1
|
Mihatsch LL, Friederich P. The influence of sex, age, and body height on the pulmonary vascular permeability index - a prospective observational study. Sci Rep 2024; 14:22001. [PMID: 39322748 PMCID: PMC11424636 DOI: 10.1038/s41598-024-72967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
The pulmonary vascular permeability index (PVPI) is a quotient of the extravascular lung water (EVLW) and the pulmonary blood volume (PBV). In acute respiratory distress syndrome (ARDS), the alveolar-capillary membrane integrity is disrupted. The result is a disproportionate increase of EVLW compared to the PBV and, hence, an increase in PVPI. Thus, PVPI has repetitively been discussed to extend the definition of ARDS. Besides sex, the influence of other anthropometric variables on PVPI has not been studied so far. However, since it is known that EVLW depends on body height and sex, we hypothesize that PVPI depends on anthropometric variables as well. This prospective single-center observational study included 1533 TPTD measurements of 251 non-critically ill patients (50.6% men) undergoing elective neuro-, thoracic, or abdominal surgery at the Munich Clinic Bogenhausen of the Technical University of Munich. Multivariate regressions were used to measure the influence of sex, age, and body height on PVPI. In all patients, PVPI was significantly higher in women (P < 0.001), with 34.4% having a PVPI > 2 compared to 15.9% of men. Mean PVPI significantly decreased with height (P < 0.001) and age (P < 0.001). Multivariate regressions allowed the calculation of mean reference surfaces. The 95th percentile surface for PVPI was > 3 for small and young women and well above 2 for all but tall and elderly men. In patients who underwent (lung reduction) thoracic surgery, the PVPI before and after surgery did not differ significantly (P = 0.531), and post-surgical PVPI did not correlate with the amount of lung resected (P = 0.536). Hence, we conclude that PVPI may be independent of the extent of lung volume reduction. However, PVPI is heavily dependent on sex, age, and body height. Anthropometric variables thus have a significant impact on the likelihood of misclassified abnormal PVPI. This warrants further studies since an increased PVPI, e.g. in the context of an ARDS, may be overlooked if anthropometric variables are not considered. We suggest reference surfaces based on the 95th-percentile corrected for sex, age, and height as a novel approach to normalize PVPI.
Collapse
Affiliation(s)
- Lorenz L Mihatsch
- Technical University of Munich, TUM School of Medicine and Health, Munich, Germany.
- Department of Anaesthesiology, Critical Care Medicine and Pain Therapy, Munich Clinic Bogenhausen, Academic Teaching Hospital of Technical University of Munich, Munich, Germany.
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Patrick Friederich
- Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
- Department of Anaesthesiology, Critical Care Medicine and Pain Therapy, Munich Clinic Bogenhausen, Academic Teaching Hospital of Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Saba AA, Mahmud Z, Ansari F, Ahmed R, Nur J, Alam MS, Chakraborty S, Nabi AN, Islam LN, Howlader MZH. Single nucleotide variants rs7975232 and rs2228570 within vitamin D receptor gene confers protection against severity of COVID-19 infection in Bangladeshi population. GENE REPORTS 2024; 36:101981. [DOI: 10.1016/j.genrep.2024.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
|
3
|
Fink A, Puchwein P, Fahrleitner-Pammer A, Eder-Halbedl M, Bernhardt GA. Increased Early Postoperative Complication Rate after Osteoporotic Hip Fracture in Patients with Low 25 (OH) Vitamin D Levels. Nutrients 2024; 16:1917. [PMID: 38931272 PMCID: PMC11206968 DOI: 10.3390/nu16121917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the association of preoperative 25-hydroxy (25 (OH)) vitamin D levels with postoperative complications in osteoporotic hip fracture patients following surgery. We hypothesized that patients with low concentrations of 25 (OH) vitamin D might have an increased risk of developing adverse outcomes. Between January 2019 and December 2020, a retrospective observational study was conducted, including low-energy fragility fractures at the proximal femur. Regarding preoperative 25 (OH) vitamin D levels, patients were divided into two groups (<30 ng/mL and ≥30 ng/mL). Early and late postoperative complications were assessed and graded according to the Clavien-Dindo classification system. Logistic regression analysis was performed to demonstrate the association between preoperative 25 (OH) vitamin D levels (<30 ng/mL, ≥30 ng/mL) and postoperative complications after adjusting for age and sex. Of 314 patients, 222 patients (70.7%) had a 25 (OH) vitamin D level of <30 ng/mL. The mean serum 25 (OH) vitamin D level was 22.6 ng/mL (SD 13.2). In 116 patients (36.9%), postoperative complications were observed, with the most occurring in the short term (95 patients, 30.2%). Late postoperative complications were present in 21 patients (6.7%), most graded as Clavien I (57.1%). Logistic regression analysis identified a low vitamin D level (<30 ng/mL) as an independent risk factor for early postoperative complications (OR 2.06, 95% CI 1.14-3.73, p = 0.016), while no significant correlation was found in late complications (OR 1.08, 95% CI 0.40-2.95, p = 0.879). In conclusion, preoperative 25 (OH) vitamin D serum level might be an independent predictor for early postoperative complications. However, future studies are warranted to determine risk factors for long-term complications and establish appropriate intervention strategies.
Collapse
Affiliation(s)
- Andrea Fink
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria;
| | - Paul Puchwein
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria;
| | | | - Michael Eder-Halbedl
- Department of Orthopedics and Traumatology, LKH Feldbach-Fürstenfeld, Ottokar-Kernstock-Straße 18, 8330 Feldbach, Austria
| | | |
Collapse
|
4
|
Battaglini D, Iavarone IG, Rocco PRM. An update on the pharmacological management of acute respiratory distress syndrome. Expert Opin Pharmacother 2024; 25:1229-1247. [PMID: 38940703 DOI: 10.1080/14656566.2024.2374461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is characterized by acute inflammatory injury to the lungs, alterations in vascular permeability, loss of aerated tissue, bilateral infiltrates, and refractory hypoxemia. ARDS is considered a heterogeneous syndrome, which complicates the search for effective therapies. The goal of this review is to provide an update on the pharmacological management of ARDS. AREAS COVERED The difficulties in finding effective pharmacological therapies are mainly due to the challenges in designing clinical trials for this unique, varied population of critically ill patients. Recently, some trials have been retrospectively analyzed by dividing patients into hyper-inflammatory and hypo-inflammatory sub-phenotypes. This approach has led to significant outcome improvements with some pharmacological treatments that previously failed to demonstrate efficacy, which suggests that a more precise selection of ARDS patients for clinical trials could be the key to identifying effective pharmacotherapies. This review is provided after searching the main studies on this topics on the PubMed and clinicaltrials.gov databases. EXPERT OPINION The future of ARDS therapy lies in precision medicine, innovative approaches to drug delivery, immunomodulation, cell-based therapies, and robust clinical trial designs. These should lead to more effective and personalized treatments for patients with ARDS.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Ida Giorgia Iavarone
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Finze A, Vijgen GH, Betzler J, Orth V, Hetjens S, Reissfelder C, Otto M, Blank S. Malnutrition and vitamin deficiencies after surgery for esophageal and gastric cancer: A metanalysis. Clin Nutr ESPEN 2024; 60:348-355. [PMID: 38479934 DOI: 10.1016/j.clnesp.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND & AIMS Patients receiving oncological esophagectomy or gastrectomy are known to be at high risk for vitamin and micronutrient deficiency before, during and after surgery. However, there are no clear guidelines for these cancer patients regarding postoperative vitamin supplementation. METHODS We conducted a metanalysis consisting of 10 studies regarding vitamin and micronutrient deficiencies after oncological gastric or esophageal resection. 5 databases were searched. RESULTS Data was sufficient regarding Vitamins B12 and 25-OH D3 as well as calcium. We were able to show deficiencies in 25-OH Vitamin D3 levels (p < 0.001) and lower levels of Vitamin B12 and calcium (bit p < 0.001) when compared to the healthy population. CONCLUSIONS Patients from these groups are at risk for vitamin deficiencies. A guideline on postoperative supplementation is needed.
Collapse
Affiliation(s)
- Alida Finze
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Guy Hej Vijgen
- Department of Surgery, Laurentius Hospital, Monseigneur Driessenstraat 6, 6043 CV Roermond, the Netherlands
| | - Johanna Betzler
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vanessa Orth
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Svetlana Hetjens
- Department of Medical Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Christoph Reissfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Mirko Otto
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Susanne Blank
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Patel A, Caruana EJ, Hodson J, Morrison R, Khor B, Gysling S, Trevis J, Mangel T, Benson R, Zakeri R, Manders J, Vaja R, Rogers L, Baker P, Pournaras DJ, Thickett D, Hewison M, Naidu B, Lim E. Role of vitamin D supplementation in modifying outcomes after surgery: a systematic review of randomised controlled trials. BMJ Open 2024; 14:e073431. [PMID: 38233048 PMCID: PMC10806719 DOI: 10.1136/bmjopen-2023-073431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND There is increasing evidence to suggest vitamin D plays a role in immune and vascular function; hence, it may be of biological and clinical relevance for patients undergoing major surgery. With a greater number of randomised studies being conducted evaluating the impact of vitamin D supplementation on surgical patients, it is an opportune time to conduct further analysis of the impact of vitamin D on surgical outcomes. METHODS MEDLINE, EMBASE and the Cochrane Trials Register were interrogated up to December 2023 to identify randomised controlled trials of vitamin D supplementation in surgery. The risk of bias in the included studies was assessed using the Cochrane Risk of Bias tool. A narrative synthesis was conducted for all studies. The primary outcome assessed was overall postoperative survival. RESULTS We screened 4883 unique studies, assessed 236 full-text articles and included 14 articles in the qualitative synthesis, comprising 1982 patients. The included studies were highly heterogeneous with respect to patient conditions, ranging from open heart surgery to cancer operations to orthopaedic conditions, and also with respect to the timing and equivalent daily dose of vitamin D supplementation (range: 0.5-7500 mcg; 20-300 000 IU). No studies reported significant differences in overall survival or postoperative mortality with vitamin D supplementation. There was also no clear evidence of benefit with respect to overall or intensive care unit length of stay. DISCUSSION Numerous studies have reported the benefits of vitamin D supplementation in different surgical settings without any consistency. However, this systematic review found no clear evidence of benefit, which warrants the supposition that a single biological effect of vitamin D supplementation does not exist. The observed improvement in outcomes in low vitamin D groups has not been convincingly proven beyond chance findings. TRIAL REGISTRATION NUMBER CRD42021232067.
