1
|
Schranc Á, Südy R, Daniels J, Fontao F, Peták F, Habre W, Albu G. Effects of Variable Ventilation on Gas Exchange in an Experimental Model of Capnoperitoneum: A Randomized Crossover Study. Anesth Analg 2025:00000539-990000000-01110. [PMID: 39841605 DOI: 10.1213/ane.0000000000007418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
BACKGROUND The rapid advancement of minimally invasive surgical techniques has made laparoscopy a preferred alternative because it reduces postoperative complications. However, inflating the peritoneum with CO2 causes a cranial shift of the diaphragm decreasing lung volume and impairing gas exchange. Additionally, CO2 absorption increases blood CO2 levels, further complicating mechanical ventilation when the lung function is already compromised. Standard interventions such as lung recruitment maneuvers or increasing positive end-expiratory pressures can counteract these effects but also increase lung parenchymal strain and intrathoracic pressure, negatively impacting cardiac output. The application of variability in tidal volume and respiratory rate during mechanical ventilation to mimic natural breathing has shown benefits in various respiratory conditions. Therefore, we aimed to evaluate the short-term benefits of variable ventilation (VV) on gas exchange, respiratory mechanics, and hemodynamics during and after capnoperitoneum, compared to conventional pressure-controlled ventilation (PCV). METHODS Eleven anaesthetized rabbits were randomly assigned to PCV or VV. Oxygenation index (Pao2/FiO2), arterial partial pressure of carbon dioxide (Paco2), and respiratory mechanical parameters were assessed after a 15-minute-long ventilation period before, during, and after capnoperitoneum. According to a crossover design, after measurements at the 3 different stages, the ventilation mode was changed, and the entire sequence was repeated. RESULTS Capnoperitoneum compromised respiratory mechanics, decreased oxygenation, and caused CO2-retention compared to baseline measurements under both ventilation modalities (P < .05, for all). Application of VV resulted in lower Pao2/FiO2 (405. 5 ± 34.1 (mean ± standard deviation [SD]) vs 370. 5 ± 44.9, P < .001) and higher Paco2 (48. 4 ± 5.1 vs 52. 8 ± 6.0 mm Hg, P = .009) values during capnoperitoneum compared to PCV. After abdominal deflation and a lung recruitment maneuver, VV proved more beneficial for CO2 removal than PCV (41. 0 ± 2.3 vs 44. 6 ± 4.3mmHg, P = .027). No significant difference was observed in the respiratory mechanical or hemodynamic parameters between the ventilation modalities under the same conditions. CONCLUSIONS The detrimental effects of capnoperitoneum on gas exchange were more pronounced with VV. However, after the release of capnoperitoneum, VV significantly improved CO2 clearance. Therefore, VV could possibly be considered as an alternative ventilation modality to restore physiological gas exchange after, but not during, capnoperitoneum.
Collapse
Affiliation(s)
- Álmos Schranc
- From the Unit for Anaesthesiological Investigations, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Roberta Südy
- From the Unit for Anaesthesiological Investigations, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - John Daniels
- From the Unit for Anaesthesiological Investigations, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Fabienne Fontao
- From the Unit for Anaesthesiological Investigations, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Ferenc Peták
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Walid Habre
- From the Unit for Anaesthesiological Investigations, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
- Pediatric Anesthesia Unit, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Gergely Albu
- From the Unit for Anaesthesiological Investigations, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
- Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Dos Santos Rocha A, Fodor GH, Kassai M, Degrugilliers L, Bayat S, Petak F, Habre W. Physiologically variable ventilation reduces regional lung inflammation in a pediatric model of acute respiratory distress syndrome. Respir Res 2020; 21:288. [PMID: 33129315 PMCID: PMC7602830 DOI: 10.1186/s12931-020-01559-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Benefits of variable mechanical ventilation based on the physiological breathing pattern have been observed both in healthy and injured lungs. These benefits have not been characterized in pediatric models and the effect of this ventilation mode on regional distribution of lung inflammation also remains controversial. Here, we compare structural, molecular and functional outcomes reflecting regional inflammation between PVV and conventional pressure-controlled ventilation (PCV) in a pediatric model of healthy lungs and acute respiratory distress syndrome (ARDS). METHODS New-Zealand White rabbit pups (n = 36, 670 ± 20 g [half-width 95% confidence interval]), with healthy lungs or after induction of ARDS, were randomized to five hours of mechanical ventilation with PCV or PVV. Regional lung aeration, inflammation and perfusion were assessed using x-ray computed tomography, positron-emission tomography and single-photon emission computed tomography, respectively. Ventilation parameters, blood gases and respiratory tissue elastance were recorded hourly. RESULTS Mechanical ventilation worsened respiratory elastance in healthy and ARDS animals ventilated with PCV (11 ± 8%, 6 ± 3%, p < 0.04), however, this trend was improved by PVV (1 ± 4%, - 6 ± 2%). Animals receiving PVV presented reduced inflammation as assessed by lung normalized [18F]fluorodeoxyglucose uptake in healthy (1.49 ± 0.62 standardized uptake value, SUV) and ARDS animals (1.86 ± 0.47 SUV) compared to PCV (2.33 ± 0.775 and 2.28 ± 0.3 SUV, respectively, p < 0.05), particularly in the well and poorly aerated lung zones. No benefit of PVV could be detected on regional blood perfusion or blood gas parameters. CONCLUSIONS Variable ventilation based on a physiological respiratory pattern, compared to conventional pressure-controlled ventilation, reduced global and regional inflammation in both healthy and injured lungs of juvenile rabbits.
