1
|
Petitjeans F, Longrois D, Ghignone M, Quintin L. Combining O 2 High Flow Nasal or Non-Invasive Ventilation with Cooperative Sedation to Avoid Intubation in Early Diffuse Severe Respiratory Distress Syndrome, Especially in Immunocompromised or COVID Patients? J Crit Care Med (Targu Mures) 2024; 10:291-315. [PMID: 39916864 PMCID: PMC11799322 DOI: 10.2478/jccm-2024-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/01/2024] [Indexed: 02/09/2025] Open
Abstract
This overview addresses the pathophysiology of the acute respiratory distress syndrome (ARDS; conventional vs. COVID), the use of oxygen high flow (HFN) vs. noninvasive ventilation (NIV; conventional vs. helmet) and a multi-modal approach to avoid endotracheal intubation ("intubation"): low normal temperature, cooperative sedation, normalized systemic and microcirculation, anti-inflammation, reduced lung water, upright position, lowered intra-abdominal pressure. Increased ventilatory muscle activity ("respiratory drive") is observed in early ARDS, at variance with ventilatory fatigue observed in decompensated chronic obstructive pulmonary disease (COPD). This increased drive leads to impending then overt ventilatory failure. Therefore, muscle relaxation presents little rationale and should be replaced by lowering the excessive respiratory drive, increased work of breathing, continued or increased labored breathing, self-induced lung injury (SILI), i.e. preserving spontaneous breathing. As CMV is a lifesaver in the setting of failure but does not heal the lung, side-effects of intubation, controlled mechanical ventilation (CMV), paralysis and deep sedation are to be avoided. Additionally, critical care resources shortage requires practice changes. Therefore, NIV should be routine when addressing immune-compromised patients. The SARS-CoV2 pandemics extended this approach to most patients, which are immune-compromised: elderly, obese, diabetic, etc. The early COVID is a pulmonary vascular endothelial inflammatory disease requiring lower positive-end-expiratory pressure than the typical pulmonary alveolar epithelial inflammatory diffuse ARDS. This leads one to reassess a) the technique of NIV b) the sedation regimen facilitating continuous and extended NIV to avoid intubation. Autonomic, circulatory, respiratory, ventilatory physiology is hierarchized under HFN/NIV and cooperative sedation (dexmedetomidine, clonidine). A prospective randomized pilot trial, then a larger trial are required to ascertain our working hypotheses.
Collapse
Affiliation(s)
- Fabrice Petitjeans
- Department of Anesthesia-Critical Care, Hôpital d’Instruction des Armées Desgenettes, Lyon, France
| | - Dan Longrois
- Bichat-Claude Bernard and Louis Mourier Hospitals, Assistance Publique-Hôpitaux de Paris, Paris Cité University, Paris, France
| | - Marco Ghignone
- Department of Anesthesia-Critical Care, JF Kennedy North Hospital, W Palm Beach, Fl, USA
| | - Luc Quintin
- Department of Anesthesia-Critical Care, Hôpital d’Instruction des Armées Desgenettes, Lyon, France
| |
Collapse
|
2
|
Petitjeans F, Leroy S, Pichot C, Ghignone M, Quintin L, Longrois D, Constantin JM. Improved understanding of the respiratory drive pathophysiology could lead to earlier spontaneous breathing in severe acute respiratory distress syndrome. EUROPEAN JOURNAL OF ANAESTHESIOLOGY AND INTENSIVE CARE 2023; 2:e0030. [PMID: 39916810 PMCID: PMC11783659 DOI: 10.1097/ea9.0000000000000030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Optimisation of the respiratory drive, as early as possible in the setting of severe acute respiratory distress syndrome (ARDS) and not its suppression, could be a new paradigm in the management of severe forms of ARDS. Severe ARDS is characterised by tachypnoea and hyperpnoea, a consequence of a high respiratory drive. Some patients require endotracheal intubation, controlled mechanical ventilation (CMV) and paralysis to prevent overt ventilatory failure and self-inflicted lung injury. Nevertheless, intubation, CMV and paralysis do not address per se the high respiratory drive, they only suppress it. Optimisation of the respiratory drive could be obtained by a multimodal approach that targets attenuation of fever, agitation, systemic and peripheral acidosis, inflammation, extravascular lung water and changes in carbon dioxide levels. The paradigm we present, based on pathophysiological considerations, is that as soon as these factors have been controlled, spontaneous breathing could resume because hypoxaemia is the least important input to the respiratory drive. Hypoxaemia could be handled by combining positive end-expiratory pressure (PEEP) to prevent early expiratory closure and low pressure support to minimise the work of breathing (WOB). 'Cooperative' sedation with alpha-2 agonists, supplemented with neuroleptics if required, is the pharmacological adjunct, administered immediately after intubation as the first-line sedation regimen during the multimodal approach. Given relative contraindications (hypovolaemia, auriculoventricular block, sick sinus syndrome), alpha-2 agonists can help attenuate or moderate fever, increased oxygen consumption VO2, agitation, high cardiac output, inflammation and acidosis. They may also help to preserve microcirculation, cognition and respiratory rhythm generation, thus promoting spontaneous breathing. Returning the physiology of respiratory, ventilatory, circulatory and autonomic systems to normal will support the paradigm of optimised respiratory drive favouring early spontaneous ventilation, at variance with deep sedation, extended paralysis, CMV and use of the prone position as therapeutic strategies in severe ARDS. GLOSSARY Glossary and Abbreviations_SDC.
