1
|
Criner GJ, Gayen S, Zantah M, Dominguez Castillo E, Naranjo M, Lashari B, Pourshahid S, Gangemi A. Clinical review of non-invasive ventilation. Eur Respir J 2024; 64:2400396. [PMID: 39227076 PMCID: PMC11540995 DOI: 10.1183/13993003.00396-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Non-invasive ventilation (NIV) is the mainstay to treat patients who need augmentation of ventilation for acute and chronic forms of respiratory failure. The last several decades have witnessed an extension of the indications for NIV to a variety of acute and chronic lung diseases. Evolving advancements in technology and personalised approaches to patient care make it feasible to prioritise patient-centred care models that deliver home-based management using telemonitoring and telemedicine systems support. These trends may improve patient outcomes, reduce healthcare costs and improve the quality of life for patients who suffer from chronic diseases that precipitate respiratory failure.
Collapse
Affiliation(s)
- Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shameek Gayen
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Massa Zantah
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Eduardo Dominguez Castillo
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Mario Naranjo
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Bilal Lashari
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Seyedmohammad Pourshahid
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Andrew Gangemi
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Westhoff M, Neumann P, Geiseler J, Bickenbach J, Arzt M, Bachmann M, Braune S, Delis S, Dellweg D, Dreher M, Dubb R, Fuchs H, Hämäläinen N, Heppner H, Kluge S, Kochanek M, Lepper PM, Meyer FJ, Neumann B, Putensen C, Schimandl D, Schönhofer B, Schreiter D, Walterspacher S, Windisch W. [Non-invasive Mechanical Ventilation in Acute Respiratory Failure. Clinical Practice Guidelines - on behalf of the German Society of Pneumology and Ventilatory Medicine]. Pneumologie 2024; 78:453-514. [PMID: 37832578 DOI: 10.1055/a-2148-3323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
The guideline update outlines the advantages as well as the limitations of NIV in the treatment of acute respiratory failure in daily clinical practice and in different indications.Non-invasive ventilation (NIV) has a high value in therapy of hypercapnic acute respiratory failure, as it significantly reduces the length of ICU stay and hospitalization as well as mortality.Patients with cardiopulmonary edema and acute respiratory failure should be treated with continuous positive airway pressure (CPAP) and oxygen in addition to necessary cardiological interventions. This should be done already prehospital and in the emergency department.In case of other forms of acute hypoxaemic respiratory failure with only mild or moderately disturbed gas exchange (PaO2/FiO2 > 150 mmHg) there is no significant advantage or disadvantage compared to high flow nasal oxygen (HFNO). In severe forms of ARDS NIV is associated with high rates of treatment failure and mortality, especially in cases with NIV-failure and delayed intubation.NIV should be used for preoxygenation before intubation. In patients at risk, NIV is recommended to reduce extubation failure. In the weaning process from invasive ventilation NIV essentially reduces the risk of reintubation in hypercapnic patients. NIV is regarded useful within palliative care for reduction of dyspnea and improving quality of life, but here in concurrence to HFNO, which is regarded as more comfortable. Meanwhile NIV is also recommended in prehospital setting, especially in hypercapnic respiratory failure and pulmonary edema.With appropriate monitoring in an intensive care unit NIV can also be successfully applied in pediatric patients with acute respiratory insufficiency.
Collapse
Affiliation(s)
- Michael Westhoff
- Klinik für Pneumologie, Lungenklinik Hemer - Zentrum für Pneumologie und Thoraxchirurgie, Hemer
| | - Peter Neumann
- Abteilung für Klinische Anästhesiologie und Operative Intensivmedizin, Evangelisches Krankenhaus Göttingen-Weende gGmbH
| | - Jens Geiseler
- Medizinische Klinik IV - Pneumologie, Beatmungs- und Schlafmedizin, Paracelsus-Klinik Marl, Marl
| | - Johannes Bickenbach
- Klinik für Operative Intensivmedizin und Intermediate Care, Uniklinik RWTH Aachen, Aachen
| | - Michael Arzt
- Schlafmedizinisches Zentrum der Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Regensburg
| | - Martin Bachmann
- Klinik für Atemwegs-, Lungen- und Thoraxmedizin, Beatmungszentrum Hamburg-Harburg, Asklepios Klinikum Harburg, Hamburg
| | - Stephan Braune
- IV. Medizinische Klinik: Akut-, Notfall- und Intensivmedizin, St. Franziskus-Hospital, Münster
| | - Sandra Delis
- Klinik für Pneumologie, Palliativmedizin und Geriatrie, Helios Klinikum Emil von Behring GmbH, Berlin
| | - Dominic Dellweg
- Klinik für Innere Medizin, Pneumologie und Gastroenterologie, Pius-Hospital Oldenburg, Universitätsmedizin Oldenburg
| | - Michael Dreher
- Klinik für Pneumologie und Internistische Intensivmedizin, Uniklinik RWTH Aachen
| | - Rolf Dubb
- Akademie der Kreiskliniken Reutlingen GmbH, Reutlingen
| | - Hans Fuchs
- Zentrum für Kinder- und Jugendmedizin, Neonatologie und pädiatrische Intensivmedizin, Universitätsklinikum Freiburg
| | | | - Hans Heppner
- Klinik für Geriatrie und Geriatrische Tagesklinik Klinikum Bayreuth, Medizincampus Oberfranken Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth
| | - Stefan Kluge
- Klinik für Intensivmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Matthias Kochanek
- Klinik I für Innere Medizin, Hämatologie und Onkologie, Universitätsklinikum Köln, Köln
| | - Philipp M Lepper
- Klinik für Innere Medizin V - Pneumologie, Allergologie und Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg
| | - F Joachim Meyer
- Lungenzentrum München - Bogenhausen-Harlaching) München Klinik gGmbH, München
| | - Bernhard Neumann
- Klinik für Neurologie, Donauisar Klinikum Deggendorf, und Klinik für Neurologie der Universitätsklinik Regensburg am BKH Regensburg, Regensburg
| | - Christian Putensen
- Klinik und Poliklinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, Bonn
| | - Dorit Schimandl
- Klinik für Pneumologie, Beatmungszentrum, Zentralklinik Bad Berka GmbH, Bad Berka
| | - Bernd Schönhofer
- Klinik für Innere Medizin, Pneumologie und Intensivmedizin, Evangelisches Klinikum Bethel, Universitätsklinikum Ost Westphalen-Lippe, Bielefeld
| | | | - Stephan Walterspacher
- Medizinische Klinik - Sektion Pneumologie, Klinikum Konstanz und Lehrstuhl für Pneumologie, Universität Witten-Herdecke, Witten
| | - Wolfram Windisch
- Lungenklinik, Kliniken der Stadt Köln gGmbH, Lehrstuhl für Pneumologie Universität Witten/Herdecke, Köln
| |
Collapse
|
3
|
Bureau C, Van Hollebeke M, Dres M. Managing respiratory muscle weakness during weaning from invasive ventilation. Eur Respir Rev 2023; 32:220205. [PMID: 37019456 PMCID: PMC10074167 DOI: 10.1183/16000617.0205-2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 04/07/2023] Open
Abstract
Weaning is a critical stage of an intensive care unit (ICU) stay, in which the respiratory muscles play a major role. Weakness of the respiratory muscles, which is associated with significant morbidity in the ICU, is not limited to atrophy and subsequent dysfunction of the diaphragm; the extradiaphragmatic inspiratory and expiratory muscles also play important parts. In addition to the well-established deleterious effect of mechanical ventilation on the respiratory muscles, other risk factors such as sepsis may be involved. Weakness of the respiratory muscles can be suspected visually in a patient with paradoxical movement of the abdominal compartment. Measurement of maximal inspiratory pressure is the simplest way to assess respiratory muscle function, but it does not specifically take the diaphragm into account. A cut-off value of -30 cmH2O could identify patients at risk for prolonged ventilatory weaning; however, ultrasound may be better for assessing respiratory muscle function in the ICU. Although diaphragm dysfunction has been associated with weaning failure, this diagnosis should not discourage clinicians from performing spontaneous breathing trials and considering extubation. Recent therapeutic developments aimed at preserving or restoring respiratory muscle function are promising.
Collapse
Affiliation(s)
- Côme Bureau
- Sorbonne Université, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Médecine Intensive et Réanimation, Département R3S, Paris, France
| | - Marine Van Hollebeke
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Martin Dres
- Sorbonne Université, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Médecine Intensive et Réanimation, Département R3S, Paris, France
| |
Collapse
|
4
|
Longhini F, Bruni A, Garofalo E, Tutino S, Vetrugno L, Navalesi P, De Robertis E, Cammarota G. Monitoring the patient-ventilator asynchrony during non-invasive ventilation. Front Med (Lausanne) 2023; 9:1119924. [PMID: 36743668 PMCID: PMC9893016 DOI: 10.3389/fmed.2022.1119924] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Patient-ventilator asynchrony is a major issue during non-invasive ventilation and may lead to discomfort and treatment failure. Therefore, the identification and prompt management of asynchronies are of paramount importance during non-invasive ventilation (NIV), in both pediatric and adult populations. In this review, we first define the different forms of asynchronies, their classification, and the method of quantification. We, therefore, describe the technique to properly detect patient-ventilator asynchronies during NIV in pediatric and adult patients with acute respiratory failure, separately. Then, we describe the actions that can be implemented in an attempt to reduce the occurrence of asynchronies, including the use of non-conventional modes of ventilation. In the end, we analyzed what the literature reports on the impact of asynchronies on the clinical outcomes of infants, children, and adults.
