), whereas S1P and FTY720 induce its ubiquitination and degradation. Here we further characterize the novel barrier promoting effects of Tys in cultured human pulmonary endothelial cells (EC). METHODS/RESULTS In human lung EC, Tys significantly increased peripheral redistribution of adherens junction proteins VE-cadherin and β-catenin and tight junction protein ZO-1. Inhibition of VE-cadherin with blocking antibody significantly attenuated Tys-induced transendothelial resistance (TER) elevation, while ZO-1 siRNA partially inhibited this elevation. Tys significantly increased focal adhesion formation and phosphorylation of focal adhesion kinase (FAK). Pharmacologic inhibition of FAK significantly attenuated Tys-induced TER elevation. Tys significantly increased phosphorylation and peripheral redistribution of the actin-binding protein, cortactin, while cortactin siRNA partially attenuated Tys-induced TER elevation. Although Tys significantly increased phosphorylation of Akt and GSK3β, neither PI3 kinase nor GSK3β inhibition altered Tys-induced TER elevation. Tys significantly increased Rac1 activity, while inhibition of Rac1 activity significantly attenuated Tys-induced VE-cadherin redistribution and TER elevation. CONCLUSION Junctional complex, focal adhesion rearrangement and Rac1 activation play critical roles in Tys-mediated barrier protection in pulmonary EC. These results provide mechanistic insights into the effects of this potential ALI therapy.
Collapse
Affiliation(s)
- Lichun Wang
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, New York, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|