Collapse
Affiliation(s)
- Andre Dos Santos Rocha
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland.
| | - Gergely H Fodor
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland.,Department of Medical Physics and Informatics, University of Szeged, 9 Korányi fasor, Szeged, 6720, Hungary
| | - Miklos Kassai
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland
| | - Loic Degrugilliers
- Department of Pediatric Intensive Care, Amiens University Hospital, Amiens, France
| | - Sam Bayat
- Inserm UA7 STROBE Laboratory &, Department of Clinical Physiology, Sleep and Exercise, Grenoble University Hospital, Boulevard de La Chantourne, 38700, Grenoble, La Tronche, France
| | - Ferenc Petak
- Department of Medical Physics and Informatics, University of Szeged, 9 Korányi fasor, Szeged, 6720, Hungary
| | - Walid Habre
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland
| |
Collapse
|
3
|
Fodor GH, Bayat S, Albu G, Lin N, Baudat A, Danis J, Peták F, Habre W. Variable Ventilation Is Equally Effective as Conventional Pressure Control Ventilation for Optimizing Lung Function in a Rabbit Model of ARDS. Front Physiol 2019; 10:803. [PMID: 31297064 PMCID: PMC6607923 DOI: 10.3389/fphys.2019.00803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/06/2019] [Indexed: 11/24/2022] Open
Abstract
Background Introducing mathematically derived variability (MVV) into the otherwise monotonous conventional mechanical ventilation has been suggested to improve lung recruitment and gas exchange. Although the application of a ventilation pattern based on variations in physiological breathing (PVV) is beneficial for healthy lungs, its value in the presence of acute respiratory distress syndrome (ARDS) has not been characterized. We therefore aimed at comparing conventional pressure-controlled ventilation with (PCS) or without regular sighs (PCV) to MVV and PVV at two levels of positive end-expiratory pressure (PEEP) in a model of severe ARDS. Methods Anesthetised rabbits (n = 54) were mechanically ventilated and severe ARDS (PaO2/FiO2 ≤ 150 mmHg) was induced by combining whole lung lavage, i.v. endotoxin and injurious ventilation. Rabbits were then randomly assigned to be ventilated with PVV, MVV, PCV, or PCS for 5 h while maintaining either 6 or 9 cmH2O PEEP. Ventilation parameters, blood gas indices and respiratory mechanics (tissue damping, G, and elastance, H) were recorded hourly. Serum cytokine levels were assessed with ELISA and lung histology was analyzed. Results Although no progression of lung injury was observed after 5 h of ventilation at PEEP 6 cmH2O with PVV and PCV, values for G (58.8 ± 71.1[half-width of 95% CI]% and 40.8 ± 39.0%, respectively), H (54.5 ± 57.2%, 50.7 ± 28.3%), partial pressure of carbon-dioxide (PaCO2, 43.9 ± 23.8%, 46.2 ± 35.4%) and pH (−4.6 ± 3.3%, −4.6 ± 2.2%) worsened with PCS and MVV. Regardless of ventilation pattern, application of a higher PEEP improved lung function and precluded progression of lung injury and inflammation. Histology lung injury scores were elevated in all groups with no difference between groups at either PEEP level. Conclusion At moderate PEEP, variable ventilation based on a pre-recorded physiological breathing pattern protected against progression of lung injury equally to the conventional pressure-controlled mode, whereas mathematical variability or application of regular sighs caused worsening in lung mechanics. This outcome may be related to the excessive increases in peak inspiratory pressure with the latter ventilation modes. However, a greater benefit on respiratory mechanics and gas exchange could be obtained by elevating PEEP, compared to the ventilation mode in severe ARDS.