Collapse
Affiliation(s)
- Federico Longhini
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy,*Correspondence: Federico Longhini,
| | - Andrea Bruni
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Eugenio Garofalo
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Simona Tutino
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Luigi Vetrugno
- Department of Anesthesia and Intensive Care Unit, SS Annunziata Hospital, Chieti, Italy,Department of Medical, Oral and Biotechnological Sciences, “Gabriele D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Paolo Navalesi
- Anaesthesia and Intensive Care, Padua Hospital, Department of Medicine, University of Padua, Padua, Italy
| | | | | |
Collapse
|
5
|
Bureau C, Decavèle M, Campion S, Nierat MC, Mayaux J, Morawiec E, Raux M, Similowski T, Demoule A. Proportional assist ventilation relieves clinically significant dyspnea in critically ill ventilated patients. Ann Intensive Care 2021; 11:177. [PMID: 34919178 PMCID: PMC8683518 DOI: 10.1186/s13613-021-00958-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Dyspnea is common and often severe symptom in mechanically ventilated patients. Proportional assist ventilation (PAV) is an assist ventilatory mode that adjusts the level of assistance to the activity of respiratory muscles. We hypothesized that PAV reduce dyspnea compared to pressure support ventilation (PSV). PATIENTS AND METHODS Mechanically ventilated patients with clinically significant dyspnea were included. Dyspnea intensity was assessed by the Dyspnea-Visual Analog Scale (D-VAS) and the Intensive Care-Respiratory Distress Observation Scale (IC-RDOS) at inclusion (PSV-Baseline), after personalization of ventilator settings in order to minimize dyspnea (PSV-Personalization), and after switch to PAV. Respiratory drive was assessed by record of electromyographic activity of inspiratory muscles, the proportion of asynchrony was analyzed. RESULTS Thirty-four patients were included (73% males, median age of 66 [57-77] years). The D-VAS score was lower with PSV-Personalization (37 mm [20‒55]) and PAV (31 mm [14‒45]) than with PSV-Baseline (62 mm [28‒76]) (p < 0.05). The IC-RDOS score was lower with PAV (4.2 [2.4‒4.7]) and PSV-Personalization (4.4 [2.4‒4.9]) than with PSV-Baseline (4.8 [4.1‒6.5]) (p < 0.05). The electromyographic activity of parasternal intercostal muscles was lower with PAV and PSV-Personalization than with PSV-Baseline. The asynchrony index was lower with PAV (0% [0‒0.55]) than with PSV-Baseline and PSV-Personalization (0.68% [0‒2.28] and 0.60% [0.31‒1.41], respectively) (p < 0.05). CONCLUSION In mechanically ventilated patients exhibiting clinically significant dyspnea with PSV, personalization of PSV settings and PAV results in not different decreased dyspnea and activity of muscles to a similar degree, even though PAV was able to reduce asynchrony more effectively.
Collapse
Affiliation(s)
- Côme Bureau
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France. .,AP-HP 6 Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, 47-83 bld de l'hôpital, 75651, Paris cedex 13, France.
| | - Maxens Decavèle
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France.,AP-HP 6 Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, 47-83 bld de l'hôpital, 75651, Paris cedex 13, France
| | - Sébastien Campion
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Département d'Anesthésie Réanimation, 75013, Paris, France
| | - Marie-Cécile Nierat
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France
| | - Julien Mayaux
- AP-HP 6 Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, 47-83 bld de l'hôpital, 75651, Paris cedex 13, France
| | - Elise Morawiec
- AP-HP 6 Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, 47-83 bld de l'hôpital, 75651, Paris cedex 13, France
| | - Mathieu Raux
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Département d'Anesthésie Réanimation, 75013, Paris, France
| | - Thomas Similowski
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France.,AP-HP 6 Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, 47-83 bld de l'hôpital, 75651, Paris cedex 13, France
| | - Alexandre Demoule
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France.,AP-HP 6 Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, 47-83 bld de l'hôpital, 75651, Paris cedex 13, France
| |
Collapse
|
6
|
How to ventilate obstructive and asthmatic patients. Intensive Care Med 2020; 46:2436-2449. [PMID: 33169215 PMCID: PMC7652057 DOI: 10.1007/s00134-020-06291-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/12/2020] [Indexed: 11/11/2022]
Abstract
Exacerbations are part of the natural history of chronic obstructive pulmonary disease and asthma. Severe exacerbations can cause acute respiratory failure, which may ultimately require mechanical ventilation. This review summarizes practical ventilator strategies for the management of patients with obstructive airway disease. Such strategies include non-invasive mechanical ventilation to prevent intubation, invasive mechanical ventilation, from the time of intubation to weaning, and strategies intended to prevent post-extubation acute respiratory failure. The role of tracheostomy, the long-term prognosis, and potential future adjunctive strategies are also discussed. Finally, the physiological background that underlies these strategies is detailed.
Collapse
|
7
|
Ventre KM. The inscrutable signatures of patient-ventilator asynchrony: all the light we cannot see. Minerva Anestesiol 2020; 87:278-282. [PMID: 33054023 DOI: 10.23736/s0375-9393.20.15087-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kathleen M Ventre
- Department of Pediatrics, Critical Care Medicine, Albany Medical Center, Albany, NY, USA -
| |
Collapse
|
8
|
Noninvasive Neurally Adjusted Ventilator Assist Ventilation in the Postoperative Period Produces Better Patient-Ventilator Synchrony but Not Comfort. Pulm Med 2020; 2020:4705042. [PMID: 32655950 PMCID: PMC7327603 DOI: 10.1155/2020/4705042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/26/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
Background Noninvasive neurally adjusted ventilatory assist (NAVA) has been shown to improve patient-ventilator interaction in many settings. There is still scarce data with regard to postoperative patients indicated for noninvasive ventilation (NIV) which this study elates. The purpose of this trial was to evaluate postoperative patients for synchrony and comfort in noninvasive pressure support ventilation (NIV-PSV) vs. NIV-NAVA. Methods Twenty-two subjects received either NIV-NAVA or NIV-PSV in an object-blind, prospective, randomized, crossover fashion (observational trial). We evaluated blood gases and ventilator tracings throughout as well as comfort of ventilation at the end of each ventilation phase. Results There was an effective reduction in ventilator delays (p < 0.001) and negative pressure duration in NIV-NAVA as compared to NIV-PSV (p < 0.001). Although we used optimized settings in NIV-PSV, explaining the overall low incidence of asynchrony, NIV-NAVA led to reductions in the NeuroSync-index (p < 0.001) and all types of asynchrony except for double triggering that was significantly more frequent in NIV-NAVA vs. NIV-PSV (p = 0.02); ineffective efforts were reduced to zero by use of NIV-NAVA. In our population of previously lung-healthy subjects, we did not find differences in blood gases and patient comfort between the two modes. Conclusion In the postoperative setting, NIV-NAVA is well suitable for use and effective in reducing asynchronies as well as a surrogate for work of breathing. Although increased synchrony was not transferred into an increased comfort, there was an advantage with regard to patient-ventilator interaction. The trial was registered at the German clinical Trials Register (DRKS no.: DRKS00005408).
Collapse
|
9
|
Effect of Neurally Adjusted Ventilatory Assist on Patient-Ventilator Interaction in Mechanically Ventilated Adults: A Systematic Review and Meta-Analysis. Crit Care Med 2020; 47:e602-e609. [PMID: 30882481 DOI: 10.1097/ccm.0000000000003719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Patient-ventilator asynchrony is common among critically ill patients undergoing mechanical ventilation and has been associated with adverse outcomes. Neurally adjusted ventilatory assist is a ventilatory mode that may lead to improved patient-ventilator synchrony. We conducted a systematic review to determine the impact of neurally adjusted ventilatory assist on patient-ventilator asynchrony, other physiologic variables, and clinical outcomes in adult patients undergoing invasive mechanical ventilation in comparison with conventional pneumatically triggered ventilatory modes. DATA SOURCES We searched Medline, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central, CINAHL, Scopus, Web of Science, conference abstracts, and ClinicalTrials.gov until July 2018. STUDY SELECTION Two authors independently screened titles and abstracts for randomized and nonrandomized controlled trials (including crossover design) comparing the occurrence of patient-ventilator asynchrony between neurally adjusted ventilatory assist and pressure support ventilation during mechanical ventilation in critically ill adults. The asynchrony index and severe asynchrony (i.e., asynchrony index > 10%) were the primary outcomes. DATA EXTRACTION Two authors independently extracted study characteristics and outcomes and assessed risk of bias of included studies. DATA SYNTHESIS Of 11,139 unique citations, 26 studies (522 patients) met the inclusion criteria. Sixteen trials were included in the meta-analysis using random effects models through the generic inverse variance method. In several different clinical scenarios, the use of neurally adjusted ventilatory assist was associated with significantly reduced asynchrony index (mean difference, -8.12; 95% CI, -11.61 to -4.63; very low quality of evidence) and severe asynchrony (odds ratio, 0.42; 95% CI, 0.23-0.76; moderate quality of evidence) as compared with pressure support ventilation. Furthermore, other measurements of asynchrony were consistently improved during neurally adjusted ventilatory assist. CONCLUSIONS Neurally adjusted ventilatory assist improves patient-ventilator synchrony; however, its effects on clinical outcomes remain uncertain. Randomized controlled trials are needed to determine whether the physiologic efficiency of neurally adjusted ventilatory assist affects patient-important outcomes in critically ill adults.