Collapse
Affiliation(s)
- Akshay Patel
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Thoracic Surgery, University Hospitals Birmingham, Birmingham, UK
| | - Edward J Caruana
- Department of Thoracic Surgery, Glenfield Hospital, Leicester, UK
| | - James Hodson
- Research Development and Innovation, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Rory Morrison
- Department of Orthopaedic Surgery, South Tees NHS Foundation Trust, Nottingham, UK
| | - Bo Khor
- Department of Colorectal Surgery, University Hospitals Birmingham, Nottingham, UK
| | - Savannah Gysling
- Department of Academic Colorectal Surgery, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jason Trevis
- Department of Cardiothoracic Surgery, James Cook University Hospital, Middlesborough, UK
| | - Tobin Mangel
- Department of Cardiothoracic Surgery, Bart's Heart Centre, London, UK
| | - Ruth Benson
- Department of Vascular Surgery, University of Otago, Christchurch, New Zealand
| | - Roxanna Zakeri
- Department of Upper GI, Bariatric and Metabolic Surgery, North Bristol NHS Trust, Westbury on Trym, UK
| | - Jennifer Manders
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ricky Vaja
- Department of Cardiovascular Sciences Surgery, Imperial College London, London, UK
| | - Luke Rogers
- Department of Cardiac Surgery, University Hospitals Bristol, Bristol, UK
| | - Paul Baker
- Department of Orthopaedic Surgery, South Tees NHS Foundation Trust, Nottingham, UK
- University of Teeside, Middlesborough, UK
| | - Dimitri J Pournaras
- Department of Upper GI, Bariatric and Metabolic Surgery, North Bristol NHS Trust, Westbury on Trym, UK
| | - David Thickett
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Babu Naidu
- Department of Thoracic Surgery, University Hospitals Birmingham, Birmingham, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Eric Lim
- Department of Thoracic Surgery, Royal Brompton Hospital, London, UK
| |
Collapse
|
7
|
Supphapipat K, Leurcharusmee P, Chattipakorn N, Chattipakorn SC. Impact of air pollution on postoperative outcomes following organ transplantation: Evidence from clinical investigations. Clin Transplant 2024; 38:e15180. [PMID: 37987510 DOI: 10.1111/ctr.15180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Air pollution is a worldwide problem affecting human health via various body systems, resulting in numerous significant adverse events. Air pollutants, including particulate matter < or = 2.5 microns (PM2.5), particulate matter < or = 10 microns (PM10), ozone (O3 ), nitrogen dioxide (NO2 ), and traffic-related air pollution (TRAP), have demonstrated the negative effects on human health (e.g., increased cerebrovascular, cardiovascular, and respiratory diseases, malignancy, and mortality). Organ transplant patients, who are taking immunosuppressive agents, are especially vulnerable to the adverse effects of air pollutants. The evidence from clinical investigation has shown that exposure to air pollution after organ transplantation is associated with organ rejection, cardiovascular disease, coronary heart disease, cerebrovascular disease, infection-related mortality, and vitamin D deficiency. OBJECTIVES AND METHOD This review aims to summarize and discuss the association of exposure to air pollutants and serum 25-hydroxyvitamin D level and outcomes after transplantation. Controversial findings are also included and discussed. CONCLUSION All of the findings suggest that air pollution results in a hazardous environment, which not only impacts human health worldwide but also affects post-transplant outcomes.
Collapse
Affiliation(s)
- Kittitorn Supphapipat
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prangmalee Leurcharusmee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Srivastava R, Singh N, Kanda T, Yadav S, Yadav S, Choudhary P, Atri N. Promising role of Vitamin D and plant metabolites against COVID-19: Clinical trials review. Heliyon 2023; 9:e21205. [PMID: 37920525 PMCID: PMC10618788 DOI: 10.1016/j.heliyon.2023.e21205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Vitamin D possesses immunomodulatory qualities and is protective against respiratory infections. Additionally, it strengthens adaptive and cellular immunity and boosts the expression of genes involved in oxidation. Experts suggested taking vitamin D supplements to avoid and treat viral infection and also COVID-19, on the other hand, since the beginning of time, the use of plants as medicines have been vital to human wellbeing. The WHO estimates that 80 % of people worldwide use plants or herbs for therapeutic purposes. Secondary metabolites from medicinal plants are thought to be useful in lowering infections from pathogenic microorganisms due to their ability to inhibit viral protein and enzyme activity by binding with them. As a result, this manuscript seeks to describe the role of vitamin D and probable plant metabolites that have antiviral activities and may be complementary to the alternative strategy against COVID-19 in a single manuscript through reviewing various case studies.
Collapse
Affiliation(s)
| | - Nidhi Singh
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi, India
| | - Tripti Kanda
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi, India
| | - Sadhana Yadav
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi, India
| | - Shivam Yadav
- Department of Botany, University of Allahabad, Prayagraj, India
| | | | - Neelam Atri
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Battaglini D, Iavarone IG, Al-Husinat L, Ball L, Robba C, Silva PL, Cruz FF, Rocco PR. Anti-inflammatory therapies for acute respiratory distress syndrome. Expert Opin Investig Drugs 2023; 32:1143-1155. [PMID: 37996088 DOI: 10.1080/13543784.2023.2288080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Treatments for the acute respiratory distress syndrome (ARDS) are mainly supportive, and ventilatory management represents a key approach in these patients. Despite progress in pharmacotherapy, anti-inflammatory strategies for the treatment of ARDS have shown controversial results. Positive outcomes with pharmacologic and nonpharmacologic treatments have been found in two different biological subphenotypes of ARDS, suggesting that, with a personalized medicine approach, pharmacotherapy for ARDS can be effective. AREAS COVERED This article reviews the literature concerning anti-inflammatory therapies for ARDS, focusing on pharmacological and stem-cell therapies, including extracellular vesicles. EXPERT OPINION Despite advances, ARDS treatments remain primarily supportive. Ventilatory and fluid management are important strategies in these patients that have demonstrated significant impacts on outcome. Anti-inflammatory drugs have shown some benefits, primarily in preclinical research and in specific clinical scenarios, but no recommendations are available from guidelines to support their use in patients with ARDS, except in particular settings such as different subphenotypes, specific etiologies, or clinical trials. Personalized medicine seems promising insofar as it may identify specific subgroups of patients with ARDS who may benefit from anti-inflammatory treatment. However, additional efforts are needed to move subphenotype characterization from bench to bedside.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ida Giorgia Iavarone
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Lou'i Al-Husinat
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Lorenzo Ball
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Battaglini D, Fazzini B, Silva PL, Cruz FF, Ball L, Robba C, Rocco PRM, Pelosi P. Challenges in ARDS Definition, Management, and Identification of Effective Personalized Therapies. J Clin Med 2023; 12:1381. [PMID: 36835919 PMCID: PMC9967510 DOI: 10.3390/jcm12041381] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Over the last decade, the management of acute respiratory distress syndrome (ARDS) has made considerable progress both regarding supportive and pharmacologic therapies. Lung protective mechanical ventilation is the cornerstone of ARDS management. Current recommendations on mechanical ventilation in ARDS include the use of low tidal volume (VT) 4-6 mL/kg of predicted body weight, plateau pressure (PPLAT) < 30 cmH2O, and driving pressure (∆P) < 14 cmH2O. Moreover, positive end-expiratory pressure should be individualized. Recently, variables such as mechanical power and transpulmonary pressure seem promising for limiting ventilator-induced lung injury and optimizing ventilator settings. Rescue therapies such as recruitment maneuvers, vasodilators, prone positioning, extracorporeal membrane oxygenation, and extracorporeal carbon dioxide removal have been considered for patients with severe ARDS. Regarding pharmacotherapies, despite more than 50 years of research, no effective treatment has yet been found. However, the identification of ARDS sub-phenotypes has revealed that some pharmacologic therapies that have failed to provide benefits when considering all patients with ARDS can show beneficial effects when these patients were stratified into specific sub-populations; for example, those with hyperinflammation/hypoinflammation. The aim of this narrative review is to provide an overview on current advances in the management of ARDS from mechanical ventilation to pharmacological treatments, including personalized therapy.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
| | - Brigitta Fazzini
- Adult Critical Care Unit, Royal London Hospital, Barts Health NHS Trust, Whitechapel, London E1 1BB, UK
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 15145 Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 15145 Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 15145 Genoa, Italy
| |
Collapse
|
11
|
Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023; 15:nu15020334. [PMID: 36678205 PMCID: PMC9864832 DOI: 10.3390/nu15020334] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Deficiency in vitamin D (VitD), a lipid-soluble vitamin and steroid hormone, affects approximately 24% to 40% of the population of the Western world. In addition to its well-documented effects on the musculoskeletal system, VitD also contributes importantly to the promotion and preservation of cardiovascular health via modulating the immune and inflammatory functions and regulating cell proliferation and migration, endothelial function, renin expression, and extracellular matrix homeostasis. This brief overview focuses on the cardiovascular and cerebrovascular effects of VitD and the cellular, molecular, and functional changes that occur in the circulatory system in VitD deficiency (VDD). It explores the links among VDD and adverse vascular remodeling, endothelial dysfunction, vascular inflammation, and increased risk for cardiovascular and cerebrovascular diseases. Improved understanding of the complex role of VDD in the pathogenesis of atherosclerotic cardiovascular diseases, stroke, and vascular cognitive impairment is crucial for all cardiologists, dietitians, and geriatricians, as VDD presents an easy target for intervention.
Collapse
|
12
|
Vitamin-D ameliorates sepsis-induced acute lung injury via augmenting miR-149-5p and downregulating ER stress. J Nutr Biochem 2022; 110:109130. [PMID: 35988833 DOI: 10.1016/j.jnutbio.2022.109130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
Acute lung injury is a life-threatening medical problem induced by sepsis or endotoxins and may be associated with enhanced Endoplasmic reticulum stress (ER stress). Vitamin-D (Vit-D) possesses an anti-inflammatory effect; however, this specific mechanism on acute lung injury is still unknown. Here we scrutinize the mechanism of Vit-D on Acute lung injury (ALI) models and explored the Vit-D augmented miRNA's role in regulating the ER stress pathway in ALI. Sepsis was induced by CLP, and Endotoxemia was caused by lipopolysaccharide (LPS). We found that Vit-D alleviates pulmonary edema, improves lung histoarchitecture, infiltration of neutrophils, endothelial barrier in mice, and improves ER stress markers Activating Transcription Factor 6 (ATF6) and CHOP (C/EBP Homologous Protein) expression elevated by CLP/LPS induce ALI. Vit-D decreases the nitric oxide production and ATF6 in macrophages induced by LPS. Vit-D augments miR (miR-149-5p) in LPS-induce macrophages, CLP, and LPS-induced ALI models. Vit-D enhanced miRNA-149-5p when overexpressed, inhibited ER-specific ATF6 inflammatory pathway in LPS-stimulated macrophages, and improved histoarchitecture of the lung in LPS/CLP-induced mice models. This vitro and vivo studies demonstrate that Vit-D could improve ALI induced by CLP/LPS. In this regard, miR-149-5p may play a crucial role in vitamin-D inhibiting LPS/CLP induce ALI. The mechanism might be an association of increased miR-149-5p and its regulated gene target ATF6, and downstream CHOP proteins were suppressed. Thus, these findings demonstrate that the anti-inflammatory effect of Vit-D is achieved by augmentation of miRNA-149-5p expression, which may be a key physiologic mediator in the prevention and treatment of ALI.
Collapse
|
13
|
Muir D, Antonowicz S, Whiting J, Low D, Maynard N. Implementation of the Esophagectomy Complication Consensus Group definitions: the benefits of speaking the same language. Dis Esophagus 2022; 35:6603615. [PMID: 35673848 DOI: 10.1093/dote/doac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/17/2022] [Indexed: 12/24/2022]
Abstract
In 2015 the Esophagectomy Complication Consensus Group (ECCG) reported consensus definitions for complications after esophagectomy. This aimed to reduce variation in complication reporting, attributed to heterogeneous definitions. This systematic review aimed to describe the implementation of this definition set, including the effect on complication frequency and variation. A systematic literature review was performed, identifying all observational and randomized studies reporting complication frequencies after esophagectomy since the ECCG publication. Recruitment periods before and subsequent to the index ECCG publication date were included. Coefficients of variance were calculated to assess outcome heterogeneity. Of 144 studies which met inclusion criteria, 70 (48.6%) used ECCG definitions. The median number of separately reported complication types was five per study; only one study reported all ECCG complications. The coefficients of variance of the reported frequencies of eight of the 10 most common complications were reduced in studies which used the ECCG definitions compared with those that did not (P = 0.036). Among ECCG studies, the frequencies of postoperative pneumothorax, reintubation, and pulmonary emboli were significantly reduced in 2020-2021, compared with 2015-2019 (P = 0.006, 0.034, and 0.037 respectively). The ECCG definition set has reduced variation in esophagectomy morbidity reporting. This adds greater confidence to the observed gradual improvement in outcomes with time, and its ongoing use and wider dissemination should be encouraged. However, only a handful of outcomes are widely reported, and only rarely is it used in its entirety.