Collapse
Affiliation(s)
- Fabrice Petitjeans
- From the Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France (FP, LQ), Environmental Justice Program, Georgetown University, Washington, DC (SL), Hôpital Louis Pasteur, Dole (CP), Université de Paris (Diderot, Sorbonne), Hôpital Bichat and UMR 5698 and GRC 29, DMU DREAM (DL), Hôpital Pitié-Salpêtrière, Paris, France (J-MC) and JF Kennedy North Hospital, West Palm Beach, Florida, USA (MG)
| | - Sandrine Leroy
- From the Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France (FP, LQ), Environmental Justice Program, Georgetown University, Washington, DC (SL), Hôpital Louis Pasteur, Dole (CP), Université de Paris (Diderot, Sorbonne), Hôpital Bichat and UMR 5698 and GRC 29, DMU DREAM (DL), Hôpital Pitié-Salpêtrière, Paris, France (J-MC) and JF Kennedy North Hospital, West Palm Beach, Florida, USA (MG)
| | - Cyrille Pichot
- From the Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France (FP, LQ), Environmental Justice Program, Georgetown University, Washington, DC (SL), Hôpital Louis Pasteur, Dole (CP), Université de Paris (Diderot, Sorbonne), Hôpital Bichat and UMR 5698 and GRC 29, DMU DREAM (DL), Hôpital Pitié-Salpêtrière, Paris, France (J-MC) and JF Kennedy North Hospital, West Palm Beach, Florida, USA (MG)
| | - Marco Ghignone
- From the Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France (FP, LQ), Environmental Justice Program, Georgetown University, Washington, DC (SL), Hôpital Louis Pasteur, Dole (CP), Université de Paris (Diderot, Sorbonne), Hôpital Bichat and UMR 5698 and GRC 29, DMU DREAM (DL), Hôpital Pitié-Salpêtrière, Paris, France (J-MC) and JF Kennedy North Hospital, West Palm Beach, Florida, USA (MG)
| | - Luc Quintin
- From the Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France (FP, LQ), Environmental Justice Program, Georgetown University, Washington, DC (SL), Hôpital Louis Pasteur, Dole (CP), Université de Paris (Diderot, Sorbonne), Hôpital Bichat and UMR 5698 and GRC 29, DMU DREAM (DL), Hôpital Pitié-Salpêtrière, Paris, France (J-MC) and JF Kennedy North Hospital, West Palm Beach, Florida, USA (MG)
| | - Dan Longrois
- From the Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France (FP, LQ), Environmental Justice Program, Georgetown University, Washington, DC (SL), Hôpital Louis Pasteur, Dole (CP), Université de Paris (Diderot, Sorbonne), Hôpital Bichat and UMR 5698 and GRC 29, DMU DREAM (DL), Hôpital Pitié-Salpêtrière, Paris, France (J-MC) and JF Kennedy North Hospital, West Palm Beach, Florida, USA (MG)
| | - Jean-Michel Constantin
- From the Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France (FP, LQ), Environmental Justice Program, Georgetown University, Washington, DC (SL), Hôpital Louis Pasteur, Dole (CP), Université de Paris (Diderot, Sorbonne), Hôpital Bichat and UMR 5698 and GRC 29, DMU DREAM (DL), Hôpital Pitié-Salpêtrière, Paris, France (J-MC) and JF Kennedy North Hospital, West Palm Beach, Florida, USA (MG)
| |
Collapse
|
3
|
Longrois D, Petitjeans F, Simonet O, de Kock M, Belliveau M, Pichot C, Lieutaud T, Ghignone M, Quintin L. Clinical Practice: Should we Radically Alter our Sedation of Critical Care Patients, Especially Given the COVID-19 Pandemics? Rom J Anaesth Intensive Care 2020; 27:43-76. [PMID: 34056133 PMCID: PMC8158317 DOI: 10.2478/rjaic-2020-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The high number of patients infected with the SARS-CoV-2 virus requiring care for ARDS puts sedation in the critical care unit (CCU) to the edge. Depth of sedation has evolved over the last 40 years (no-sedation, deep sedation, daily emergence, minimal sedation, etc.). Most guidelines now recommend determining the depth of sedation and minimizing the use of benzodiazepines and opioids. The broader use of alpha-2 adrenergic agonists ('alpha-2 agonists') led to sedation regimens beginning at admission to the CCU that contrast with hypnotics+opioids ("conventional" sedation), with major consequences for cognition, ventilation