Collapse
|
10
|
Hansen KK, Jensen HI, Andersen TS, Christiansen CF. Intubation rate, duration of noninvasive ventilation and mortality after noninvasive neurally adjusted ventilatory assist (NIV-NAVA). Acta Anaesthesiol Scand 2020; 64:309-318. [PMID: 31651041 DOI: 10.1111/aas.13499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/20/2019] [Accepted: 10/10/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Asynchrony is a common problem in patients treated with noninvasive ventilation (NIV). Neurally adjusted ventilatory assist (NAVA) has shown to improve patient-ventilator interaction. However, it is unknown whether NIV-NAVA improves outcomes compared to noninvasive pressure support (NIV-PS). METHODS This observational cohort study included patients 18 years or older receiving noninvasive ventilation using an oro-nasal face mask for more than 2 hours in a Danish ICU. The study included a NIV-NAVA cohort (year 2013-2015) and two comparison cohorts: (a) a historical NIV-PS cohort (year 2011-2012) before the implementation of NIV-NAVA at the ICU in 2013, and (b) a concurrent NIV-PS cohort (year 2013-2015). Outcomes of NIV-NAVA (intubation rate, duration of NIV and 90-day mortality) were assessed and compared using multivariable linear and logistic regression adjusted for relevant confounders. RESULTS The study included 427 patients (91 in the NIV-NAVA, 134 in the historic NIV-PS and 202 in the concurrent NIV-PS cohort). Patients treated with NIV-NAVA did not have improved outcome after adjustment for measured confounders. Actually, there were statistically imprecise higher odds for intubation in NIV-NAVA patients compared with both the historical [OR 1.48, CI (0.74-2.97)] and the concurrent NIV-PS cohort [OR 1.67, CI (0.87-3.19)]. NIV-NAVA might also have a longer length of NIV [63%, CI (19%-125%)] and [139%, CI (80%-213%)], and might have a higher 90-day mortality [OR 1.24, CI (0.69-2.25)] and [OR 1.39, CI (0.81-2.39)]. Residual confounding cannot be excluded. CONCLUSION This present study found no improved clinical outcomes in patients treated with NIV-NAVA compared to NIV-PS.
Collapse
Affiliation(s)
- Kristina K. Hansen
- Department of Anaesthesiology and Intensive Care Vejle Hospital Vejle Denmark
| | - Hanne I. Jensen
- Department of Anaesthesiology and Intensive Care Vejle Hospital Vejle Denmark
- Institute of Regional Health Research University of Southern Odense Denmark
| | - Torben S. Andersen
- Department of Anaesthesiology and Intensive Care Vejle Hospital Vejle Denmark
| | | |
Collapse
|
11
|
Lee BK, Shin SH, Jung YH, Kim EK, Kim HS. Comparison of NIV-NAVA and NCPAP in facilitating extubation for very preterm infants. BMC Pediatr 2019; 19:298. [PMID: 31462232 PMCID: PMC6712684 DOI: 10.1186/s12887-019-1683-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/21/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Various types of noninvasive respiratory modalities that lead to successful extubation in preterm infants have been explored. We aimed to compare noninvasive neurally adjusted ventilatory assist (NIV-NAVA) and nasal continuous positive airway pressure (NCPAP) for the postextubation stabilization of preterm infants. METHODS This retrospective study was divided into two distinct periods, between July 2012 and June 2013 and between July 2013 and June 2014, because NIV-NAVA was applied beginning in July 2013. Preterm infants of less than 30 weeks GA who had been intubated with mechanical ventilation for longer than 24 h and were weaned to NCPAP or NIV-NAVA after extubation were enrolled. Ventilatory variables and extubation failure were compared after weaning to NCPAP or NIV-NAVA. Extubation failure was defined when infants were reintubated within 72 h of extubation. RESULTS There were 14 infants who were weaned to NCPAP during Period I, and 2 infants and 16 infants were weaned to NCPAP and NIV-NAVA, respectively, during Period II. At the time of extubation, there were no differences in the respiratory severity score (NIV-NAVA 1.65 vs. NCPAP 1.95), oxygen saturation index (1.70 vs. 2.09) and steroid use before extubation. Several ventilation parameters at extubation, such as the mean airway pressure, positive end-expiratory pressure, peak inspiratory pressure, and FiO2, were similar between the two groups. SpO2 and pCO2 preceding extubation were comparable. Extubation failure within 72 h after extubation was observed in 6.3% of the NIV-NAVA group and 37.5% of the NCPAP group (P = 0.041). CONCLUSIONS The data in the present showed promising implications for using NIV-NAVA over NCPAP to facilitate extubation.
Collapse
Affiliation(s)
- Byoung Kook Lee
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Seung Han Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-769 South Korea
| | - Young Hwa Jung
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ee-Kyung Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-769 South Korea
| | - Han-Suk Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-769 South Korea
| |
Collapse
|
12
|
Chen C, Wen T, Liao W. Neurally adjusted ventilatory assist versus pressure support ventilation in patient-ventilator interaction and clinical outcomes: a meta-analysis of clinical trials. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:382. [PMID: 31555696 DOI: 10.21037/atm.2019.07.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The objective of this study was to conduct a meta-analysis comparing neurally adjusted ventilatory assist (NAVA) with pressure support ventilation (PSV) in adult ventilated patients with patient-ventilator interaction and clinical outcomes. Methods The PubMed, the Web of Science, Scopus, and Medline were searched for appropriate clinical trials (CTs) comparing NAVA with PSV for the adult ventilated patients. RevMan 5.3 was performed for comparing NAVA with PSV in asynchrony index (AI), ineffective efforts, auto-triggering, double asynchrony, premature asynchrony, breathing pattern (Peak airway pressure (Pawpeek), mean airway pressure (Pawmean), tidal volume (VT, mL/kg), minute volume (MV), respiratory muscle unloading (peak electricity of diaphragm (EAdipeak), P 0.1, VT/EAdi), clinical outcomes (ICU mortality, duration of ventilation days, ICU stay time, hospital stay time). Results Our meta-analysis included 12 studies involving a total of 331 adult ventilated patients, AI was significantly lower in NAVA group [mean difference (MD) -12.82, 95% confidence interval (CI): -21.20 to -4.44, I2=88%], and using subgroup analysis, grouped by mechanical ventilation, the results showed that NAVA also had lower AI than PSV (Mechanical ventilation, MD -9.52, 95% CI: -17.85 to -1.20, I2=87%), (Non-invasive ventilation (NIV), MD -24.55, 95% CI: -35.40 to -13.70, I2=0%). NAVA was significantly lower than the PSV in auto-triggering (MD -0.28, 95% CI: -0.51 to -0.05, I2=10%), and premature triggering (MD -2.49, 95% CI: -3.77 to -1.21, I2=29%). There were no significant differences in double triggering, ineffective efforts, breathing pattern (Pawmean, Pawpeak, VT, MV), and respiratory muscle unloading (EAdipeak, P 0.1, VT/EAdi). For clinical outcomes, NAVA was significantly lower than the PSV (MD -2.82, 95% CI: -5.55 to -0.08, I2=0%) in the duration of ventilation, but two groups did not show significant differences in ICU mortality, ICU stay time, and hospital stay time. Conclusions NAVA is more beneficial in patient-ventilator interaction than PSV, and could decrease the duration of ventilation.
Collapse
Affiliation(s)
- Chongxiang Chen
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Guangzhou Institute of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Tianmeng Wen
- School of Public Health, Sun Yat-sen University, Guangzhou 510000, China
| | - Wei Liao
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
13
|
Bruni A, Garofalo E, Pelaia C, Messina A, Cammarota G, Murabito P, Corrado S, Vetrugno L, Longhini F, Navalesi P. Patient-ventilator asynchrony in adult critically ill patients. Minerva Anestesiol 2019; 85:676-688. [PMID: 30762325 DOI: 10.23736/s0375-9393.19.13436-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Patient-ventilator asynchrony is considered a major clinical problem for mechanically ventilated patients. It occurs during partial ventilatory support, when the respiratory muscles and the ventilator interact to contribute generating the volume output. In this review article, we consider all studies published on patient-ventilator asynchrony in the last 25 years. EVIDENCE ACQUISITION We selected 62 studies. The different forms of asynchrony are first defined and classified. We also describe the methods used for detecting and quantifying asynchronies. We then outline the outcome variables considered for evaluating the clinical consequences of asynchronies. The methodology for detection and quantification of patient-ventilator asynchrony are quite heterogeneous. In particular, the Asynchrony Index is calculated differently among studies. EVIDENCE SYNTHESIS Sixteen studies established some relationship between asynchronies and one or more clinical outcomes, such as duration of mechanical ventilation (seven studies), mortality (five studies), length of intensive care and hospital stay (four studies), patient comfort (four studies), quality of sleep (three studies), and rate of tracheotomy (three studies). In patients with severe patient-ventilator asynchrony, four of seven studies (57%) report prolonged duration of mechanical ventilation, one of five (20%) increased mortality, one of four (25%) longer intensive care and hospital lengths of stay, four of four (100%) worsened comfort, three of four (75%) deteriorated quality of sleep, and one of three (33%) increased rate of tracheotomy. CONCLUSIONS Given the varying outcomes considered and the erratic results, it remains unclear whether asynchronies really affects patient outcome, and the relationship between asynchronies and outcome is causative or associative.