Collapse
Affiliation(s)
- Duncan Muir
- Department of Upper GI Surgery, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Stefan Antonowicz
- Department of Upper GI Surgery, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Jack Whiting
- Department of Upper GI Surgery, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Donald Low
- Department of Thoracic Surgery and Thoracic Oncology, Virginia Mason Medical Center, Seattle, WA, USA
| | - Nick Maynard
- Department of Upper GI Surgery, Oxford University Hospitals NHS Trust, Oxford, UK
| |
Collapse
|
14
|
Gaudet M, Plesa M, Mogas A, Jalaleddine N, Hamid Q, Al Heialy S. Recent advances in vitamin D implications in chronic respiratory diseases. Respir Res 2022; 23:252. [PMID: 36117182 PMCID: PMC9483459 DOI: 10.1186/s12931-022-02147-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic airway inflammatory and infectious respiratory diseases are the most common medical respiratory conditions, associated with significant morbidity and mortality. Vitamin D (1,25(OH)2D3) deficiency has been shown to be highly prevalent in patients with chronic airway inflammatory and infectious diseases, correlated with increased disease severity. It has been established that vitamin D modulates ongoing abnormal immune responses in chronic respiratory diseases and is shown to restrict bacterial and viral colonization into the lungs. On the contrary, other studies revealed controversy findings regarding vitamin D efficacy in respiratory diseases. This review aims to update the current evidence regarding the role of vitamin D in airway inflammation and in various respiratory diseases. A comprehensive search of the last five years of literature was conducted using MEDLINE and non-MEDLINE PubMed databases, Ovid MEDLINE, SCOPUS-Elsevier, and data from in vitro and in vivo experiments, including clinical studies. This review highlights the importance of understanding the full range of implications that vitamin D may have on lung inflammation, infection, and disease severity in the context of chronic respiratory diseases.
Collapse
Affiliation(s)
- Mellissa Gaudet
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada
| | - Maria Plesa
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada
| | - Andrea Mogas
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada
| | - Nour Jalaleddine
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Qutayba Hamid
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada. .,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Saba Al Heialy
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada. .,College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| |
Collapse
|
15
|
Belchamber KBR, Thein OS, Hazeldine J, Grudzinska FS, Faniyi AA, Hughes MJ, Jasper AE, Yip KP, Crowley LE, Lugg ST, Sapey E, Parekh D, Thickett DR, Scott A. Dysregulated Neutrophil Phenotype and Function in Hospitalised Non-ICU COVID-19 Pneumonia. Cells 2022; 11:2901. [PMID: 36139476 PMCID: PMC9496854 DOI: 10.3390/cells11182901] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Infection with the SARS-CoV2 virus is associated with elevated neutrophil counts. Evidence of neutrophil dysfunction in COVID-19 is based on transcriptomics or single functional assays. Cell functions are interwoven pathways, and understanding the effect across the spectrum of neutrophil function may identify therapeutic targets. Objectives: Examine neutrophil phenotype and function in 41 hospitalised, non-ICU COVID-19 patients versus 23 age-matched controls (AMC) and 26 community acquired pneumonia patients (CAP). Methods: Isolated neutrophils underwent ex vivo analyses for migration, bacterial phagocytosis, ROS generation, NETosis and receptor expression. Circulating DNAse 1 activity, levels of cfDNA, MPO, VEGF, IL-6 and sTNFRI were measured and correlated to clinical outcome. Serial sampling on day three to five post hospitalization were also measured. The effect of ex vivo PI3K inhibition was measured in a further cohort of 18 COVID-19 patients. Results: Compared to AMC and CAP, COVID-19 neutrophils demonstrated elevated transmigration (p = 0.0397) and NETosis (p = 0.0332), and impaired phagocytosis (p = 0.0036) associated with impaired ROS generation (p < 0.0001). The percentage of CD54+ neutrophils (p < 0.001) was significantly increased, while surface expression of CD11b (p = 0.0014) and PD-L1 (p = 0.006) were significantly decreased in COVID-19. COVID-19 and CAP patients showed increased systemic markers of NETosis including increased cfDNA (p = 0.0396) and impaired DNAse activity (p < 0.0001). The ex vivo inhibition of PI3K γ and δ reduced NET release by COVID-19 neutrophils (p = 0.0129). Conclusions: COVID-19 is associated with neutrophil dysfunction across all main effector functions, with altered phenotype, elevated migration and NETosis, and impaired antimicrobial responses. These changes highlight that targeting neutrophil function may help modulate COVID-19 severity.
Collapse
Affiliation(s)
- Kylie B. R. Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Onn S. Thein
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Jon Hazeldine
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK
| | - Frances S. Grudzinska
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Aduragbemi A. Faniyi
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael J. Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Alice E. Jasper
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Kay Por Yip
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Louise E. Crowley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Sebastian T. Lugg
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- PIONEER HDR-UK Hub in Acute Care, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B12 2GW, UK
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
16
|
Battaglini D, Robba C, Pelosi P, Rocco PRM. Treatment for acute respiratory distress syndrome in adults: A narrative review of phase 2 and 3 trials. Expert Opin Emerg Drugs 2022; 27:187-209. [PMID: 35868654 DOI: 10.1080/14728214.2022.2105833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Ventilatory management and general supportive care of acute respiratory distress syndrome (ARDS) in the adult population have led to significant clinical improvements, but morbidity and mortality remain high. Pharmacologic strategies acting on the coagulation cascade, inflammation, oxidative stress, and endothelial cell injury have been targeted in the last decade for patients with ARDS, but only a few of these have shown potential benefits with a meaningful clinical response and improved patient outcomes. The lack of availability of specific pharmacologic treatments for ARDS can be attributed to its complex pathophysiology, different risk factors, huge heterogeneity, and difficult classification into specific biological phenotypes and genotypes. AREAS COVERED In this narrative review, we briefly discuss the relevance and current advances in pharmacologic treatments for ARDS in adults and the need for the development of new pharmacological strategies. EXPERT OPINION Identification of ARDS phenotypes, risk factors, heterogeneity, and pathophysiology may help to design clinical trials personalized according to ARDS-specific features, thus hopefully decreasing the rate of failed clinical pharmacologic trials. This concept is still under clinical investigation and needs further development.
Collapse
Affiliation(s)
- Denise Battaglini
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Chiara Robba
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.,Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Paolo Pelosi
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.,Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, RJ 21941-902, Brazil.,COVID-19 Virus Network from Ministry of Science, Technology, and Innovation, Brazilian Council for Scientific and Technological Development, and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Gao Z, Xie J, Li C, Liu L, Yang Y. High Dose Vitamin D3 Supplementation Is Not Associated With Lower Mortality in Critically Ill Patients: A Meta-Analysis of Randomized Control Trials. Front Nutr 2022; 9:762316. [PMID: 35600814 PMCID: PMC9116294 DOI: 10.3389/fnut.2022.762316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background Vitamin D deficiency is a common condition in critically ill patients. A high dose of vitamin D3 can rapidly restore vitamin D levels. The aim of this meta-analysis was to synthesize the results from up-to-date randomized control trials (RCT) and validate the effect of vitamin D3 in critically ill patients. Study Methods Several databases, including PubMed, Web of Science, EMBASE, and the Cochrane Central database, were searched up to December 4th, 2020. All RCTs that investigated the use of a high dose of vitamin D3 in critically ill patients and reported mortality data were included in the meta-analysis. The primary outcome was the mortality truncated to day 28 and day 90. Results A total of 10 RCTs enrolling 2058 patients were finally included. The use of a high dose of vitamin D3 in critically ill patients could not decrease the mortality truncated to day 28 (RR 0.93, 95% CI 0.78–1.11, P = 0.43) or day 90 (RR 0.91, 95% CI 0.79–1.05, P = 0.21). A high dose of vitamin D3 could significantly reduce the ventilator days (MD −9.38, 95%CI −13.44 to −5.31, P < 0.001), but there were no statistic difference in length of ICU stay (MD −2.76, 95% CI −6.27 to 0.74, P = 0.12) and hospital stay (MD −2.42, 95% CI −6.21 to 1.36, P = 0.21). No significant difference was observed in adverse events between the vitamin D3 group and the placebo group. Conclusion The use of high dose vitamin D3 was not associated with decreased mortality in critically ill patients, but could significantly reduce the ventilator days. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42020179195.
Collapse
Affiliation(s)
- Zhiwei Gao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine Southeast University, Zhongda Hospital, Nanjing, China
- Department of Emergency Intensive Care Unit, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine Southeast University, Zhongda Hospital, Nanjing, China
| | - Cong Li
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine Southeast University, Zhongda Hospital, Nanjing, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine Southeast University, Zhongda Hospital, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine Southeast University, Zhongda Hospital, Nanjing, China
- *Correspondence: Yi Yang
| |
Collapse
|
18
|
Intravenous calcitriol treatment benefits the homeostasis of CD4+ T cells and attenuates kidney injury in obese mice complicated with polymicrobial sepsis. Nutrition 2022; 103-104:111741. [DOI: 10.1016/j.nut.2022.111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/02/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
|
19
|
Mahida RY, Price J, Lugg ST, Li H, Parekh D, Scott A, Harrison P, Matthay MA, Thickett DR. CD14-positive extracellular vesicles in bronchoalveolar lavage fluid as a new biomarker of acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2022; 322:L617-L624. [PMID: 35234046 PMCID: PMC8993517 DOI: 10.1152/ajplung.00052.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies have indicated that extracellular vesicles (EVs) may play a role in the pathogenesis of acute respiratory distress syndrome (ARDS). EVs have been identified as potential biomarkers of disease severity and prognosis in other pulmonary diseases. We sought to characterize the EV phenotype within bronchoalveolar lavage (BAL) fluid of patients with ARDS, and to determine whether BAL EV could be used as a potential biomarker in ARDS. BAL was collected from patients with sepsis with and without ARDS, and from esophagectomy patients postoperatively (of whom a subset later developed ARDS during hospital admission). BAL EVs were characterized with regard to size, number, and cell of origin. Patients with sepsis-related ARDS had significantly higher numbers of CD14+/CD81+ monocyte-derived BAL EV than patients with sepsis without ARDS (P = 0.015). However, the converse was observed in esophagectomy patients who later developed ARDS (P = 0.003). Esophagectomy patients who developed ARDS also had elevated CD31+/CD63+ and CD31+/CD81+ endothelial-derived BAL EV (P ≤ 0.02) compared with esophagectomy patients who did not develop ARDS. Further studies are required to determine whether CD31+ BAL EV may be a predictive biomarker for ARDS in esophagectomy patients. CD14+/CD81+ BAL EV numbers were significantly higher in those patients with sepsis-related ARDS who died during the 30 days following intensive care unit admission (P = 0.027). Thus, CD14+/CD81+ BAL EVs are a potential biomarker for disease severity and mortality in sepsis-related ARDS. These findings provide the impetus to further elucidate the contribution of these EVs to ARDS pathogenesis.