Collapse
Affiliation(s)
- Gergely H Fodor
- Unit for Anesthesiological Investigations, Geneva University Hospitals - University of Geneva, Geneva, Switzerland
| | - Sam Bayat
- Unit for Anesthesiological Investigations, Geneva University Hospitals - University of Geneva, Geneva, Switzerland.,Inserm UA7 STROBE Laboratory, Department of Clinical Physiology, Sleep and Exercise, Grenoble University Hospital, Grenoble, France
| | - Gergely Albu
- Unit for Anesthesiological Investigations, Geneva University Hospitals - University of Geneva, Geneva, Switzerland
| | - Na Lin
- Unit for Anesthesiological Investigations, Geneva University Hospitals - University of Geneva, Geneva, Switzerland.,Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Aurélie Baudat
- Unit for Anesthesiological Investigations, Geneva University Hospitals - University of Geneva, Geneva, Switzerland
| | - Judit Danis
- MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - Ferenc Peták
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Walid Habre
- Unit for Anesthesiological Investigations, Geneva University Hospitals - University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Walesa M, Bayat S, Albu G, Baudat A, Petak F, Habre W. Comparison between neurally-assisted, controlled, and physiologically variable ventilation in healthy rabbits. Br J Anaesth 2018; 121:918-927. [DOI: 10.1016/j.bja.2018.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/08/2018] [Accepted: 01/25/2018] [Indexed: 10/17/2022] Open
|
5
|
Camilo LM, Ávila MB, Cruz LFS, Ribeiro GCM, Spieth PM, Reske AA, Amato M, Giannella-Neto A, Zin WA, Carvalho AR. Positive end-expiratory pressure and variable ventilation in lung-healthy rats under general anesthesia. PLoS One 2014; 9:e110817. [PMID: 25383882 PMCID: PMC4226529 DOI: 10.1371/journal.pone.0110817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/13/2014] [Indexed: 11/25/2022] Open
Abstract
Objectives Variable ventilation (VV) seems to improve respiratory function in acute lung injury and may be combined with positive end-expiratory pressure (PEEP) in order to protect the lungs even in healthy subjects. We hypothesized that VV in combination with moderate levels of PEEP reduce the deterioration of pulmonary function related to general anesthesia. Hence, we aimed at evaluating the alveolar stability and lung protection of the combination of VV at different PEEP levels. Design Randomized experimental study. Setting Animal research facility. Subjects Forty-nine male Wistar rats (200–270 g). Interventions Animals were ventilated during 2 hours with protective low tidal volume (VT) in volume control ventilation (VCV) or VV and PEEP adjusted at the level of minimum respiratory system elastance (Ers), obtained during a decremental PEEP trial subsequent to a recruitment maneuver, and 2 cmH2O above or below of this level. Measurements and Main Results Ers, gas exchange and hemodynamic variables were measured. Cytokines were determined in lung homogenate and plasma samples and left lung was used for histologic analysis and diffuse alveolar damage scoring. A progressive time-dependent increase in Ers was observed independent on ventilatory mode or PEEP level. Despite of that, the rate of increase of Ers and lung tissue IL-1 beta concentration were significantly lower in VV than in VCV at the level of the PEEP of minimum Ers. A significant increase in lung tissue cytokines (IL-6, IL-1 beta, CINC-1 and TNF-alpha) as well as a ventral to dorsal and cranial to caudal reduction in aeration was observed in all ventilated rats with no significant differences among groups. Conclusions VV combined with PEEP adjusted at the level of the PEEP of minimal Ers seemed to better prevent anesthesia-induced atelectasis and might improve lung protection throughout general anesthesia.
Collapse
Affiliation(s)
- Luciana M. Camilo
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana B. Ávila
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Felipe S. Cruz
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel C. M. Ribeiro
- Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luis Coimbra Institute of Post-Graduation and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Peter M. Spieth
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Germany
| | - Andreas A. Reske
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany
| | - Marcelo Amato
- Cardio-Pulmonary Department, Pulmonary Division, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio Giannella-Neto
- Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luis Coimbra Institute of Post-Graduation and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter A. Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alysson R. Carvalho
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luis Coimbra Institute of Post-Graduation and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
6
|
Schmidt M, Cecchini J, Kindler F, Similowski T, Demoule A. Variabilité ventilatoire et assistance ventilatoire en réanimation. MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-014-0843-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|