Collapse
Affiliation(s)
- Andrea Bruni
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Eugenio Garofalo
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Corrado Pelaia
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | | | - Gianmaria Cammarota
- Unit of Anesthesia and Intensive Care, "Maggiore della Carità" Hospital, Novara, Italy
| | - Paolo Murabito
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", "G. Rodolico" University Policlinic, University of Catania, Catania, Italy
| | - Silvia Corrado
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Luigi Vetrugno
- Department of Anesthesia and Intensive Care, University of Udine, Udine, Italy
| | - Federico Longhini
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy -
| | - Paolo Navalesi
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
14
|
Garofalo E, Bruni A, Pelaia C, Liparota L, Lombardo N, Longhini F, Navalesi P. Recognizing, quantifying and managing patient-ventilator asynchrony in invasive and noninvasive ventilation. Expert Rev Respir Med 2018; 12:557-567. [DOI: 10.1080/17476348.2018.1480941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eugenio Garofalo
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Andrea Bruni
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Corrado Pelaia
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Luisa Liparota
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Nicola Lombardo
- Otolaryngology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care, Sant’Andrea Hospital, Vercelli, Italy
| | - Paolo Navalesi
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
15
|
Prevalence and Prognosis Impact of Patient-Ventilator Asynchrony in Early Phase of Weaning according to Two Detection Methods. Anesthesiology 2017; 127:989-997. [PMID: 28914623 DOI: 10.1097/aln.0000000000001886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Patient-ventilator asynchrony is associated with a poorer outcome. The prevalence and severity of asynchrony during the early phase of weaning has never been specifically described. The authors' first aim was to evaluate the prognosis impact and the factors associated with asynchrony. Their second aim was to compare the prevalence of asynchrony according to two methods of detection: a visual inspection of signals and a computerized method integrating electromyographic activity of the diaphragm. METHODS This was an ancillary study of a multicenter, randomized controlled trial comparing neurally adjusted ventilatory assist to pressure support ventilation. Asynchrony was quantified at 12, 24, 36, and 48 h after switching from controlled ventilation to a partial mode of ventilatory assistance according to the two methods. An asynchrony index greater than or equal to 10% defined severe asynchrony. RESULTS A total of 103 patients ventilated for a median duration of 5 days (interquartile range, 3 to 9 days) were included. Whatever the method used for quantification, severe patient-ventilator asynchrony was not associated with an alteration of the outcome. No factor was associated with severe asynchrony. The prevalence of asynchrony was significantly lower when the quantification was based on flow and pressure than when it was based on the electromyographic activity of the diaphragm at 0.3 min (interquartile range, 0.2 to 0.8 min) and 4.7 min (interquartile range, 3.2 to 7.7 min; P < 0.0001), respectively. CONCLUSIONS During the early phase of weaning in patients receiving a partial ventilatory mode, severe patient-ventilator asynchrony was not associated with adverse clinical outcome, although the prevalence of patient-ventilator asynchrony varies according to the definitions and methods used for detection.
Collapse
|
16
|
Longhini F, Colombo D, Pisani L, Idone F, Chun P, Doorduin J, Ling L, Alemani M, Bruni A, Zhaochen J, Tao Y, Lu W, Garofalo E, Carenzo L, Maggiore SM, Qiu H, Heunks L, Antonelli M, Nava S, Navalesi P. Efficacy of ventilator waveform observation for detection of patient-ventilator asynchrony during NIV: a multicentre study. ERJ Open Res 2017; 3:00075-2017. [PMID: 29204431 PMCID: PMC5703352 DOI: 10.1183/23120541.00075-2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/30/2017] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to assess ability to identify asynchronies during noninvasive ventilation (NIV) through ventilator waveforms according to experience and interface, and to ascertain the influence of breathing pattern and respiratory drive on sensitivity and prevalence of asynchronies. 35 expert and 35 nonexpert physicians evaluated 40 5-min NIV reports displaying flow–time and airway pressure–time tracings; identified asynchronies were compared with those ascertained by three examiners who evaluated the same reports displaying, additionally, tracings of diaphragm electrical activity. We determined: 1) sensitivity, specificity, and positive and negative predictive values; 2) the correlation between the double true index (DTI) of each report (i.e., the ratio between the sum of true positives and true negatives, and the overall breath count) and the corresponding asynchrony index (AI); and 3) the influence of breathing pattern and respiratory drive on both AI and sensitivity. Sensitivities to detect asynchronies were low either according to experience (0.20 (95% CI 0.14–0.29) for expert versus 0.21 (95% CI 0.12–0.30) for nonexpert, p=0.837) or interface (0.28 (95% CI 0.17–0.37) for mask versus 0.10 (95% CI 0.05–0.16) for helmet, p<0.0001). DTI inversely correlated with the AI (r2=0.67, p<0.0001). Breathing pattern and respiratory drive did not affect prevalence of asynchronies and sensitivity. Patient–ventilator asynchrony during NIV is difficult to recognise solely by visual inspection of ventilator waveforms. Detection of patient–ventilator asynchrony during NIV by visual inspection of ventilator waveforms is difficulthttp://ow.ly/3ce930eGdn6
Collapse
Affiliation(s)
- Federico Longhini
- Anesthesia and Intensive Care, Sant'Andrea Hospital, ASL VC, Vercelli, Italy
| | - Davide Colombo
- Anesthesia and Intensive Care, "Maggiore Della Carità" Hospital, Novara, Italy
| | - Lara Pisani
- Alma Mater University, Dept of Clinical, Integrated and Experimental Medicine (DIMES), Respiratory and Critical Care Unit, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Francesco Idone
- Dept of Anesthesiology and Intensive Care, Agostino Gemelli Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pan Chun
- Dept of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, Nanjing, China
| | - Jonne Doorduin
- Dept of Intensive Care Medicine and Neurology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Liu Ling
- Dept of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, Nanjing, China
| | - Moreno Alemani
- Dept of Anesthesiology and Intensive Care, Ospedale Civile "G. Fornaroli", Magenta, Italy
| | - Andrea Bruni
- Dept of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Jin Zhaochen
- Dept of Critical Care Medicine, Zhenjiang First People's Hospital, Zhenjiang, China
| | - Yu Tao
- Dept of Critical Care Medicine, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Weihua Lu
- Dept of Critical Care Medicine, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Eugenio Garofalo
- Dept of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Luca Carenzo
- Anesthesia and Intensive Care, "Maggiore Della Carità" Hospital, Novara, Italy
| | - Salvatore Maurizio Maggiore
- Dept of Anesthesiology, Perioperative Care and Intensive Care, "S.S. Annunziata" Hospital, "Gabriele d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Haibo Qiu
- Dept of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, Nanjing, China
| | - Leo Heunks
- Dept of Intensive Care Medicine, VU University Medical Centre, Amsterdam, the Netherlands
| | - Massimo Antonelli
- Dept of Anesthesiology and Intensive Care, Agostino Gemelli Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Nava
- Alma Mater University, Dept of Clinical, Integrated and Experimental Medicine (DIMES), Respiratory and Critical Care Unit, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Paolo Navalesi
- Dept of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
17
|
Longhini F, Pan C, Xie J, Cammarota G, Bruni A, Garofalo E, Yang Y, Navalesi P, Qiu H. New setting of neurally adjusted ventilatory assist for noninvasive ventilation by facial mask: a physiologic study. Crit Care 2017; 21:170. [PMID: 28683763 PMCID: PMC5501553 DOI: 10.1186/s13054-017-1761-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/19/2017] [Indexed: 11/10/2022] Open
Abstract
Background Noninvasive ventilation (NIV) is generally delivered using pneumatically-triggered and cycled-off pressure support (PSP) through a mask. Neurally adjusted ventilatory assist (NAVA) is the only ventilatory mode that uses a non-pneumatic signal, i.e., diaphragm electrical activity (EAdi), to trigger and drive ventilator assistance. A specific setting to generate neurally controlled pressure support (PSN) was recently proposed for delivering NIV by helmet. We compared PSN with PSP and NAVA during NIV using a facial mask, with respect to patient comfort, gas exchange, and patient-ventilator interaction and synchrony. Methods Three 30-minute trials of NIV were randomly delivered to 14 patients immediately after extubation to prevent post-extubation respiratory failure: (1) PSP, with an inspiratory support ≥8 cmH2O; (2) NAVA, adjusting the NAVA level to achieve a comparable peak EAdi (EAdipeak) as during PSP; and (3) PSN, setting the NAVA level at 15 cmH2O/μV with an upper airway pressure (Paw) limit to obtain the same overall Paw applied during PSP. We assessed patient comfort, peak inspiratory flow (PIF), time to reach PIF (PIFtime), EAdipeak, arterial blood gases, pressure-time product of the first 300 ms (PTP300-index) and 500 ms (PTP500-index) after initiation of patient effort, inspiratory trigger delay (DelayTR-insp), and rate of asynchrony, determined as asynchrony index (AI%). The categorical variables were compared using the McNemar test, and continuous variables by the Friedman test followed by the Wilcoxon test with Bonferroni correction for multiple comparisons (p < 0.017). Results PSN significantly improved patient comfort, compared to both PSP (p = 0.001) and NAVA (p = 0.002), without differences between the two latter (p = 0.08). PIF (p = 0.109), EAdipeak (p = 0.931) and gas exchange were similar between modes. Compared to PSP and NAVA, PSN reduced PIFtime (p < 0.001), and increased PTP300-index (p = 0.004) and PTP500-index (p = 0.001). NAVA and PSN significantly reduced DelayTR-insp, as opposed to PSP (p < 0.001). During both NAVA and PSN, AI% was <10% in all patients, while AI% was ≥10% in 7 patients (50%) with PSP (p = 0.023 compared with both NAVA and PSN). Conclusions Compared to both PSP and NAVA, PSN improved comfort and patient-ventilator interaction during NIV by facial mask. PSN also improved synchrony, as opposed to PSP only. Trial registration ClinicalTrials.gov, NCT03041402. Registered (retrospectively) on 2 February 2017.