Collapse
Affiliation(s)
- Rahul Y Mahida
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Joshua Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Sebastian T Lugg
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Hui Li
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Michael A Matthay
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, California
| | - David R Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
Elamir YM, Amir H, Lim S, Rana YP, Lopez CG, Feliciano NV, Omar A, Grist WP, Via MA. A randomized pilot study using calcitriol in hospitalized COVID-19 patients. Bone 2022; 154:116175. [PMID: 34508882 PMCID: PMC8425676 DOI: 10.1016/j.bone.2021.116175] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/01/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
The systemic illness associated with SARS-CoV-2 infection results in hospitalization rate of 380.3 hospitalizations per 100,000 population, overwhelming health care systems. Vitamin D regulates expression of approximately 11,000 genes spanning many physiologic functions that include regulation of both innate and adaptive immune function. We investigate potential benefit of calcitriol therapy given to patients hospitalized with COVID-19. This was an open label, randomized clinical trial of calcitriol or no treatment given to hospitalized adult patients with COVID-19. Subjects were randomly assigned treatment with calcitriol 0.5 μg daily for 14 days or hospital discharge; or no treatment (1:1) at time of enrollment. We enrolled 50 consecutive patients, 25 per trial arm. The change in peripheral arterial oxygen saturation to the inspired fraction of oxygen (SaO2/FIO2 ratio) was calculated on admission and discharge between the groups. The control group had an average increase of +13.2 (±127.7) on discharge and the calcitriol group had an increase of +91.04 (±119.08) (p = .0305), suggesting an improvement in oxygenation among subjects who received calcitriol. Additionally, 12 patients in the control group required oxygen supplementation on admission and 21 of them were discharged on room air. 14 subjects needed oxygen supplementation in the calcitriol group on admission while all 25 were discharged on room air. Other clinical markers showed the average length of stay was 9.24 (±9.4) in the control group compared to 5.5 (±3.9) days in the calcitriol group (p = .14). The need for ICU transfer was 8 in the control group and 5 in the calcitriol group. There were 3 deaths and 4 readmissions in the control group and 0 deaths and 2 readmissions in the calcitriol group. This pilot study illustrates improvement in oxygenation among hospitalized patients with COVID-19 treated with calcitriol and suggests the need for a larger randomized trial.
Collapse
Affiliation(s)
- Yasmine M Elamir
- Division of Endocrinology Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai Beth Israel, Mount Sinai Morningside, Mount Sinai West, United States of America
| | - Hajira Amir
- Division of Endocrinology Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai Beth Israel, Mount Sinai Morningside, Mount Sinai West, United States of America.
| | - Steven Lim
- Division of Internal Medicine at Mount Sinai Beth Israel, United States of America
| | - Yesha Patel Rana
- Division of Internal Medicine at Mount Sinai Beth Israel, United States of America
| | | | | | - Ali Omar
- Division of Internal Medicine at Mount Sinai Beth Israel, United States of America
| | - William Paul Grist
- Division of Pulmonary and Critical Care Medicine at St Joseph's University Medical Center, United States of America
| | - Michael A Via
- Division of Endocrinology Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai Beth Israel, Mount Sinai Morningside, Mount Sinai West, United States of America
| |
Collapse
|
21
|
Creagh-Brown BC. Prevention and Treatment of Postoperative Pulmonary Complications. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
22
|
Shinozaki H, Matsuoka T, Ozawa S. Pharmacological treatment to reduce pulmonary morbidity after esophagectomy. Ann Gastroenterol Surg 2021; 5:614-622. [PMID: 34585046 PMCID: PMC8452480 DOI: 10.1002/ags3.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 11/10/2022] Open
Abstract
Esophagectomy for esophageal cancer is one of the most invasive procedures in gastrointestinal surgery. An invasive surgical procedure causes postoperative lung injury through the surgical procedure and one-lung ventilation during anesthesia. Lung injury developed by inflammatory response to surgical insults and oxidative stress is associated with pulmonary morbidity after esophagectomy. Postoperative pulmonary complications negatively affect the long-term outcomes; therefore, an effort to reduce lung injury improves overall survival after esophagectomy. Although significant evidence has not been established, various pharmacological treatments for reducing lung injury, such as administration of a corticosteroid, neutrophil elastase inhibitor, and vitamins are considered to have efficacy for pulmonary morbidity. In this review we survey the following topics: mediators during the perioperative periods of esophagectomy and the efficacy of pharmacological therapies for patients with esophagectomy on pulmonary complications.
Collapse
Affiliation(s)
| | | | - Soji Ozawa
- Department of Gastroenterological SurgeryTokai University School of MedicineKanagawaJapan
| |
Collapse
|
23
|
Egi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada TA, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, et alEgi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada TA, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, Yamada H, Yamamoto R, Yoshida T, Yoshida Y, Yoshimura J, Yotsumoto R, Yonekura H, Wada T, Watanabe E, Aoki M, Asai H, Abe T, Igarashi Y, Iguchi N, Ishikawa M, Ishimaru G, Isokawa S, Itakura R, Imahase H, Imura H, Irinoda T, Uehara K, Ushio N, Umegaki T, Egawa Y, Enomoto Y, Ota K, Ohchi Y, Ohno T, Ohbe H, Oka K, Okada N, Okada Y, Okano H, Okamoto J, Okuda H, Ogura T, Onodera Y, Oyama Y, Kainuma M, Kako E, Kashiura M, Kato H, Kanaya A, Kaneko T, Kanehata K, Kano KI, Kawano H, Kikutani K, Kikuchi H, Kido T, Kimura S, Koami H, Kobashi D, Saiki I, Sakai M, Sakamoto A, Sato T, Shiga Y, Shimoto M, Shimoyama S, Shoko T, Sugawara Y, Sugita A, Suzuki S, Suzuki Y, Suhara T, Sonota K, Takauji S, Takashima K, Takahashi S, Takahashi Y, Takeshita J, Tanaka Y, Tampo A, Tsunoyama T, Tetsuhara K, Tokunaga K, Tomioka Y, Tomita K, Tominaga N, Toyosaki M, Toyoda Y, Naito H, Nagata I, Nagato T, Nakamura Y, Nakamori Y, Nahara I, Naraba H, Narita C, Nishioka N, Nishimura T, Nishiyama K, Nomura T, Haga T, Hagiwara Y, Hashimoto K, Hatachi T, Hamasaki T, Hayashi T, Hayashi M, Hayamizu A, Haraguchi G, Hirano Y, Fujii R, Fujita M, Fujimura N, Funakoshi H, Horiguchi M, Maki J, Masunaga N, Matsumura Y, Mayumi T, Minami K, Miyazaki Y, Miyamoto K, Murata T, Yanai M, Yano T, Yamada K, Yamada N, Yamamoto T, Yoshihiro S, Tanaka H, Nishida O. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). J Intensive Care 2021; 9:53. [PMID: 34433491 PMCID: PMC8384927 DOI: 10.1186/s40560-021-00555-7] [Show More Authors] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
Collapse
Affiliation(s)
- Moritoki Egi
- Department of Surgery Related, Division of Anesthesiology, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-2, Chuo-ku, Kobe, Hyogo, Japan.
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Medical School, Yamadaoka 2-15, Suita, Osaka, Japan.
| | - Tomoaki Yatabe
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuaki Atagi
- Department of Intensive Care Unit, Nara Prefectural General Medical Center, Nara, Japan
| | - Shigeaki Inoue
- Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University, Tokyo, Japan
| | - Yasuyuki Kakihana
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tatsuya Kawasaki
- Department of Pediatric Critical Care, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Kuroda
- Department of Emergency, Disaster, and Critical Care Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Joji Kotani
- Department of Surgery Related, Division of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takumi Taniguchi
- Department of Anesthesiology and Intensive Care Medicine, Kanazawa University, Kanazawa, Japan
| | - Ryosuke Tsuruta
- Acute and General Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Matsuyuki Doi
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaki Nakane
- Department of Emergency and Critical Care Medicine, Yamagata University Hospital, Yamagata, Japan
| | - Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| | - Naoto Hosokawa
- Department of Infectious Diseases, Kameda Medical Center, Kamogawa, Japan
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Asako Matsushima
- Department of Advancing Acute Medicine, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuma Yamakawa
- Department of Emergency Medicine, Osaka Medical College, Osaka, Japan
| | - Yoshitaka Hara
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masaaki Sakuraya
- Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshitaka Aoki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mai Inada
- Member of Japanese Association for Acute Medicine, Tokyo, Japan
| | - Yutaka Umemura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Yusuke Kawai
- Department of Nursing, Fujita Health University Hospital, Toyoake, Japan
| | - Yutaka Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Hiroki Saito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan
| | - Shunsuke Taito
- Division of Rehabilitation, Department of Clinical Support and Practice, Hiroshima University Hospital, Hiroshima, Japan
| | - Chikashi Takeda
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Takero Terayama
- Department of Psychiatry, School of Medicine, National Defense Medical College, Tokorozawa, Japan
| | | | - Hideki Hashimoto
- Department of Emergency and Critical Care Medicine/Infectious Disease, Hitachi General Hospital, Hitachi, Japan
| | - Kei Hayashida
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Toru Hifumi
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Tomoya Hirose
- Emergency and Critical Care Medical Center, Osaka Police Hospital, Osaka, Japan
| | - Tatsuma Fukuda
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tomoko Fujii
- Intensive Care Unit, Jikei University Hospital, Tokyo, Japan
| | - Shinya Miura
- The Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Hideto Yasuda
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Toshikazu Abe
- Department of Emergency and Critical Care Medicine, Tsukuba Memorial Hospital, Tsukuba, Japan
| | - Kohkichi Andoh
- Division of Anesthesiology, Division of Intensive Care, Division of Emergency and Critical Care, Sendai City Hospital, Sendai, Japan
| | - Yuki Iida
- Department of Physical Therapy, School of Health Sciences, Toyohashi Sozo University, Toyohashi, Japan
| | - Tadashi Ishihara
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Kentaro Ide
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenta Ito
- Department of General Pediatrics, Aichi Children's Health and Medical Center, Obu, Japan
| | - Yusuke Ito
- Department of Infectious Disease, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Yu Inata
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Akemi Utsunomiya
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Unoki
- Department of Acute and Critical Care Nursing, School of Nursing, Sapporo City University, Sapporo, Japan
| | - Koji Endo
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Kyoto, Japan
| | - Akira Ouchi
- College of Nursing, Ibaraki Christian University, Hitachi, Japan
| | - Masayuki Ozaki
- Department of Emergency and Critical Care Medicine, Komaki City Hospital, Komaki, Japan
| | - Satoshi Ono
- Gastroenterological Center, Shinkuki General Hospital, Kuki, Japan
| | | | | | - Yusuke Kawamura
- Department of Rehabilitation, Showa General Hospital, Tokyo, Japan
| | - Daisuke Kudo
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Kubo
- Department of Emergency Medicine and Department of Infectious Diseases, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Kiyoyasu Kurahashi
- Department of Anesthesiology and Intensive Care Medicine, International University of Health and Welfare School of Medicine, Narita, Japan
| | | | - Akira Shimoyama
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Takeshi Suzuki
- Department of Anesthesiology, Tokai University School of Medicine, Isehara, Japan
| | - Shusuke Sekine
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - Motohiro Sekino
- Division of Intensive Care, Nagasaki University Hospital, Nagasaki, Japan
| | - Nozomi Takahashi
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sei Takahashi
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Takahashi
- Department of Cardiology, Steel Memorial Muroran Hospital, Muroran, Japan
| | - Takashi Tagami
- Department of Emergency and Critical Care Medicine, Nippon Medical School Musashi Kosugi Hospital, Kawasaki, Japan
| | - Goro Tajima
- Nagasaki University Hospital Acute and Critical Care Center, Nagasaki, Japan
| | - Hiroomi Tatsumi
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Tani
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Asuka Tsuchiya
- Department of Emergency and Critical Care Medicine, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Yusuke Tsutsumi
- Department of Emergency and Critical Care Medicine, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Takaki Naito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Masaharu Nagae
- Department of Intensive Care Medicine, Kobe University Hospital, Kobe, Japan
| | | | - Kensuke Nakamura
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Japan
| | - Tetsuro Nishimura
- Department of Traumatology and Critical Care Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shin Nunomiya
- Department of Anesthesiology and Intensive Care Medicine, Division of Intensive Care, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Yasuhiro Norisue
- Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Satoru Hashimoto
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Hasegawa
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Junji Hatakeyama
- Department of Emergency and Critical Care Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Naoki Hara