and circulatory performance. The same doses of alpha-2 agonists used for 'cooperative' sedation (ataraxia, analgognosia) elicit no respiratory depression but modify the autonomic nervous system (cardiac parasympathetic activation, attenuation of excessive cardiac and vasomotor sympathetic activity). Alpha-2 agonists should be selected only in patients who benefit from their effects ('personalized' indications, as opposed to a 'one size fits all' approach). Then, titration to effect is required, especially in the setting of systemic hypotension and/or hypovolemia. Since no general guidelines exist for the use of alpha-2 agonists for CCU sedation, our clinical experience is summarized for the benefit of physicians in clinical situations in which a recommendation might never exist (refractory delirium tremens; unstable, hypovolemic, hypotensive patients, etc.). Because the physiology of alpha-2 receptors and the pharmacology of alpha-2 agonists lead to personalized indications, some details are offered. Since interactions between conventional sedatives and alpha-2 agonists have received little attention, these interactions are addressed. Within the existing guidelines for CCU sedation, this article could facilitate the use of alpha-2 agonists as effective and safe sedation while awaiting large, multicentre trials and more evidence-based medicine.
Collapse
Affiliation(s)
- D Longrois
- Départements d’Anesthésie-Réanimation, Université Paris-Diderot and Paris VII Sorbonne-Paris-Cité, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris and UMR 5698, Paris, France
| | - F Petitjeans
- Hôpital d’Instruction des Armées Desgenettes, Lyon, France
| | - O Simonet
- Centre Hospitalier de Wallonie Picarde, Tournai, Belgium
| | - M de Kock
- Centre Hospitalier de Wallonie Picarde, Tournai, Belgium
| | - M Belliveau
- Hôpital de St Jerome, St Jérôme, Québec, Canada
| | - C Pichot
- Hôpital Louis Pasteur, Dole, France
| | - Th Lieutaud
- Hôpital de Bourg en BresseBourg-en-BresseFrance
- Centre de Recherche en Neurosciences(TIGER,UMR CRNS 5192-INSERM 1098), Lyon-Bron, France
| | - M Ghignone
- J.F. Kennedy Hospital North Campus, West Palm Beach, Florida, USA
| | - L Quintin
- Hôpital d’Instruction des Armées Desgenettes, Lyon, France
| |
Collapse
|
5
|
Petitjeans F, Pichot C, Ghignone M, Quintin L. Building on the Shoulders of Giants: Is the use of Early Spontaneous Ventilation in the Setting of Severe Diffuse Acute Respiratory Distress Syndrome Actually Heretical? Turk J Anaesthesiol Reanim 2018; 46:339-347. [PMID: 30263856 DOI: 10.5152/tjar.2018.01947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is not a failure of the neurological command of the ventilatory muscles or of the ventilatory muscles; it is an oxygenation defect. As positive pressure ventilation impedes the cardiac function, paralysis under general anaesthesia and controlled mandatory ventilation should be restricted to the interval needed to control the acute cardio-ventilatory distress observed upon admission into the critical care unit (CCU; "salvage therapy" during "shock state"). Current management of early severe diffuse ARDS rests on a prolonged interval of controlled mechanical ventilation with low driving pressure, paralysis (48 h, too often overextended), early proning and positive end-expiratory pressure (PEEP). Therefore, the time interval between arrival to the CCU and switching to spontaneous ventilation (SV) is not focused on normalizing the different factors involved in the pathophysiology of ARDS: fever, low cardiac output, systemic acidosis, peripheral shutdown (local acidosis), supine position, hypocapnia (generated by hyperpnea and tachypnea), sympathetic activation, inflammation and agitation. Then, the extended period of controlled mechanical ventilation with paralysis under general anaesthesia leads to CCU-acquired pathology, including low cardiac output, myoneuropathy, emergence delirium and nosocomial infection. The stabilization of the acute cardio-ventilatory