Collapse
Affiliation(s)
- Federico Longhini
- Anesthesia and Intensive Care, Sant'Andrea Hospital, ASL VC, Vercelli, Italy
| | - Chun Pan
- Department of Critical Care Medicine, Nanjing Zhong-Da Hospital, Southeast University School of Medicine, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Jianfeng Xie
- Department of Critical Care Medicine, Nanjing Zhong-Da Hospital, Southeast University School of Medicine, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Gianmaria Cammarota
- Anesthesia and Intensive Care, "Maggiore della Carità" Hospital, Novara, Italy
| | - Andrea Bruni
- Intensive Care Unit, University Hospital Mater Domini, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Eugenio Garofalo
- Intensive Care Unit, University Hospital Mater Domini, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Yi Yang
- Department of Critical Care Medicine, Nanjing Zhong-Da Hospital, Southeast University School of Medicine, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Paolo Navalesi
- Intensive Care Unit, University Hospital Mater Domini, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Haibo Qiu
- Department of Critical Care Medicine, Nanjing Zhong-Da Hospital, Southeast University School of Medicine, 87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
18
|
Costa R, Navalesi P, Cammarota G, Longhini F, Spinazzola G, Cipriani F, Ferrone G, Festa O, Antonelli M, Conti G. Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist. Respir Physiol Neurobiol 2017; 244:10-16. [PMID: 28673877 DOI: 10.1016/j.resp.2017.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/27/2022]
Abstract
We assessed the effects of varying doses of remifentanil on respiratory drive and timing in patients receiving Pressure Support Ventilation (PSV) and Neurally Adjusted Ventilatory Assist (NAVA). Four incrementing remifentanil doses were randomly administered to thirteen intubated patients (0.03, 0.05, 0.08, and 0.1μg·Kg-1·min-1) during both PSV and NAVA. We measured the patient's (Ti/Ttotneu) and ventilator (Ti/Ttotmec) duty cycle, the Electrical Activity of the Diaphragm (EAdi), the inspiratory (Delaytrinsp) and expiratory (Delaytrexp) trigger delays and the Asynchrony Index (AI). Increasing doses of remifentanil did not modify EAdi, regardless the ventilatory mode. In comparison to baseline, remifentanil infusion >0.05μg/Kg-1/min-1 produced a significant reduction of Ti/Ttotneu and Ti/Ttotmec, by prolonging the expiratory time. Delaytrinsp and Delaytrexp were significantly shorter in NAVA, respect to PSV. AI was not influenced by the different doses of remifentanil, but it was significantly lower during NAVA, compared to PSV. In conclusion remifentanil did not affect the respiratory drive, but only respiratory timing, without differences between modes.
Collapse
Affiliation(s)
- Roberta Costa
- Department of Anesthesia and Intensive Care, Catholic University of Rome, Largo Agostino Gemelli 1, 00135 Rome, Italy
| | - Paolo Navalesi
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Gianmaria Cammarota
- Anesthesia and Intensive Care, "Maggiore Della Carità" Hospital, Novara, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care, Sant'Andrea Hospital, ASL VC, Vercelli, Italy.
| | - Giorgia Spinazzola
- Department of Anesthesia and Intensive Care, Catholic University of Rome, Largo Agostino Gemelli 1, 00135 Rome, Italy
| | - Flora Cipriani
- Department of Anesthesia and Intensive Care, Catholic University of Rome, Largo Agostino Gemelli 1, 00135 Rome, Italy
| | - Giuliano Ferrone
- Department of Anesthesia and Intensive Care, Catholic University of Rome, Largo Agostino Gemelli 1, 00135 Rome, Italy
| | - Olimpia Festa
- Department of Anesthesia and Intensive Care, Catholic University of Rome, Largo Agostino Gemelli 1, 00135 Rome, Italy
| | - Massimo Antonelli
- Department of Anesthesia and Intensive Care, Catholic University of Rome, Largo Agostino Gemelli 1, 00135 Rome, Italy
| | - Giorgio Conti
- Department of Anesthesia and Intensive Care, Catholic University of Rome, Largo Agostino Gemelli 1, 00135 Rome, Italy
| |
Collapse
|
19
|
Diniz-Silva F, Miethke-Morais A, Alencar AM, Moriya HT, Caruso P, Costa ELV, Ferreira JC. Monitoring the electric activity of the diaphragm during noninvasive positive pressure ventilation: a case report. BMC Pulm Med 2017; 17:91. [PMID: 28623885 PMCID: PMC5473981 DOI: 10.1186/s12890-017-0434-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/08/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND In patients with post-extubation respiratory distress, delayed reintubation may worsen clinical outcomes. Objective measures of extubation failure at the bedside are lacking, therefore clinical parameters are currently used to guide the need of reintubation. Electrical activity of the diaphragm (EAdi) provides clinicians with valuable, objective information about respiratory drive and could be used to monitor respiratory effort. CASE PRESENTATION We describe the case of a patient with Chronic Obstructive Pulmonary Disease (COPD), from whom we recorded EAdi during four different ventilatory conditions: 1) invasive mechanical ventilation, 2) spontaneous breathing trial (SBT), 3) unassisted spontaneous breathing, and 4) Noninvasive Positive Pressure Ventilation (NPPV). The patient had been intubated due to an exacerbation of COPD, and after four days of mechanical ventilation, she passed the SBT and was extubated. Clinical signs of respiratory distress were present immediately after extubation, and EAdi increased compared to values obtained during mechanical ventilation. As we started NPPV, EAdi decreased substantially, indicating muscle unloading promoted by NPPV, and we used the EAdi signal to monitor respiratory effort during NPPV. Over the next three days, she was on NPPV for most of the time, with short periods of spontaneous breathing. EAdi remained considerably lower during NPPV than during spontaneous breathing, until the third day, when the difference was no longer clinically significant. She was then weaned from NPPV and discharged from the ICU a few days later. CONCLUSION EAdi monitoring during NPPV provides an objective parameter of respiratory drive and respiratory muscle unloading and may be a useful tool to guide post-extubation ventilatory support. Clinical studies with continuous EAdi monitoring are necessary to clarify the meaning of its absolute values and changes over time.
Collapse
Affiliation(s)
- Fabia Diniz-Silva
- Pulmonary Division, Heart Institute (InCor) – Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Anna Miethke-Morais
- Pulmonary Division, Heart Institute (InCor) – Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Henrique T. Moriya
- Biomedical Engineering Laboratory, University of São Paulo, São Paulo, Brazil
| | - Pedro Caruso
- Pulmonary Division, Heart Institute (InCor) – Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo L. V. Costa
- Pulmonary Division, Heart Institute (InCor) – Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Juliana C. Ferreira
- Pulmonary Division, Heart Institute (InCor) – Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
New Setting of Neurally Adjusted Ventilatory Assist during Noninvasive Ventilation through a Helmet. Anesthesiology 2017; 125:1181-1189. [PMID: 27649505 DOI: 10.1097/aln.0000000000001354] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Compared to pneumatically controlled pressure support (PSP), neurally adjusted ventilatory assist (NAVA) was proved to improve patient-ventilator interactions, while not affecting comfort, diaphragm electrical activity (EAdi), and arterial blood gases (ABGs). This study compares neurally controlled pressure support (PSN) with PSP and NAVA, delivered through two different helmets, in hypoxemic patients receiving noninvasive ventilation for prevention of extubation failure. METHODS Fifteen patients underwent three (PSP, NAVA, and PSN) 30-min trials in random order with both helmets. Positive end-expiratory pressure was always set at 10 cm H2O. In PSP, the inspiratory support was set at 10 cm H2O above positive end-expiratory pressure. NAVA was adjusted to match peak EAdi (EAdipeak) during PSP. In PSN, the NAVA level was set at maximum matching the pressure delivered during PSP by limiting the upper pressure. The authors assessed patient comfort, EAdipeak, rates of pressurization (i.e., airway pressure-time product [PTP] of the first 300 and 500 ms after the initiation of patient effort, indexed to the ideal pressure-time products), and measured ABGs. RESULTS PSN significantly increased comfort to (median [25 to 75% interquartile range]) 8 [7 to 8] and 9 [8 to 9] with standard and new helmets, respectively, as opposed to both PSP (5 [5 to 6] and 7 [6 to 7]) and NAVA (6 [5 to 7] and 7 [6 to 8]; P < 0.01 for all comparisons). Regardless of the interface, PSN also decreased EAdipeak (P < 0.01), while increasing PTP of the first 300 ms from the onset of patient effort, indexed to the ideal PTP (P < 0.01) and PTP of the first 500 ms from the onset of patient effort, indexed to the ideal PTP (P < 0.001). ABGs were not different among trials. CONCLUSIONS When delivering noninvasive ventilation by helmet, compared to PSP and NAVA, PSN improves comfort and patient-ventilator interactions, while not ABGs. (Anesthesiology 2016; 125:1181-9).
Collapse
|
21
|
Theerawit P, Sutherasan Y, Ball L, Pelosi P. Respiratory monitoring in adult intensive care unit. Expert Rev Respir Med 2017; 11:453-468. [PMID: 28452241 DOI: 10.1080/17476348.2017.1325324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The mortality of patients with respiratory failure has steadily decreased with the advancements in protective ventilation and treatment options. Although respiratory monitoring per se has not been proven to affect the mortality of critically ill patients, it plays a crucial role in patients' care, as it helps to titrate the ventilatory support. Several new monitoring techniques have recently been made available at the bedside. The goals of monitoring comprise alerting physicians to detect the change in the patients' conditions, to improve the understanding of pathophysiology to guide the diagnosis and provide cost-effective clinical management. Areas covered: We performed a review of the recent scientific literature to provide an overview of the different methods used for respiratory monitoring in adult intensive care units, including bedside imaging techniques such as ultrasound and electrical impedance tomography. Expert commentary: Appropriate respiratory monitoring plays an important role in patients with and without respiratory failure as a guiding tool for the optimization of ventilation support, avoiding further complications and decreasing morbidity and mortality. The physician should tailor the monitoring strategy for each individual patient and know how to correctly interpret the data.