- Department of Pharmacy, Yokohama Rosai Hospital, Yokohama, Japan
| | - Naoki Higashibeppu
- Department of Anesthesiology and Nutrition Support Team, Kobe City Medical Center General Hospital, Kobe City Hospital Organization, Kobe, Japan
| | - Nana Furushima
- Department of Anesthesiology, Kobe University Hospital, Kobe, Japan
| | - Hirotaka Furusono
- Department of Rehabilitation, University of Tsukuba Hospital/Exult Co., Ltd., Tsukuba, Japan
| | - Yujiro Matsuishi
- Doctoral program in Clinical Sciences. Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tasuku Matsuyama
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Minematsu
- Department of Clinical Engineering, Osaka University Hospital, Suita, Japan
| | - Ryoichi Miyashita
- Department of Intensive Care Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuji Miyatake
- Department of Clinical Engineering, Kakogawa Central City Hospital, Kakogawa, Japan
| | - Megumi Moriyasu
- Division of Respiratory Care and Rapid Response System, Intensive Care Center, Kitasato University Hospital, Sagamihara, Japan
| | - Toru Yamada
- Department of Nursing, Toho University Omori Medical Center, Tokyo, Japan
| | - Hiroyuki Yamada
- Department of Primary Care and Emergency Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Ryo Yamamoto
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Yoshida
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuhei Yoshida
- Nursing Department, Osaka General Medical Center, Osaka, Japan
| | - Jumpei Yoshimura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | | | - Hiroshi Yonekura
- Department of Clinical Anesthesiology, Mie University Hospital, Tsu, Japan
| | - Takeshi Wada
- Department of Anesthesiology and Critical Care Medicine, Division of Acute and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Eizo Watanabe
- Department of Emergency and Critical Care Medicine, Eastern Chiba Medical Center, Togane, Japan
| | - Makoto Aoki
- Department of Emergency Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideki Asai
- Department of Emergency and Critical Care Medicine, Nara Medical University, Kashihara, Japan
| | - Takakuni Abe
- Department of Anesthesiology and Intensive Care, Oita University Hospital, Yufu, Japan
| | - Yutaka Igarashi
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Naoya Iguchi
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masami Ishikawa
- Department of Anesthesiology, Emergency and Critical Care Medicine, Kure Kyosai Hospital, Kure, Japan
| | - Go Ishimaru
- Department of General Internal Medicine, Soka Municipal Hospital, Soka, Japan
| | - Shutaro Isokawa
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Ryuta Itakura
- Department of Emergency and Critical Care Medicine, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Hisashi Imahase
- Department of Biomedical Ethics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruki Imura
- Department of Infectious Diseases, Rakuwakai Otowa Hospital, Kyoto, Japan
- Department of Health Informatics, School of Public Health, Kyoto University, Kyoto, Japan
| | | | - Kenji Uehara
- Department of Anesthesiology, National Hospital Organization Iwakuni Clinical Center, Iwakuni, Japan
| | - Noritaka Ushio
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Takeshi Umegaki
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
| | - Yuko Egawa
- Advanced Emergency and Critical Care Center, Saitama Red Cross Hospital, Saitama, Japan
| | - Yuki Enomoto
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshifumi Ohchi
- Department of Anesthesiology and Intensive Care, Oita University Hospital, Yufu, Japan
| | - Takanori Ohno
- Department of Emergency and Critical Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hiroyuki Ohbe
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | | | - Nobunaga Okada
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Okada
- Department of Primary care and Emergency medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromu Okano
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Jun Okamoto
- Department of ER, Hashimoto Municipal Hospital, Hashimoto, Japan
| | - Hiroshi Okuda
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takayuki Ogura
- Tochigi prefectural Emergency and Critical Care Center, Imperial Gift Foundation Saiseikai, Utsunomiya Hospital, Utsunomiya, Japan
| | - Yu Onodera
- Department of Anesthesiology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Yuhta Oyama
- Department of Internal Medicine, Dialysis Center, Kichijoji Asahi Hospital, Tokyo, Japan
| | - Motoshi Kainuma
- Anesthesiology, Emergency Medicine, and Intensive Care Division, Inazawa Municipal Hospital, Inazawa, Japan
| | - Eisuke Kako
- Department of Anesthesiology and Intensive Care Medicine, Nagoya-City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masahiro Kashiura
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Hiromi Kato
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akihiro Kanaya
- Department of Anesthesiology, Sendai Medical Center, Sendai, Japan
| | - Tadashi Kaneko
- Emergency and Critical Care Center, Mie University Hospital, Tsu, Japan
| | - Keita Kanehata
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Ken-Ichi Kano
- Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan
| | - Hiroyuki Kawano
- Department of Gastroenterological Surgery, Onga Hospital, Fukuoka, Japan
| | - Kazuya Kikutani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Kikuchi
- Department of Emergency and Critical Care Medicine, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takahiro Kido
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Sho Kimura
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Hiroyuki Koami
- Center for Translational Injury Research, University of Texas Health Science Center at Houston, Houston, USA
| | - Daisuke Kobashi
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Iwao Saiki
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - Masahito Sakai
- Department of General Medicine Shintakeo Hospital, Takeo, Japan
| | - Ayaka Sakamoto
- Department of Emergency and Critical Care Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Tetsuya Sato
- Tohoku University Hospital Emergency Center, Sendai, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Center for Advanced Joint Function and Reconstructive Spine Surgery, Graduate school of Medicine, Chiba University, Chiba, Japan
| | - Manabu Shimoto
- Department of Primary care and Emergency medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinya Shimoyama
- Department of Pediatric Cardiology and Intensive Care, Gunma Children's Medical Center, Shibukawa, Japan
| | - Tomohisa Shoko
- Department of Emergency and Critical Care Medicine, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Yoh Sugawara
- Department of Anesthesiology, Yokohama City University, Yokohama, Japan
| | - Atsunori Sugita
- Department of Acute Medicine, Division of Emergency and Critical Care Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Suzuki
- Department of Intensive Care, Okayama University Hospital, Okayama, Japan
| | - Yuji Suzuki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomohiro Suhara
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Sonota
- Department of Intensive Care Medicine, Miyagi Children's Hospital, Sendai, Japan
| | - Shuhei Takauji
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kohei Takashima
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Sho Takahashi
- Department of Cardiology, Fukuyama City Hospital, Fukuyama, Japan
| | - Yoko Takahashi
- Department of General Internal Medicine, Koga General Hospital, Koga, Japan
| | - Jun Takeshita
- Department of Anesthesiology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yuuki Tanaka
- Fukuoka Prefectural Psychiatric Center, Dazaifu Hospital, Dazaifu, Japan
| | - Akihito Tampo
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Taichiro Tsunoyama
- Department of Emergency Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kenichi Tetsuhara
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan
| | - Kentaro Tokunaga
- Department of Intensive Care Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshihiro Tomioka
- Department of Anesthesiology and Intensive Care Unit, Todachuo General Hospital, Toda, Japan
| | - Kentaro Tomita
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Tominaga
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Mitsunobu Toyosaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukitoshi Toyoda
- Department of Emergency and Critical Care Medicine, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Nagata
- Intensive Care Unit, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Tadashi Nagato
- Department of Respiratory Medicine, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Yoshimi Nakamura
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yuki Nakamori
- Department of Clinical Anesthesiology, Mie University Hospital, Tsu, Japan
| | - Isao Nahara
- Department of Anesthesiology and Critical Care Medicine, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Hiromu Naraba
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Japan
| | - Chihiro Narita
- Department of Emergency Medicine and Intensive Care Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Norihiro Nishioka
- Department of Preventive Services, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoya Nishimura
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Kei Nishiyama
- Division of Emergency and Critical Care Medicine Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Taiki Haga
- Department of Pediatric Critical Care Medicine, Osaka City General Hospital, Osaka, Japan
| | - Yoshihiro Hagiwara
- Department of Emergency and Critical Care Medicine, Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Katsuhiko Hashimoto
- Research Associate of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Takeshi Hatachi
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Toshiaki Hamasaki
- Department of Emergency Medicine, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
| | - Takuya Hayashi
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Minoru Hayashi
- Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan
| | - Atsuki Hayamizu
- Department of Emergency Medicine, Saitama Saiseikai Kurihashi Hospital, Kuki, Japan
| | - Go Haraguchi
- Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan
| | - Yohei Hirano
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Ryo Fujii
- Department of Emergency Medicine and Critical Care Medicine, Tochigi Prefectural Emergency and Critical Care Center, Imperial Foundation Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Motoki Fujita
- Acute and General Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoyuki Fujimura
- Department of Anesthesiology, St. Mary's Hospital, Our Lady of the Snow Social Medical Corporation, Kurume, Japan
| | - Hiraku Funakoshi
- Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Masahito Horiguchi
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Jun Maki
- Department of Critical Care Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Naohisa Masunaga
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Matsumura
- Department of Intensive Care, Chiba Emergency Medical Center, Chiba, Japan
| | - Takuya Mayumi
- Department of Internal Medicine, Kanazawa Municipal Hospital, Kanazawa, Japan
| | - Keisuke Minami
- Ishikawa Prefectual Central Hospital Emergency and Critical Care Center, Kanazawa, Japan
| | - Yuya Miyazaki
- Department of Emergency and General Internal Medicine, Saiseikai Kawaguchi General Hospital, Kawaguchi, Japan
| | - Kazuyuki Miyamoto
- Department of Emergency and Disaster Medicine, Showa University, Tokyo, Japan
| | - Teppei Murata
- Department of Cardiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Machi Yanai
- Department of Emergency Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takao Yano
- Department of Critical Care and Emergency Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Kohei Yamada
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Naoki Yamada
- Department of Emergency Medicine, University of Fukui Hospital, Fukui, Japan
| | - Tomonori Yamamoto
- Department of Intensive Care Unit, Nara Prefectural General Medical Center, Nara, Japan
| | - Shodai Yoshihiro
- Pharmaceutical Department, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Hiroshi Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
24
|
Singh S, Nimavat N, Kumar Singh A, Ahmad S, Sinha N. Prevalence of Low Level of Vitamin D Among COVID-19 Patients and Associated Risk Factors in India - A Hospital-Based Study. Int J Gen Med 2021; 14:2523-2531. [PMID: 34163220 PMCID: PMC8214516 DOI: 10.2147/ijgm.s309003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background The world is facing the most challenging pandemic in the 21st century. The developed and developing countries are facing the burden equally and no proven treatment options available. Recent studies suggest the plausibility of vitamin D therapy and prophylaxis for COVID-19, in the setting where the deficiency is more prevalent. Though evaluation of vitamin D status is not a routine in India, the present study focuses on the level of Vitamin d among COVID-19 patients. Methods The study was a hospital-based cross-sectional to find the status of vitamin D among COVID-19 patients in a tertiary care hospital, Patna, Bihar, India. The demographic, comorbidity data were taken, and the level of vitamin D was measured by a chemiluminescence-based immunoassay analyzer. The analysis compared the level of deficiency and insufficiency among different groups of COVID-19 patients. The role of DM and HTN as risk factors for mortality was compared. Results Among the total study participants (156), 42.31% were obese and 17.31% were severe as per clinical severity. The total prevalence of vitamin D deficiency was 58.97% and insufficiency was 89.1%. The prevalence was found high among male (61.02%), overweight (65.52%), and severe (62.96%) patients. The severity increases with advanced age (p<0.05) and important risk factors for mortality are DM, HTN, and advanced age. Conclusion The level of vitamin D can be assessed for the prognosis of COIVD-19 patients and help to modify the treatment protocol. Appropriate therapeutic/preventive intervention of vitamin D can alter the course and severity of COVID-19.