distress should primarily itemize the pathophysiological conditions: fever control, improved micro-circulation and normalized local acidosis, 'upright' position, minimized hypercapnia, sympathetic de-activation (normalized sympathetic activity toward baseline levels resulting in improved micro-circulation with alpha-2 agonists administered immediately following optimized circulation and endotracheal intubation), lowered inflammation and 'cooperative' sedation without respiratory depression evoked by alpha-2 agonists. Normalised metabolic, circulatory and ventilatory demands will allow one to single out the oxygenation defect managed with high PEEP (diffuse recruitable ARDS) under early spontaneous ventilation (airway pressure release ventilation+SV or low-pressure support). Assuming an improved overall status, PaO2/FiO2≥150-200 allows for extubation and continuous non-invasive ventilation. Such fast-tracking may avoid most of the CCU-acquired pathologies. Evidence-based demonstration is required.
Collapse
|
7
|
Petitjeans F, Leroy S, Pichot C, Geloen A, Ghignone M, Quintin L. Hypothesis: Fever control, a niche for alpha-2 agonists in the setting of septic shock and severe acute respiratory distress syndrome? Temperature (Austin) 2018; 5:224-256. [PMID: 30393754 PMCID: PMC6209424 DOI: 10.1080/23328940.2018.1453771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 03/11/2018] [Indexed: 12/12/2022] Open
Abstract
During severe septic shock and/or severe acute respiratory distress syndrome (ARDS) patients present with a limited cardio-ventilatory reserve (low cardiac output and blood pressure, low mixed venous saturation, increased lactate, low PaO2/FiO2 ratio, etc.), especially when elderly patients or co-morbidities are considered. Rescue therapies (low dose steroids, adding vasopressin to noradrenaline, proning, almitrine, NO, extracorporeal membrane oxygenation, etc.) are complex. Fever, above 38.5-39.5°C, increases both the ventilatory (high respiratory drive: large tidal volume, high respiratory rate) and the metabolic (increased O2 consumption) demands, further limiting the cardio-ventilatory reserve. Some data (case reports, uncontrolled trial, small randomized prospective trials) suggest that control of elevated body temperature ("fever control") leading to normothermia (35.5-37°C) will lower both the ventilatory and metabolic demands: fever control should simplify critical care management when limited cardio-ventilatory reserve is at stake. Usually fever control is generated by a combination of general anesthesia ("analgo-sedation", light total intravenous anesthesia), antipyretics and cooling. However general anesthesia suppresses spontaneous ventilation, making the management more complex. At variance, alpha-2 agonists (clonidine, dexmedetomidine) administered immediately following tracheal intubation and controlled mandatory ventilation, with prior optimization of volemia and atrio-ventricular conduction, will reduce metabolic demand and facilitate normothermia. Furthermore, after a rigorous control of systemic acidosis, alpha-2 agonists will allow for accelerated emergence without delirium, early spontaneous ventilation, improved cardiac output and micro-circulation, lowered vasopressor requirements and inflammation. Rigorous prospective randomized trials are needed in subsets of patients with a high fever and spiraling toward refractory septic shock and/or presenting with severe ARDS.
Collapse
Affiliation(s)
- F. Petitjeans
- Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France
| | - S. Leroy
- Pediatric Emergency Medicine, Hôpital Avicenne, Paris-Bobigny, France
| | - C. Pichot
- Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France
| | - A. Geloen
- Physiology, INSA de Lyon (CARMeN, INSERM U 1060), Lyon-Villeurbanne, France
| | - M. Ghignone
- Critical Care, JF Kennedy Hospital North Campus, WPalm Beach, Fl, USA
| | - L. Quintin
- Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France
| |
Collapse
|