Collapse
Affiliation(s)
- Pongdhep Theerawit
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine Ramathibodi Hospital , Mahidol University , Bangkok , Thailand
| | - Yuda Sutherasan
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine Ramathibodi Hospital , Mahidol University , Bangkok , Thailand
| | - Lorenzo Ball
- b IRCCS AOU San Martino-IST, Department of Surgical Sciences and Integrated Diagnostics , University of Genoa , Genoa , Italy
| | - Paolo Pelosi
- b IRCCS AOU San Martino-IST, Department of Surgical Sciences and Integrated Diagnostics , University of Genoa , Genoa , Italy
| |
Collapse
|
22
|
Comparison Between Neurally Adjusted Ventilatory Assist and Pressure Support Ventilation Levels in Terms of Respiratory Effort. Crit Care Med 2016; 44:503-11. [PMID: 26540399 DOI: 10.1097/ccm.0000000000001418] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To understand the potential equivalence between neurally adjusted ventilatory assist and pressure support ventilation levels in terms of respiratory muscle unloading. To compare the respiratory pattern, variability, synchronization, and neuromuscular coupling within comparable ranges of assistance. DESIGN Prospective single-center physiologic study. SETTING A 13-bed university medical ICU. PATIENTS Eleven patients recovering from respiratory failure. INTERVENTIONS The following levels of assistance were consecutively applied in a random order: neurally adjusted ventilatory assist levels: 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, and 7 cm H2O/μvolt; pressure support levels: 7, 10, 15, 20, and 25 cm H2O. MEASUREMENTS AND MAIN RESULTS Flow, airway pressure, esophageal pressures, and peak electrical activity of the diaphragm were continuously recorded. Breathing effort was calculated. To express the percentage of assist assumed by the ventilator, the total pressure including muscular and ventilator pressure was calculated. The median percentage of assist ranged from 33% (24-47%) to 82% (72-90%) between pressure support 7 and 25 cm H2O. Similar levels of unloading were observed for neurally adjusted ventilatory assist levels from 0.5 cm H2O/μvolt (46% [40-51%]) to 2.5 cm H2O/μvolt (80% [74-84%]). Tidal variability was higher during neurally adjusted ventilatory assist and ineffective efforts appeared only in pressure support. In neurally adjusted ventilatory assist, double triggering occurred sometimes when electrical activity of the diaphragm signal depicted a biphasic aspect, and an abnormal oscillatory pattern was frequently observed from 4 cm H2O/μvolt. For both modes, the relationship between peak electrical activity of the diaphragm and muscle pressure depicted a curvilinear profile. CONCLUSIONS In patients recovering from acute respiratory failure, levels of neurally adjusted ventilatory assist between 0.5 and 2.5 cm H2O/μvolt are comparable to pressure support levels ranging from 7 to 25 cm H2O in terms of respiratory muscle unloading. Neurally adjusted ventilatory assist provides better patient-ventilator interactions but can be sometimes excessively sensitive to electrical activity of the diaphragm in terms of triggering.
Collapse
|
23
|
Demaret P, Mulder A, Loeckx I, Trippaerts M, Lebrun F. Non-invasive ventilation is useful in paediatric intensive care units if children are appropriately selected and carefully monitored. Acta Paediatr 2015; 104:861-71. [PMID: 26033193 DOI: 10.1111/apa.13057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 05/06/2015] [Accepted: 05/26/2015] [Indexed: 01/17/2023]
Abstract
UNLABELLED Non-invasive ventilation (NIV) is commonly used in paediatric intensive care units (PICUs) for respiratory failure. This review aims to improve paediatricians' understanding of NIV, by specifying technical or practical considerations, giving advice about selecting patients and presenting pertinent published data about NIV in different circumstances. CONCLUSION NIV is useful in PICUs if children are appropriately selected and carefully monitored. Technological advances and future clinical research will improve its use and success rate in PICU.
Collapse
Affiliation(s)
- Pierre Demaret
- Department of Paediatrics; Paediatric Intensive Care Unit; Centre Hospitalier Chrétien (clinique de l'Espérance); Liège Belgium
| | - André Mulder
- Department of Paediatrics; Paediatric Intensive Care Unit; Centre Hospitalier Chrétien (clinique de l'Espérance); Liège Belgium
| | - Isabelle Loeckx
- Department of Paediatrics; Paediatric Intensive Care Unit; Centre Hospitalier Chrétien (clinique de l'Espérance); Liège Belgium
| | - Marc Trippaerts
- Department of Paediatrics; Paediatric Intensive Care Unit; Centre Hospitalier Régional de la Citadelle; Liège Belgium
| | - Frédéric Lebrun
- Department of Paediatrics; Paediatric Intensive Care Unit; Centre Hospitalier Chrétien (clinique de l'Espérance); Liège Belgium
| |
Collapse
|
24
|
Abstract
Purpose of review Compared with the conventional forms of partial support, neurally adjusted ventilatory assist was repeatedly shown to improve patient–ventilator synchrony and reduce the risk of overassistance, while guaranteeing adequate inspiratory effort and gas exchange. A few animal studies also suggested the potential of neurally adjusted ventilatory assist in averting the risk of ventilator-induced lung injury. Recent work adds new information on the physiological effects of neurally adjusted ventilatory assist. Recent findings Compared with pressure support, neurally adjusted ventilatory assist has been shown to improve patient–ventilator interaction and synchrony in patients with the most challenging respiratory system mechanics, such as very low compliance consequent to severe acute respiratory distress syndrome and high resistance and air trapping due to chronic airflow obstruction; enhance redistribution of the ventilation in the dependent lung regions; avert the risk of patient–ventilator asynchrony due to sedation; avoid central apneas; limit the risk of high (injurious) tidal volumes in patients with acute respiratory distress syndrome of varied severity; and improve patient–ventilator interaction and synchrony during noninvasive ventilation, irrespective of the interface utilized. Summary Several studies nowadays prove the physiological benefits of neurally adjusted ventilatory assist, as opposed to the conventional modes of partial support. Whether these advantages translate into improvement of clinical outcomes remains to be determined.
Collapse
|
25
|
Gregoretti C, Pisani L, Cortegiani A, Ranieri VM. Noninvasive Ventilation in Critically Ill Patients. Crit Care Clin 2015; 31:435-57. [DOI: 10.1016/j.ccc.2015.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Noninvasive support and ventilation for pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2015; 16:S102-10. [PMID: 26035360 DOI: 10.1097/pcc.0000000000000437] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Despite the widespread use of noninvasive ventilation in children and in children with acute lung injury and pediatric acute respiratory distress syndrome, there are few scientific data on the utility of this therapy. In this review, we examine the literature regarding noninvasive positive pressure ventilation and use the Research ANd Development/University of California, Los Angeles appropriateness methodology to provide strong or weak recommendations for the use of noninvasive positive pressure ventilation in children with pediatric acute respiratory distress syndrome. DATA SOURCES Electronic searches were made in PubMed, EMBASE, Web of Science, Cochrane Library, and Scopus with the following specific keywords: noninvasive ventilation, noninvasive positive pressure ventilation, continuous positive airway pressure, and high-flow nasal cannula. STUDY SELECTION Studies were eligible for inclusion if they included 10 or more children between 1 month and 18 years old. Randomized and nonrandomized controlled trials, controlled before-and-after studies, concurrent cohort studies, interrupted time series studies, historically controlled studies, cohort studies, cross-sectional studies, and uncontrolled longitudinal studies were included for data synthesis. DATA SYNTHESIS The literature provides a solid physiological rationale for the use of noninvasive positive pressure ventilation in children with pediatric acute respiratory distress syndrome. The addition of noninvasive positive pressure ventilation can improve gas exchange and potentially prevent intubation and mechanical ventilation in some children with mild pediatric acute respiratory distress syndrome. Noninvasive positive pressure ventilation is not indicated in severe pediatric acute respiratory distress syndrome. Noninvasive positive pressure ventilation should be performed only in acute care setting with experienced team, and patient-ventilator synchrony is crucial for success. An oronasal interface provides superior support, but close monitoring of children is required due to the risk of progressive respiratory failure and the potential need for intubation. The use of high-flow nasal cannula is a promising treatment for respiratory disease; however, at this time, the efficacy of high-flow nasal cannula compared with noninvasive positive pressure ventilation is unknown. CONCLUSION Noninvasive positive pressure ventilation can be beneficial in children with pediatric acute respiratory distress syndrome, particularly in those with milder disease. However, further research is needed into the use of noninvasive positive pressure ventilation in children.
Collapse
|
27
|
Garnier M, Quesnel C, Fulgencio JP, Degrain M, Carteaux G, Bonnet F, Similowski T, Demoule A. Multifaceted bench comparative evaluation of latest intensive care unit ventilators. Br J Anaesth 2015; 115:89-98. [PMID: 25735713 DOI: 10.1093/bja/aev028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Independent bench studies using specific ventilation scenarios allow testing of the performance of ventilators in conditions similar to clinical settings. The aims of this study were to determine the accuracy of the latest generation ventilators to deliver chosen parameters in various typical conditions and to provide clinicians with a comprehensive report on their performance. METHODS Thirteen modern intensive care unit ventilators were evaluated on the ASL5000 test lung with and without leakage for: (i) accuracy to deliver exact tidal volume (VT) and PEEP in assist-control ventilation (ACV); (ii) performance of trigger and pressurization in pressure support ventilation (PSV); and (iii) quality of non-invasive ventilation algorithms. RESULTS In ACV, only six ventilators delivered an accurate VT and nine an accurate PEEP. Eleven devices failed to compensate VT and four the PEEP in leakage conditions. Inspiratory delays differed significantly among ventilators in invasive PSV (range 75-149 ms, P=0.03) and non-invasive PSV (range 78-165 ms, P<0.001). The percentage of the ideal curve (concomitantly evaluating the pressurization speed and the levels of pressure reached) also differed significantly (range 57-86% for invasive PSV, P=0.04; and 60-90% for non-invasive PSV, P<0.001). Non-invasive ventilation algorithms efficiently prevented the decrease in pressurization capacities and PEEP levels induced by leaks in, respectively, 10 and 12 out of the 13 ventilators. CONCLUSIONS We observed real heterogeneity of performance amongst the latest generation of intensive care unit ventilators. Although non-invasive ventilation algorithms appear to maintain adequate pressurization efficiently in the case of leakage, basic functions, such as delivered VT in ACV and pressurization in PSV, are often less reliable than the values displayed by the device suggest.