Collapse
Affiliation(s)
- Shruti Singh
- Department of Pharmacology, AIIMS, Patna, Bihar, India
| | - Nirav Nimavat
- Department of Community Medicine, SBKS MIRC, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat, India
| | | | - Shamshad Ahmad
- Department of Community and Family Medicine, AIIMS, Patna, Bihar, India
| | - Nishi Sinha
- Department of Community Medicine, SBKS MIRC, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat, India
| |
Collapse
|
25
|
Shen H, Mei Y, Zhang K, Xu X. The Effect of Vitamin D Supplementation on Clinical Outcomes for Critically Ill Patients: A Systemic Review and Meta-Analysis of Randomized Clinical Trials. Front Nutr 2021; 8:664940. [PMID: 34017850 PMCID: PMC8129506 DOI: 10.3389/fnut.2021.664940] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose: Vitamin D deficiency is a common scenario in critically ill patients and has been proven to be associated with poor outcomes. However, the effect of vitamin D supplementation for critically ill patients remains controversial. Thus, we conducted a meta-analysis to evaluate the effect of vitamin D supplementation among critically ill patients. Methods: Electronic databases PubMed, Embase, Scopus, and the Cochrane Library were searched for eligible randomized controlled trials between 2000 and January 2021. The primary outcome was overall mortality, and the secondary ones were the length of intensive care unit stay, the length of hospital stay, as well as the duration of mechanical ventilation. Subgroup analyses were performed to explore the treatment effect by type of admission, route of administration, dose of supplemented vitamin D, and the degree of vitamin D deficiency. Results: A total of 14 studies involving 2,324 patients were finally included. No effect on overall mortality was found between vitamin D supplementation and control group [odds ratio (OR), 0.73; 95% CI, 0.52-1.03; I 2 = 28%]. The vitamin D supplementation reduced the length of intensive care unit stay [mean difference (MD), -2.25; 95% CI, -4.07 to -0.44, I 2 = 71%] and duration of mechanical ventilation (MD, -3.47; 95% CI, -6.37 to -0.57, I 2 = 88%). In the subgroup analyses, the vitamin D supplementation for surgical patients (OR, 0.67; 95% CI, 0.47-0.94; I 2 = 0%) or through parenteral way (OR, 0.42; 95% CI, 0.22-0.82, I 2 = 0%) was associated with reduced mortality. Conclusion: In critically ill patients, the supplementation of vitamin D has no effect on overall mortality compared to placebo but may decrease the length of intensive care unit stay and mechanical ventilation. Further trials are necessary to confirm our findings.
Collapse
Affiliation(s)
- Hejuan Shen
- Department of General Surgery, Lishui People's Hospital, Lishui, China.,Department of General Surgery, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Yijun Mei
- Department of General Surgery, Lishui People's Hospital, Lishui, China.,Department of General Surgery, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Kai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoya Xu
- Department of General Surgery, Lishui People's Hospital, Lishui, China.,Department of General Surgery, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
26
|
A nebulised antitumour necrosis factor receptor-1 domain antibody in patients at risk of postoperative lung injury: A randomised, placebo-controlled pilot study. Eur J Anaesthesiol 2021; 37:1014-1024. [PMID: 32467417 PMCID: PMC7575021 DOI: 10.1097/eja.0000000000001245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tumour necrosis factor receptor 1 (TNFR1) signalling mediates the cell death and inflammatory effects of TNF-α. OBJECTIVE The current clinical trial investigated the effects of a nebulised TNFR1 antagonist (GSK2862277) on signs of lung injury in patients undergoing oesophagectomy. DESIGN Randomised double-blind (sponsor unblind), placebo-controlled, parallel group study. SETTING Eight secondary care centres, the United Kingdom between April 2015 and June 2017. PATIENTS Thirty-three patients undergoing elective transthoracic oesophagectomy. INTERVENTIONS Patients randomly received a single nebulised dose (26 mg) of GSK2862277 (n = 17) or placebo (n = 16), given 1 to 5 h before surgery; 14 and 16, respectively competed the study. MAIN OUTCOME MEASUREMENTS Physiological and biochemical markers of lung injury, pharmacokinetic and safety endpoints were measured. The primary endpoint was the change from baseline in pulmonary vascular permeability index (PVPI) at completion of surgery, measured using single-indicator transpulmonary thermodilution. Adjusted point estimates and 95% credible intervals (analogous to conventional confidence intervals) were constructed for each treatment using Bayesian statistical models. RESULTS The mean change (with 95% credible intervals) from baseline in PVPI on completion of surgery was 0.00 (−0.23, 0.39) in the placebo and 0.00 (−0.24, 0.37) in the GSK2862277 treatment groups. There were no significant treatment-related differences in PaO2/FiO2 or Sequential Organ Failure Assessment score. Levels of free soluble TNFR1, Macrophage Inflammatory Protein-1 alpha and total protein were significantly reduced in the bronchoalveolar lavage fluid of patients treated with GSK2862277 (posterior probability of decrease with GSK2862277 vs. placebo:≥0.977; equivalent to P < 0.05). The frequency of adverse events and serious adverse events were distributed evenly across the two treatment arms. CONCLUSION Pre-operative treatment with a single 26 mg inhaled dose of GSK2862277 did not result in significantly lower postoperative alveolar capillary leak or extra vascular lung water. Unexpectedly small increases in transpulmonary thermodilution-measured PVPI and extra vascular lung water index at completion of surgery suggest less postoperative lung injury than historically reported, which may have also compromised a clear assessment of efficacy in this trial. GSK2862277 was well tolerated, resulted in expected lung exposure and reduced biomarkers of lung permeability and inflammation. TRIAL REGISTRATION clinicaltrials.gov: NCT02221037.
Collapse
|
27
|
Pulmonary levels of biomarkers for inflammation and lung injury in protective versus conventional one-lung ventilation for oesophagectomy: A randomised clinical trial. Eur J Anaesthesiol 2021; 37:1040-1049. [PMID: 31789965 DOI: 10.1097/eja.0000000000001126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND It is uncertain whether protective ventilation reduces ventilation-induced pulmonary inflammation and injury during one-lung ventilation. OBJECTIVE To compare intra-operative protective ventilation with conventional during oesophagectomy with respect to pulmonary levels of biomarkers for inflammation and lung injury. DESIGN Randomised clinical trial. SETTING Tertiary centre for oesophageal diseases. PATIENTS Twenty-nine patients scheduled for one-lung ventilation during oesophagectomy. INTERVENTIONS Low tidal volume (VT) of 6 ml kg predicted body weight (pbw) during two-lung ventilation and 3 ml kgpbw during one-lung ventilation with 5 cmH2O positive end expired pressure versus intermediate VT of 10 ml kgpbw during two-lung ventilation and 5 ml kgpbw body weight during one-lung ventilation with no positive end-expiratory pressure. OUTCOME MEASURES The primary outcome was the change in bronchoalveolar lavage (BAL) levels of preselected biomarkers for inflammation (TNF-α, IL-6 and IL-8) and lung injury (soluble Receptor for Advanced Glycation End-products, surfactant protein-D, Clara Cell protein 16 and Krebs von den Lungen 6), from start to end of ventilation. RESULTS Median [IQR] VT in the protective ventilation group (n = 13) was 6.0 [5.7 to 7.8] and 3.1 [3.0 to 3.6] ml kgpbw during two and one-lung ventilation; VT in the conventional ventilation group (n = 16) was 9.8 [7.0 to 10.1] and 5.2 [5.0 to 5.5] ml kgpbw during two and one-lung ventilation. BAL levels of biomarkers for inflammation increased from start to end of ventilation in both groups; levels of soluble Receptor for Advanced Glycation End-products, Clara Cell protein 16 and Krebs von den Lungen 6 did not change, while levels of surfactant protein-D decreased. Changes in BAL biomarkers levels were not significantly different between the two ventilation strategies. CONCLUSION Intra-operative protective ventilation compared with conventional ventilation does not affect changes in pulmonary levels of biomarkers for inflammation and lung injury in patients undergoing one-lung ventilation for oesophagectomy. TRIAL REGISTRATION The 'Low versus Conventional tidal volumes during one-lung ventilation for minimally invasive oesophagectomy trial' (LoCo) was registered at the Netherlands Trial Register (study identifier NTR 4391).
Collapse
|
28
|
Tanner A, Tiwari D, Allen S. Covid-19 Susceptibility and Severity Might be Modified by Vitamin D Status: Theoretical and Practical Considerations. CURRENT RESPIRATORY MEDICINE REVIEWS 2021. [DOI: 10.2174/1568009620999200924155221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background:
The recently identified SARS-CoV-2 coronavirus has resulted in the
Covid-19 pandemic with severe morbidity and high mortality, particularly in certain sections of the
population. The co-morbidity patterns associated with adverse outcomes are multiple and complex
and there is emerging epidemiological, nutritional and molecular biological evidence that an inadequate
vitamin D status is a contributing factor.
Objective:
The aim was to review the role of vitamin D in immune function with particular reference
to the mechanisms whereby it supports immune efficiency, host protection and immune modulation.
The evidence for the possible benefit of vitamin D supplementation to ameliorate the severity
of respiratory infection by SARS-CoV-2 and other pathogens was also reviewed with a view to
making a recommendation.
Methods:
PubMed, MEDLINE and Google Scholar were searched using the terms: Covid-19, coronavirus,
SARS-CoV-2, vitamin D, calcitriol, deficiency, adaptive immunity, innate immunity, ventilation,
critical care, intensive care, acute respiratory distress syndrome, cytokine storm, respiratory
viruses, respiratory tract infection, respiratory syncytial virus, influenza, supplementation. Papers
for inclusion were selected on the basis of relevance and quality.
Findings:
Vitamin D insufficiency is widespread in many parts of the world. Vitamin D is needed
for normal protective and surveillance immune function and there is evidence that deficiency increases
the risk of some respiratory infections, probably including Covid-19. By binding with dedicated
receptors on immune cells vitamin D influences several strands of immune function, including
the production of anti-microbial peptides and several cytokines that promote an appropriate immune
response. Vitamin D supplementation probably reduces the risk of respiratory infection, with
persuasive biological, epidemiological and observational evidence for possible benefit against
Covid-19.