Collapse
Affiliation(s)
- M Garnier
- Anaesthesiology and Intensive Care Department, Hôpital Tenon Faculté de Médecine Pierre & Marie Curie
| | - C Quesnel
- Anaesthesiology and Intensive Care Department, Hôpital Tenon Faculté de Médecine Pierre & Marie Curie
| | - J-P Fulgencio
- Anaesthesiology and Intensive Care Department, Hôpital Tenon
| | - M Degrain
- Agence Générale des Equipements et Produits de Santé, APHP, Paris, France
| | - G Carteaux
- Medical Intensive Care Unit, Centre Hospitalier Albert Chenevier-Henri Mondor, APHP, Créteil, France
| | - F Bonnet
- Anaesthesiology and Intensive Care Department, Hôpital Tenon Faculté de Médecine Pierre & Marie Curie
| | - T Similowski
- Medical Intensive Care Unit and Respiratory Division, Groupe Hospitalier Pitié-Salpêtrière Faculté de Médecine Pierre & Marie Curie ER10
| | - A Demoule
- Medical Intensive Care Unit and Respiratory Division, Groupe Hospitalier Pitié-Salpêtrière Faculté de Médecine Pierre & Marie Curie INSERM U974, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
28
|
Schmidt M, Kindler F, Cecchini J, Poitou T, Morawiec E, Persichini R, Similowski T, Demoule A. Neurally adjusted ventilatory assist and proportional assist ventilation both improve patient-ventilator interaction. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:56. [PMID: 25879592 PMCID: PMC4355459 DOI: 10.1186/s13054-015-0763-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/22/2015] [Indexed: 12/02/2022]
Abstract
Introduction The objective was to compare the impact of three assistance levels of different modes of mechanical ventilation; neurally adjusted ventilatory assist (NAVA), proportional assist ventilation (PAV), and pressure support ventilation (PSV) on major features of patient-ventilator interaction. Methods PSV, NAVA, and PAV were set to obtain a tidal volume (VT) of 6 to 8 ml/kg (PSV100, NAVA100, and PAV100) in 16 intubated patients. Assistance was further decreased by 50% (PSV50, NAVA50, and PAV50) and then increased by 50% (PSV150, NAVA150, and PAV150) with all modes. The three modes were randomly applied. Airway flow and pressure, electrical activity of the diaphragm (EAdi), and blood gases were measured. VT, peak EAdi, coefficient of variation of VT and EAdi, and the prevalence of the main patient-ventilator asynchronies were calculated. Results PAV and NAVA prevented the increase of VT with high levels of assistance (median 7.4 (interquartile range (IQR) 5.7 to 10.1) ml/kg and 7.4 (IQR, 5.9 to 10.5) ml/kg with PAV150 and NAVA150 versus 10.9 (IQR, 8.9 to 12.0) ml/kg with PSV150, P <0.05). EAdi was higher with PAV than with PSV at level100 and level150. The coefficient of variation of VT was higher with NAVA and PAV (19 (IQR, 14 to 31)% and 21 (IQR 16 to 29)% with NAVA100 and PAV100 versus 13 (IQR 11 to 18)% with PSV100, P <0.05). The prevalence of ineffective triggering was lower with PAV and NAVA than with PSV (P <0.05), but the prevalence of double triggering was higher with NAVA than with PAV and PSV (P <0.05). Conclusions PAV and NAVA both prevent overdistention, improve neuromechanical coupling, restore the variability of the breathing pattern, and decrease patient-ventilator asynchrony in fairly similar ways compared with PSV. Further studies are needed to evaluate the possible clinical benefits of NAVA and PAV on clinical outcomes. Trial registration Clinicaltrials.gov NCT02056093. Registered 18 December 2013. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-0763-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthieu Schmidt
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France. .,INSERM, UMR_S 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France. .,AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département R3S), F-75013, Paris, France. .,Service de Pneumologie et Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75651, Paris, Cedex 13, France.
| | - Felix Kindler
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département R3S), F-75013, Paris, France.
| | - Jérôme Cecchini
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France. .,INSERM, UMR_S 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France.
| | - Tymothée Poitou
- Université Pierre et Marie Curie-CNRS-INSERM, ICM, Equipe Neurologie et Thérapeutique Expérimentale, Hôpital de la Salpêtrière, Paris, France.
| | - Elise Morawiec
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France. .,INSERM, UMR_S 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France. .,AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département R3S), F-75013, Paris, France.
| | - Romain Persichini
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département R3S), F-75013, Paris, France.
| | - Thomas Similowski
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France. .,INSERM, UMR_S 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France. .,AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département R3S), F-75013, Paris, France.
| | - Alexandre Demoule
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France. .,INSERM, UMR_S 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France. .,AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département R3S), F-75013, Paris, France. .,U974, Institut National de la Santé et de la Recherche médicale, Paris, France.
| |
Collapse
|
29
|
Liu L, Liu S, Xie J, Yang Y, Slutsky AS, Beck J, Sinderby C, Qiu H. Assessment of patient-ventilator breath contribution during neurally adjusted ventilatory assist in patients with acute respiratory failure. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:43. [PMID: 25882607 PMCID: PMC4339109 DOI: 10.1186/s13054-015-0775-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022]
Abstract
INTRODUCTION We previously showed in animals that the ratio of inspired tidal volume (Vtinsp) to inspiratory peak electrical activity of the diaphragm (EAdipk) can be used to quantify the respective patient and ventilator breath contributions (PVBCs) during neurally adjusted ventilatory assist (NAVA). The PVBC index has not been tested clinically. METHODS We studied 12 intubated and mechanically ventilated patients with acute respiratory failure and measured EAdipk, airway (Paw) and inspiratory esophageal pressure (Pes) and Vtinsp. We applied 11 different NAVA levels, increasing them every 3 minutes in steps of 0.3 cm H₂O/μV from 0 to 3.0 cmH₂O/μV. At each NAVA level, one breath was non-assisted (NAVA level 0). PVBC indices were calculated by relating Vtinsp/EAdipk of the non-assisted breath to Vtinsp/EAdipk of the assisted breath(s) using one ((N1)PVBC) or the mean value of five preceding assisted breaths ((X5)PVBC). During assisted breaths, inspiratory changes in Pes (∆Pes) and transpulmonary (ΔPtp) pressures were used to calculate the relative contribution of patient to total inspiratory lung-distending pressures (ΔPes/ΔPtp). Matching of respiratory drive indices and squaring of the PVBC was evaluated for their effect on the correlation between PVBC and ΔPes/ΔPtp. Linear regression analysis and Bland-Altman analysis were applied to compare indices. RESULTS Using an average of five assisted breaths prior to the non-assisted breath and squaring the PVBC ((X5)PVBC(2)) improved determination coefficients (P <0.05), adjusted the regression slope and intercept between PVBC and ΔPes/ΔPtp toward identity (P <0.05) and reduced bias (P <0.05). Matching EAdipk between non-assisted and assisted breaths within the range of 0.77 to 1.30 improved the relationship between (X5)PVBC(2) and ΔPes/ΔPtp (P <0.05) and abolished the need for EAdi normalization in the PVBC calculation (R(2) = 0.96; bias = 0.16 ± 0.06; precision = 0.33 ± 0.08 (mean and 95% confidence interval)). CONCLUSIONS This clinical study confirms previous experimental results showing that the PVBC(2) predicts the contribution of the inspiratory muscles versus that of the ventilator during NAVA, when differences in effort (EAdi) between non-assisted and assisted breaths are limited. PVBC could help to quantify and standardize the adjustment of the level of assist, and hence reduce the risks of excessive ventilatory assist in patients. TRIAL REGISTRATION ClinicalTrials.gov NCT01663480. Registered 9 August 2012.
Collapse
Affiliation(s)
- Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, 87 Dingjiaqiao Street, Nanjing, 210009, China.
| | - Songqiao Liu
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, 87 Dingjiaqiao Street, Nanjing, 210009, China.
| | - Jianfeng Xie
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, 87 Dingjiaqiao Street, Nanjing, 210009, China.
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, 87 Dingjiaqiao Street, Nanjing, 210009, China.
| | - Arthur S Slutsky
- Keenan Research Centre for Biomedical Science and Department of Critical Care, St Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada. .,Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Suit RFE3-805, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| | - Jennifer Beck
- Keenan Research Centre for Biomedical Science and Department of Critical Care, St Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada. .,Department of Pediatrics, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| | - Christer Sinderby
- Keenan Research Centre for Biomedical Science and Department of Critical Care, St Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada. .,Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Suit RFE3-805, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, 87 Dingjiaqiao Street, Nanjing, 210009, China.
| |
Collapse
|
30
|
Neurally adjusted ventilatory assist (NAVA) allows patient-ventilator synchrony during pediatric noninvasive ventilation: a crossover physiological study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:44. [PMID: 25886793 PMCID: PMC4342194 DOI: 10.1186/s13054-015-0770-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/23/2015] [Indexed: 11/16/2022]
Abstract
Introduction The need for intubation after a noninvasive ventilation (NIV) failure is frequent in the pediatric intensive care unit (PICU). One reason is patient-ventilator asynchrony during NIV. Neurally adjusted ventilatory assist (NAVA) is a mode of ventilation controlled by the patient’s neural respiratory drive. The aim of this study was to assess the feasibility and tolerance of NIV-NAVA in children and to evaluate its impact on synchrony and respiratory effort. Methods This prospective, physiologic, crossover study included 13 patients requiring NIV in the PICU of Sainte-Justine’s Hospital from October 2011 to May 2013. Patients were successively ventilated in conventional NIV as prescribed by the physician in charge (30 minutes), in NIV-NAVA (60 minutes), and again in conventional NIV (30 minutes). Electrical activity of the diaphragm (EAdi) and airway pressure were simultaneously recorded to assess patient-ventilator synchrony. Results NIV-NAVA was feasible and well tolerated in all patients. One patient asked to stop the study because of anxiety related to the leak-free facial mask. Inspiratory trigger dys-synchrony and cycling-off dys-synchrony were significantly shorter in NIV-NAVA versus initial and final conventional NIV periods (both P <0.05). Wasted efforts were also decreased in NIV-NAVA (all values expressed as median and interquartile values) (0 (0 to 0) versus 12% (4 to 20) and 6% (2 to 22), respectively; P <0.01). As a whole, total time spent in asynchrony was reduced to 8% (6 to 10) in NIV-NAVA, versus 27% (19 to 56) and 32% (21 to 38) in conventional NIV before and after NIV-NAVA, respectively (P =0.05). Conclusion NIV-NAVA is feasible and well tolerated in PICU patients and allows improved patient-ventilator synchronization. Larger controlled studies are warranted to evaluate the clinical impact of these findings. Trial registration ClinicalTrials.gov NCT02163382. Registered 9 June 2014.
Collapse
|
31
|
Spontaneous breathing in mild and moderate versus severe acute respiratory distress syndrome. Curr Opin Crit Care 2014; 20:69-76. [PMID: 24335656 DOI: 10.1097/mcc.0000000000000055] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the most recent clinical and experimental data on the impact of spontaneous breathing in acute respiratory distress syndrome (ARDS). RECENT FINDINGS Spontaneous breathing during assisted as well as nonassisted modes of mechanical ventilation improves lung function and reduces lung damage in mild and moderate ARDS. New modes of assisted mechanical ventilation with improved patient ventilator interaction and enhanced variability of the respiratory pattern offer additional benefit on lung function and damage. However, data supporting an outcome benefit of spontaneous breathing in ARDS, even in its mild and moderate forms, are missing. In contrast, controlled mechanical ventilation with muscle paralysis in the first 48 h of severe ARDS has been shown to improve survival, as compared with placebo. Currently, it is unclear whether ventilator settings, rather than the severity of lung injury, determine the potential of spontaneous breathing for benefit or harm. SUMMARY Clinical and experimental studies show that controlled mechanical ventilation with muscle paralysis in the early phase of severe ARDS reduces lung injury and even mortality. At present, spontaneous breathing should be avoided in the early phase of severe ARDS, but considered in mild-to-moderate ARDS.
Collapse
|
32
|
Doorduin J, Sinderby CA, Beck J, van der Hoeven JG, Heunks LMA. Automated patient-ventilator interaction analysis during neurally adjusted non-invasive ventilation and pressure support ventilation in chronic obstructive pulmonary disease. Crit Care 2014; 18:550. [PMID: 25307894 PMCID: PMC4207887 DOI: 10.1186/s13054-014-0550-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/22/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Delivering synchronous assist during non-invasive ventilation (NIV) is challenging with flow- or pressure-controlled ventilators, especially in patients with chronic obstructive pulmonary disease (COPD). Neurally adjusted ventilatory assist (NAVA) uses diaphragm electrical activity (EAdi) to control the ventilator. We evaluated patient-ventilator interaction in patients with COPD during NIV with pressure support ventilation (PSV) and NAVA using a recently introduced automated analysis. METHODS Twelve COPD patients underwent three 30-minute trials: 1) PSV with dedicated NIV ventilator (NIV-PSVVision), 2) PSV with intensive care unit (ICU) ventilator (NIV-PSVServo-I), and 3) with NIV-NAVA. EAdi, flow, and airway pressure were recorded. Patient-ventilator interaction was evaluated by comparing airway pressure and EAdi waveforms with automated computer algorithms. The NeuroSync index was calculated as the percentage of timing errors between airway pressure and EAdi. RESULTS The NeuroSync index was higher (larger error) for NIV-PSVVision (24 (IQR 15 to 30) %) and NIV-PSVServo-I (21 (IQR 15 to 26) %) compared to NIV-NAVA (5 (IQR 4 to 7) %; P <0.001). Wasted efforts, trigger delays and cycling-off errors were less with NAVA (P <0.05 for all). The NeuroSync index and the number of wasted efforts were strongly correlated (r2 = 0.84), with a drastic increase in wasted efforts after timing errors reach 20%. CONCLUSIONS In COPD patients, non-invasive NAVA improves patient-ventilator interaction compared to PSV, delivered either by a dedicated or ICU ventilator. The automated analysis of patient-ventilator interaction allowed for an objective detection of patient-ventilator interaction during NIV. In addition, we found that progressive mismatch between neural effort and pneumatic timing is associated with wasted efforts.
Collapse
|
33
|
Garzando M, Ferrandis R, Garrigues B, Soro M, Belda FJ. Neurally adjusted ventilatory assist: An update. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2014. [DOI: 10.1016/j.tacc.2014.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
La ventilation non invasive en mode NAVA (neurally adjusted ventilatory assist) en réanimation pédiatrique. MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-014-0848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Vagheggini G, Mazzoleni S, Vlad Panait E, Navalesi P, Ambrosino N. Physiologic response to various levels of pressure support and NAVA in prolonged weaning. Respir Med 2013; 107:1748-54. [DOI: 10.1016/j.rmed.2013.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/09/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
36
|
Hess DR, Thompson BT, Slutsky AS. Update in acute respiratory distress syndrome and mechanical ventilation 2012. Am J Respir Crit Care Med 2013; 188:285-92. [PMID: 23905523 DOI: 10.1164/rccm.201304-0786up] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dean R Hess
- Respiratory Care, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | |
Collapse
|
37
|
Skorko A, Hadfield D, Shah A, Hopkins P. Advances in Ventilation — Neurally Adjusted Ventilatory Assist (NAVA). J Intensive Care Soc 2013. [DOI: 10.1177/175114371301400409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This review aims to introduce neurally-adjusted ventilatory assist (NAVA) to readers who do not have experience in using this form of ventilation. We will describe the basic principles and theoretical advantages of NAVA together with our experiences of introducing and using this mode in an intensive care unit.
Collapse
Affiliation(s)
- Agnieszka Skorko
- Clinical Research Fellow in Intensive Care, King's College Hospital, London
| | | | - Anand Shah
- Foundation Year 1, The Whittington Hospital
| | - Philip Hopkins
- Consultant in Intensive Care, King's College Hospital, London
| |
Collapse
|
38
|
Chiew YS, Chase JG, Lambermont B, Roeseler J, Pretty C, Bialais E, Sottiaux T, Desaive T. Effects of Neurally Adjusted Ventilatory Assist (NAVA) levels in non-invasive ventilated patients: titrating NAVA levels with electric diaphragmatic activity and tidal volume matching. Biomed Eng Online 2013; 12:61. [PMID: 23819441 PMCID: PMC3707774 DOI: 10.1186/1475-925x-12-61] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurally adjusted ventilatory assist (NAVA) delivers pressure in proportion to diaphragm electrical activity (Eadi). However, each patient responds differently to NAVA levels. This study aims to examine the matching between tidal volume (Vt) and patients' inspiratory demand (Eadi), and to investigate patient-specific response to various NAVA levels in non-invasively ventilated patients. METHODS 12 patients were ventilated non-invasively with NAVA using three different NAVA levels. NAVA100 was set according to the manufacturer's recommendation to have similar peak airway pressure as during pressure support. NAVA level was then adjusted ±50% (NAVA50, NAVA150). Airway pressure, flow and Eadi were recorded for 15 minutes at each NAVA level. The matching of Vt and integral of Eadi (ʃEadi) were assessed at the different NAVA levels. A metric, Range90, was defined as the 5-95% range of Vt/ʃEadi ratio to assess matching for each NAVA level. Smaller Range90 values indicated better matching of supply to demand. RESULTS Patients ventilated at NAVA50 had the lowest Range90 with median 25.6 uVs/ml [Interquartile range (IQR): 15.4-70.4], suggesting that, globally, NAVA50 provided better matching between ʃEadi and Vt than NAVA100 and NAVA150. However, on a per-patient basis, 4 patients had the lowest Range90 values in NAVA100, 1 patient at NAVA150 and 7 patients at NAVA50. Robust coefficient of variation for ʃEadi and Vt were not different between NAVA levels. CONCLUSIONS The patient-specific matching between ʃEadi and Vt was variable, indicating that to obtain the best possible matching, NAVA level setting should be patient specific. The Range90 concept presented to evaluate Vt/ʃEadi is a physiologic metric that could help in individual titration of NAVA level.
Collapse
Affiliation(s)
- Yeong Shiong Chiew
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This critical review discusses the key points that would be of practical help for the clinician who applies noninvasive ventilation (NIV) for treatment of patients with acute respiratory failure (ARF). RECENT FINDINGS In recent years, the growing role of NIV in the acute care setting has led to the development of technical innovations to overcome the problems related to gas leakage and dead space. A considerable amount of research has been conducted to improve the quality of the devices as well as optimize ventilation modes used to administer NIV. As a result, also mechanical ventilators have been implemented with modalities aimed at delivering NIV. SUMMARY The success of NIV in patients with ARF depends on several factors, including the skills of the clinician, selection of patient, choice of interface, selection of ventilation mode and ventilator setting, monitoring, and the motivation of the patient. Recent advances in the understanding of the physiological aspects of using NIV through different interfaces and ventilator settings have led to improve patient-machine interaction, enhancing favorable NIV outcome.
Collapse
|
40
|
|
41
|
Ventilatory support is not as smooth as power-assisted steering—Not yet*. Crit Care Med 2012; 40:1968-9. [DOI: 10.1097/ccm.0b013e3182474ce2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|