Conclusion:
Despite the lack of direct evidence specific to Covid-19 a cogent theoretical case can
be made for giving adults from selected groups, and arguably all adults, routine supplementation
with vitamin D to improve immune efficiency and reduce the incidence and severity of respiratory
infections. This could be particularly important in sections of the population with a high prevalence
of vitamin D insufficiency. Targeted research is required to provide firm evidence to guide practice.
Collapse
Affiliation(s)
- Alex Tanner
- The Royal Bournemouth Hospital, Dorset, United Kingdom
| | - Divya Tiwari
- The Royal Bournemouth Hospital, Dorset, United Kingdom
| | - Stephen Allen
- The Royal Bournemouth Hospital, Dorset, United Kingdom
| |
Collapse
|
29
|
Chen C, Li X, Li C, Jin J, Wang D, Zhao Y, Gu Y, Chen M, Zhu S, Liu H, Lv T, Zhang F, Song Y. CD39 + Regulatory T Cells Attenuate Lipopolysaccharide-Induced Acute Lung Injury via Autophagy and the ERK/FOS Pathway. Front Immunol 2021; 11:602605. [PMID: 33488601 PMCID: PMC7819860 DOI: 10.3389/fimmu.2020.602605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by an uncontrollable cytokine storm, which is associated with high mortality due to lack of effective treatment. Regulatory T cells (Tregs) play an indispensable role in maintaining immune homeostasis and CD39 is considered as a functional cell marker of Tregs. In this study, we aimed to evaluate the effect of CD39+ Tregs on acute lung injury (ALI) and investigate the frequency of CD39+ Tregs in ARDS patients. We found that after lipopolysaccharide (LPS) treatment, CD39-/- mice exhibited more severe inflammation and wild type (WT) mice exhibited a decreased frequency of CD39+ Tregs in the peripheral blood. Furthermore, CD39+ Tregs had a protective effect on LPS-induced inflammation in vitro and the adoptive transfer of CD39+ Tregs had a therapeutic effect on ALI in vivo. We further sought to explore the mechanisms that affect CD39 expression on Tregs. LPS-induced inflammation in the lung impaired the immunosuppressive effect of Tregs via the autophagy-mediated downregulation of CD39. In addition, CD39 induced the expression of itself in Tregs via activating the ERK1/2-FOS pathway. Consistent with this finding, the frequency of CD39+ Tregs was also decreased in the peripheral blood of ARDS patients and was positively correlated with disease severity. Our results suggested that the adoptive transfer of CD39+ Tregs may provide a novel method for the clinical prevention and treatment of ARDS.
Collapse
Affiliation(s)
- Cen Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Xinying Li
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chuling Li
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Donghui Wang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Zhao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yanli Gu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Meizi Chen
- Department of General Internal Medicine, The First People’s Hospital of Chenzhou, Chenzhou, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Hongbing Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Hajimohammadebrahim-Ketabforoush M, Shahmohammadi M, Keikhaee M, Eslamian G, Vahdat Shariatpanahi Z. Single high-dose vitamin D3 injection and clinical outcomes in brain tumor resection: A randomized, controlled clinical trial. Clin Nutr ESPEN 2021; 41:153-159. [PMID: 33487259 DOI: 10.1016/j.clnesp.2020.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND & AIMS Vitamin D is known as a neuroprotective hormone with anti-inflammatory and immune-modulatory properties. We evaluated the effect of vitamin D3 injection on vitamin D status and clinical outcomes in patients with low serum levels of 25-hydroxyvitamin D [25(OH)D] undergoing craniotomy for brain tumor resection. METHODS Patients with benign brain tumors and serum 25(OH)D levels ≤20 ng/mL were randomized to two groups with an equal number of subjects. The study group (n = 30) received intramuscular injection of 300,000 IU vitamin D3 prior to surgery. The control group (n = 30) was left without intervention, and both groups underwent routine therapies. RESULTS On day 5 after craniotomy, the serum 25(OH)D levels increased significantly in the study group (P= <0.001). The length of ICU and hospital stay was significantly lower in the study group compared to the control group (P = 0.01 and P = 0.008, respectively). It was true when the age, tumor size, tumor type, Karnofsky Performance Scale (KPS) score, and calcium and albumin levels at baseline entered the logistic regression model (OR = 0.17 (95%CI = 0.04-0.72, P = 0.01), and OR = 0.19 (95%CI = 0.04-0.82, P = 0.02), respectively). With and without the application of logistic regression analysis, there was no significant difference in perioperative complications. CONCLUSIONS Intramuscular injection of 300,000 IU of vitamin D3 in patients with low serum levels of 25(OH)D undergoing craniotomy, could rise safely the serum 25(OH)D level. This intervention, significantly reduced the length of ICU stay and hospitalization. REGISTERED UNDER Clinicaltrials.gov.identifier no: NCT03248544. Date: 8/14/2017.
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Comprehensive Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Keikhaee
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Comprehensive Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Eslamian
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Vahdat Shariatpanahi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Egi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada T, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, et alEgi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada T, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, Yamada H, Yamamoto R, Yoshida T, Yoshida Y, Yoshimura J, Yotsumoto R, Yonekura H, Wada T, Watanabe E, Aoki M, Asai H, Abe T, Igarashi Y, Iguchi N, Ishikawa M, Ishimaru G, Isokawa S, Itakura R, Imahase H, Imura H, Irinoda T, Uehara K, Ushio N, Umegaki T, Egawa Y, Enomoto Y, Ota K, Ohchi Y, Ohno T, Ohbe H, Oka K, Okada N, Okada Y, Okano H, Okamoto J, Okuda H, Ogura T, Onodera Y, Oyama Y, Kainuma M, Kako E, Kashiura M, Kato H, Kanaya A, Kaneko T, Kanehata K, Kano K, Kawano H, Kikutani K, Kikuchi H, Kido T, Kimura S, Koami H, Kobashi D, Saiki I, Sakai M, Sakamoto A, Sato T, Shiga Y, Shimoto M, Shimoyama S, Shoko T, Sugawara Y, Sugita A, Suzuki S, Suzuki Y, Suhara T, Sonota K, Takauji S, Takashima K, Takahashi S, Takahashi Y, Takeshita J, Tanaka Y, Tampo A, Tsunoyama T, Tetsuhara K, Tokunaga K, Tomioka Y, Tomita K, Tominaga N, Toyosaki M, Toyoda Y, Naito H, Nagata I, Nagato T, Nakamura Y, Nakamori Y, Nahara I, Naraba H, Narita C, Nishioka N, Nishimura T, Nishiyama K, Nomura T, Haga T, Hagiwara Y, Hashimoto K, Hatachi T, Hamasaki T, Hayashi T, Hayashi M, Hayamizu A, Haraguchi G, Hirano Y, Fujii R, Fujita M, Fujimura N, Funakoshi H, Horiguchi M, Maki J, Masunaga N, Matsumura Y, Mayumi T, Minami K, Miyazaki Y, Miyamoto K, Murata T, Yanai M, Yano T, Yamada K, Yamada N, Yamamoto T, Yoshihiro S, Tanaka H, Nishida O. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). Acute Med Surg 2021; 8:e659. [PMID: 34484801 PMCID: PMC8390911 DOI: 10.1002/ams2.659] [Show More Authors] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members. As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
Collapse
|
32
|
Emerging cellular and pharmacologic therapies for acute respiratory distress syndrome. Curr Opin Crit Care 2020; 27:20-28. [PMID: 33278121 DOI: 10.1097/mcc.0000000000000784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Advances in our understanding of the pathophysiology and biology of ARDS has identified a number of promising cellular and pharmacological therapies. These emerging therapeutics can modulate the immune response, reduce epithelial injury, target endothelial and vascular dysfunction, have anticoagulant effects, and enhance ARDS resolution. RECENT FINDINGS Mesenchymal stromal cell therapy shows promise in earlier phase clinical testing, whereas a number of issues regarding clinical translation, such as donor and effect variability, are currently being optimized to enable larger scale clinical trials. Furthermore, a number of promising mesenchymal stromal cell therapy clinical studies for COVID-19-induced ARDS are underway. Recent studies provide support for several emerging ARDS pharmacotherapies, including steroids, statins, vitamins, anticoagulants, interferons, and carbon monoxide. The history of unsuccessful clinical trials of potential therapies highlights the challenges to successful translation for this heterogeneous clinical syndrome. Given this, attention has focused on the potential to identify biologically homogenous subtypes within ARDS, to enable us to target more specific therapies, i.e. 'precision medicines'. SUMMARY Mesenchymal stromal cells, steroids, statins, vitamins, anticoagulants, interferons and carbon monoxide have therapeutic promise for ARDS. Identifying ARDS sub-populations most likely to benefit from targeted therapies may facilitate future advances.
Collapse
|
33
|
Ahmad S, Arora S, Khan S, Mohsin M, Mohan A, Manda K, Syed MA. Vitamin D and its therapeutic relevance in pulmonary diseases. J Nutr Biochem 2020; 90:108571. [PMID: 33388351 DOI: 10.1016/j.jnutbio.2020.108571] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/20/2020] [Accepted: 12/24/2020] [Indexed: 01/15/2023]
Abstract
Vitamin D is customarily involved in maintaining bone and calcium homeostasis. However, contemporary studies have identified the implication of vitamin D in several cellular processes including cellular proliferation, differentiation, wound healing, repair and regulatory systems inclusive of host defence, immunity, and inflammation. Multiple studies have indicated corelations between low serum levels of vitamin D, perturbed pulmonary functions and enhanced incidences of inflammatory diseases. Almost all of the pulmonary diseases including acute lung injury, cystic fibrosis, asthma, COPD, Pneumonia and Tuberculosis, all are inflammatory in nature. Studies have displayed strong inter-relations with vitamin D deficiency and progression of lung disorders; however, the underlying mechanism is still unknown. Vitamin D has emerged to possess inhibiting effects on pulmonary inflammation while exaggerating innate immune defenses by strongly influencing functions of inflammatory cells including dendritic cells, monocyte/macrophages, T cells, and B cells along with structural epithelial cells. This review dissects the effects of vitamin D on the inflammatory cells and their therapeutic relevance in pulmonary diseases. Although, the data obtained is very limited and needs further corroboration but presents an exciting area of further research. This is because of its ease of supplementation and development of personalized medicine which could lead us to an effective adjunct and cost-effective method of therapeutic modality for highly fatal pulmonary diseases.
Collapse
Affiliation(s)
- Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India; Institute of Nuclear Medicine and Allied Science, Defence Research and Development Organisation, New Delhi, India
| | - Shweta Arora
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Salman Khan
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohd Mohsin
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Medicine, AIIMS, New Delhi, India
| | - Kailash Manda
- Institute of Nuclear Medicine and Allied Science, Defence Research and Development Organisation, New Delhi, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
34
|
Checa J, Aran JM. Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. Int J Mol Sci 2020; 21:E9317. [PMID: 33297418 PMCID: PMC7731288 DOI: 10.3390/ijms21239317] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.
Collapse
Affiliation(s)
| | - Josep M. Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| |
Collapse
|
35
|
Martucci G, Bonicolini E, Parekh D, Thein OS, Scherkl M, Amrein K. Metabolic and Endocrine Challenges. Semin Respir Crit Care Med 2020; 42:78-97. [PMID: 32882734 DOI: 10.1055/s-0040-1713084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review aims to provide an overview of metabolic and endocrine challenges in the setting of intensive care medicine. These are a group of heterogeneous clinical conditions with a high degree of overlap, as well as nonspecific signs and symptoms. Several diseases involve multiple organ systems, potentially causing catastrophic dysfunction and death. In the majority of cases, endocrine challenges accompany other organ failures or manifest as a complication of prolonged intensive care unit stay and malnutrition. However, when endocrine disorders present as an isolated syndrome, they are a rare and extreme manifestation. As they are uncommon, these can typically challenge both with diagnosis and management. Acute exacerbations may be elicited by triggers such as infections, trauma, surgery, and hemorrhage. In this complex scenario, early diagnosis and prompt treatment require knowledge of the specific endocrine syndrome. Here, we review diabetic coma, hyponatremia, hypercalcemia, thyroid emergencies, pituitary insufficiency, adrenal crisis, and vitamin D deficiency, highlighting diagnostic tools and tricks, and management pathways through defining common clinical presentations.
Collapse
Affiliation(s)
- Gennaro Martucci
- Department of Anesthesia and Intensive Care, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Eleonora Bonicolini
- Department of Anesthesia and Intensive Care, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Dhruv Parekh
- Critical Care, Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Onn Shaun Thein
- Critical Care, Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Mario Scherkl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
36
|
Aygun H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1157-1160. [PMID: 32451597 PMCID: PMC7246956 DOI: 10.1007/s00210-020-01911-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/17/2020] [Indexed: 12/23/2022]
Abstract
Vitamin D is an immunomodulator hormone with an anti-inflammatory and antimicrobial effect with a high safety profile. A lot of COVID-19 infected patients develop acute respiratory distress syndrome (ARDS), which may lead to multiple organ damage. These symptoms are associated with a cytokine storm syndrome. The aim of this letter is to note the 5 crucial points that vitamin D could have protective and therapeutic effects against COVID-19. For that reason, COVID-19 infection-induced multiple organ damage might be prevented by vitamin D.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, 60030, Tokat, Turkey.
| |
Collapse
|
37
|
Zheng S, Yang J, Hu X, Li M, Wang Q, Dancer RCA, Parekh D, Gao-Smith F, Thickett DR, Jin S. Vitamin D attenuates lung injury via stimulating epithelial repair, reducing epithelial cell apoptosis and inhibits TGF-β induced epithelial to mesenchymal transition. Biochem Pharmacol 2020; 177:113955. [PMID: 32251673 DOI: 10.1016/j.bcp.2020.113955] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/01/2020] [Indexed: 12/23/2022]
Abstract
Vitamin D regulates cell proliferation, inhibits cytokines release at sites of inflammation and reduces inflammatory responses. In this study, the aim was to investigate whether exogenous vitamin D attenuates LPS-induced lung injury via modulating epithelial cell proliferation, migration, apoptosis and epithelial mesenchymal transition (EMT). Murine and in vitro primary type II alveolar epithelial cell work were included in this study. In vivo, mice were mildly vitamin D deficient, 0.1, 1.5, 10 mg/kg 1,25(OH)2-vitamin D3 or 25(OH)-vitamin D3 was administrated by means of an intra-gastric injection for 14 days pre-intra-tracheal (IT) LPS, which remarkedly promoted alveolar epithelial type II cells proliferation, inhibited ATII cells apoptosis and inhibited EMT, with the outcome of attenuated LPS-induced lung injury. In vitro, vitamin D stimulated epithelial cell scratch wound repair, reduced primary ATII cells apoptosis as well. Vitamin D promoted primary human ATII cells proliferation through the PI3K/AKT signaling pathway and activation of vitamin D receptor (VDR). Moreover, vitamin D inhibited EMT in response to TGF-β, which was vitamin D receptor dependent. In conclusion, vitamin D attenuates lung injury via stimulating ATII cells proliferation and migration, reducing epithelial cell apoptosis and inhibits TGF-β induced EMT. Together, these results suggest that vitamin D has therapeutic potential for the resolution of ARDS.
Collapse
Affiliation(s)
- ShengXing Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - JingXiang Yang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Xin Hu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Ming Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Qian Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Rachel C A Dancer
- Birmingham Acute Care Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK.
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK.
| | - Fang Gao-Smith
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; Birmingham Acute Care Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK.
| | - David R Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK.
| | - ShengWei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China.
| |
Collapse
|
38
|
Silva PL, Pelosi P, Rocco PRM. Personalized pharmacological therapy for ARDS: a light at the end of the tunnel. Expert Opin Investig Drugs 2019; 29:49-61. [PMID: 31778609 DOI: 10.1080/13543784.2020.1699531] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Pharmacotherapy for the acute respiratory distress syndrome (ARDS) has been tested in preclinical and clinical studies. However, to date, no pharmacological interventions have proven effective. This may be attributed to lack of proper identification of different ARDS phenotypes.Areas covered: We designed inclusive search strings and searched four bibliographic databases (Cochrane Database of Systematic Reviews, PubMed, Web of Science, and clinicaltrials.gov) to identify relevant research. Search results were mainly restricted to papers published from 2009 through 2019. ARDS is a heterogeneous syndrome, and its different phenotypes - defined according to clinical, radiological, and biological parameters - may affect response to therapy. The most promising pharmacological approaches to date have been based on ARDS pathophysiology. They focus on reducing inflammation and pulmonary edema, promoting selective vasodilation, and repairing alveolar epithelial and endothelial cells.Expert opinion: Pharmacotherapeutic approaches targeting ARDS pathophysiology have failed to exert beneficial effects. Personalized medicine targeting the different ARDS phenotypes has emerged as an option to improve survival. Identification of specific ARDS patient phenotypes that respond to specific therapies seems to be the most important challenge for the next decade. Additional research is warranted before personalized medicine approaches can be applied at bedside for ARDS patients.
Collapse
Affiliation(s)
- Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy.,IRCCS for Oncology and Neurosciences, San Martino Policlinico Hospital, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Martucci G, McNally D, Parekh D, Zajic P, Tuzzolino F, Arcadipane A, Christopher KB, Dobnig H, Amrein K. Trying to identify who may benefit most from future vitamin D intervention trials: a post hoc analysis from the VITDAL-ICU study excluding the early deaths. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:200. [PMID: 31164148 PMCID: PMC6549317 DOI: 10.1186/s13054-019-2472-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Background Vitamin D supplementation has shown promise for reducing mortality in the intensive care setting. As a steroid prohormone with pleiotropic effects, there may be a lag between administration and observing clinical benefit. This secondary analysis of the VITdAL-ICU study sought to explore whether the effect size of vitamin D on mortality was different when study participants who died or were discharged early were excluded. Methods The VITdAL-ICU study was a randomized, placebo-controlled trial in critically ill adults who received placebo or 540,000 IU cholecalciferol followed by monthly supplementation. The effect of vitamin D on 28-day mortality was evaluated after exclusion of participants who died or were discharged within 7 days from study drug administration, according to vitamin D concentrations on day 3, using a bivariate analysis adjusted for confounders and in a stepwise multiple analysis. Results Of 475 study participants, 65 died or were discharged within the first 7 days. In the remaining 410 patients, vitamin D supplementation was associated with a reduction in 28-day mortality [OR 0.58 (95% CI 0.35–0.97) p value = 0.035]. The effect on mortality was not significant after adjusting for age, severity scores, female gender, chronic liver and kidney disease, COPD, diagnosis of the tumor, mechanical ventilation, and vasopressors at enrollment (all p > 0.05). In a multiple model, the mortality reduction by vitamin D supplementation did not remain independently significant [OR 0.61 (95% CI 0.35–1.05) p = 0.075]. Vitamin D metabolite response, in the treatment group, demonstrated that survivors at 28 days, had higher levels of 25-hydroxyvitamin D (34.4 vs 25.4 ng/ml, p = 0.010) and 1,25-dihydroxyvitamin D (107.6 vs 70.3 pg/ml, p = 0.049) on day 3. The increase of plasma metabolites after vitamin D oral supplementation, independent of the baseline value, was associated with lower odds of death [OR 0.48 (95% CI 0.27–0.87) p value = 0.016]. Conclusions High-dose vitamin D3 supplementation was associated with a reduction of 28-day mortality in a mixed population of critically ill adults with vitamin D deficiency when excluding patients who died or were discharged within 7 days after study inclusion. However, this survival benefit was not independently confirmed when adjusted for other factors strongly associated with mortality. Electronic supplementary material The online version of this article (10.1186/s13054-019-2472-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gennaro Martucci
- Department of Anesthesia and Intensive Care, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Dayre McNally
- Faculty of Medicine, Division of Critical Care, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| | - Dhruv Parekh
- Critical Care, Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paul Zajic
- Division of General Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Fabio Tuzzolino
- Research Office, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Antonio Arcadipane
- Department of Anesthesia and Intensive Care, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Kenneth B Christopher
- Brigham and Women's Hospital, Harvard Medical School, Renal Division, Boston, MA, USA
| | - Harald Dobnig
- Thyroid Endocrinology Osteoporosis Institute Dobnig, Graz, Austria
| | - Karin Amrein
- Thyroid Endocrinology Osteoporosis Institute Dobnig, Graz, Austria. .,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, A-8036, Graz, Austria.
| |
Collapse
|
40
|
Affiliation(s)
- Salman Ahmad
- Division of Acute Care Surgery, Department of Surgery, University of Missouri Healthcare, Columbia, MO
| |
Collapse
|
41
|
Langlois PL, D'Aragon F, Manzanares W. Vitamin D in the ICU: More sun for critically ill adult patients? Nutrition 2018; 61:173-178. [PMID: 30731421 DOI: 10.1016/j.nut.2018.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 12/24/2022]
Abstract
Critical illness in patients is characterized by systemic inflammation and oxidative stress. Vitamin D has a myriad of biological functions relevant to this population, including immunomodulation by the alteration of cytokine production and nuclear factor loop amplification. Low serum levels have consistently been found in observational studies conducted on critically ill patients, but the causality with mortality and worse outcomes has not been confirmed. The current focus is on interventional trials, whereas the pharmacokinetic profile of vitamin D administration remains sparse and the optimal strategy has not been confirmed. So far, high-dose oral or enteral supplementation is the most studied strategy. The largest randomized controlled trial published so far, the VITdAL-ICU (Effect of High-dose Vitamin D3 on Hospital Length of Stay in Critically Ill Patients with Vitamin D Deficiency) trial, showed no benefits on mortality in its primary analysis. However, secondary analysis suggested improvement in those patients with severe deficiency (i.e., 25-dihydroxyvitaminD <12 ng/mL). Smaller trials investigated intramuscular and intravenous administration and found interesting intermediate biochemical findings, including increased cathelicidins, but were not powered to investigate relevant clinical outcomes in the critically ill. The latest meta-analysis, which was recently published, does not support benefits of vitamin D supplementation in the heterogeneous population of critically ill patients. The European guidelines, published in the last year, suggest supplementing severely deficient patients with levels <12.5 ng/mL within the first week after ICU admission. However, other societies do not support such supplementation in their older recommendations. Large trials are currently recruiting ICU patients and could elucidate potential clinical benefits of vitamin D therapy in the critically ill.
Collapse
Affiliation(s)
- Pascal L Langlois
- Department of Anesthesiology and Reanimation, Faculty of Medicine and Health Sciences, Sherbrooke University Hospital, Sherbrooke, Québec, Canada.
| | - Frédérick D'Aragon
- Department of Anesthesiology and Reanimation, Faculty of Medicine and Health Sciences, Sherbrooke University Hospital, Sherbrooke, Québec, Canada
| | - William Manzanares
- Department of Critical Care, Intensive Care Unit, University Hospital, Faculty of Medicine, UDELAR, Montevideo, Uruguay
| |
Collapse
|