1
|
El-Dehaibi F, Zamora R, Radder J, Yin J, Shah AM, Namas RA, Situ M, Zhao Y, Bain W, Morris A, McVerry BJ, Barclay DA, Billiar TR, Zhang Y, Kitsios GD, Vodovotz Y. A common single nucleotide polymorphism is associated with inflammation and critical illness outcomes. iScience 2023; 26:108333. [PMID: 38034362 PMCID: PMC10684809 DOI: 10.1016/j.isci.2023.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/25/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
Acute inflammation is heterogeneous in critical illness and predictive of outcome. We hypothesized that genetic variability in novel, yet common, gene variants contributes to this heterogeneity and could stratify patient outcomes. We searched algorithmically for significant differences in systemic inflammatory mediators associated with any of 551,839 SNPs in one derivation (n = 380 patients with blunt trauma) and two validation (n = 75 trauma and n = 537 non-trauma patients) cohorts. This analysis identified rs10404939 in the LYPD4 gene. Trauma patients homozygous for the A allele (rs10404939AA; 27%) had different trajectories of systemic inflammation along with persistently elevated multiple organ dysfunction (MOD) indices vs. patients homozygous for the G allele (rs10404939GG; 26%). rs10404939AA homozygotes in the trauma validation cohort had elevated MOD indices, and non-trauma patients displayed more complex inflammatory networks and worse 90-day survival compared to rs10404939GG homozygotes. Thus, rs10404939 emerged as a common, broadly prognostic SNP in critical illness.
Collapse
Affiliation(s)
- Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Josiah Radder
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ashti M. Shah
- Physician Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michelle Situ
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanwu Zhao
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William Bain
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Derek A. Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Cohen M, Lamparello AJ, Schimunek L, El-Dehaibi F, Namas RA, Xu Y, Kaynar AM, Billiar TR, Vodovotz Y. Quality Control Measures and Validation in Gene Association Studies: Lessons for Acute Illness. Shock 2020; 53:256-268. [PMID: 31365490 PMCID: PMC6989353 DOI: 10.1097/shk.0000000000001409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acute illness is a complex constellation of responses involving dysregulated inflammatory and immune responses, which are ultimately associated with multiple organ dysfunction. Gene association studies have associated single-nucleotide polymorphisms (SNPs) with clinical and pharmacological outcomes in a variety of disease states, including acute illness. With approximately 4 to 5 million SNPs in the human genome and recent studies suggesting that a large portion of SNP studies are not reproducible, we suggest that the ultimate clinical utility of SNPs in acute illness depends on validation and quality control measures. To investigate this issue, in December 2018 and January 2019 we searched the literature for peer-reviewed studies reporting data on associations between SNPs and clinical outcomes and between SNPs and pharmaceuticals (i.e., pharmacogenomics) published between January 2011 to February 2019. We review key methodologies and results from a variety of clinical and pharmacological gene association studies, including trauma and sepsis studies, as illustrative examples on current SNP association studies. In this review article, we have found three key points which strengthen the potential accuracy of SNP association studies in acute illness and other diseases: providing evidence of following a protocol quality control method such as the one in Nature Protocols or the OncoArray QC Guidelines; enrolling enough patients to have large cohort groups; and validating the SNPs using an independent technique such as a second study using the same SNPs with new patient cohorts. Our survey suggests the need to standardize validation methods and SNP quality control measures in medicine in general, and specifically in the context of complex disease states such as acute illness.
Collapse
Affiliation(s)
- Maria Cohen
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
| | | | - Lukas Schimunek
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yan Xu
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
| | - A Murat Kaynar
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15261
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
3
|
Maslove DM, Lamontagne F, Marshall JC, Heyland DK. A path to precision in the ICU. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:79. [PMID: 28366166 PMCID: PMC5376689 DOI: 10.1186/s13054-017-1653-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Precision medicine is increasingly touted as a groundbreaking new paradigm in biomedicine. In the ICU, the complexity and ambiguity of critical illness syndromes have been identified as fundamental justifications for the adoption of a precision approach to research and practice. Inherently protean diseases states such as sepsis and acute respiratory distress syndrome have manifestations that are physiologically and anatomically diffuse, and that fluctuate over short periods of time. This leads to considerable heterogeneity among patients, and conditions in which a “one size fits all” approach to therapy can lead to widely divergent results. Current ICU therapy can thus be seen as imprecise, with the potential to realize substantial gains from the adoption of precision medicine approaches. A number of challenges still face the development and adoption of precision critical care, a transition that may occur incrementally rather than wholesale. This article describes a few concrete approaches to addressing these challenges. First, novel clinical trial designs, including registry randomized controlled trials and platform trials, suggest ways in which conventional trials can be adapted to better accommodate the physiologic heterogeneity of critical illness. Second, beyond the “omics” technologies already synonymous with precision medicine, the data-rich environment of the ICU can generate complex physiologic signatures that could fuel precision-minded research and practice. Third, the role of computing infrastructure and modern informatics methods will be central to the pursuit of precision medicine in the ICU, necessitating close collaboration with data scientists. As work toward precision critical care continues, small proof-of-concept studies may prove useful in highlighting the potential of this approach.
Collapse
Affiliation(s)
- David M Maslove
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada. .,Department of Medicine, Queen's University, Kingston, ON, Canada. .,Department of Critical Care Medicine, Kingston General Hospital, Davies 2, 76 Stuart St., Kingston, Ontario, K7L 2V7, Canada.
| | - Francois Lamontagne
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du CHU de Sherbrooke, Sherbrooke, QC, Canada.,Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - John C Marshall
- Department of Surgery, University of Toronto, Toronto, ON, Canada.,Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada.,St. Michael's Hospital, Toronto, ON, Canada
| | - Daren K Heyland
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada.,Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, ON, Canada
| |
Collapse
|
4
|
Hazeldine J, Hampson P, Lord JM. The diagnostic and prognostic value of systems biology research in major traumatic and thermal injury: a review. BURNS & TRAUMA 2016; 4:33. [PMID: 27672669 PMCID: PMC5030723 DOI: 10.1186/s41038-016-0059-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 01/12/2023]
Abstract
As secondary complications remain a significant cause of morbidity and mortality amongst hospitalised trauma patients, the need to develop novel approaches by which to identify patients at risk of adverse outcome is becoming increasingly important. Centred on the idea that patients who experience “poor” outcome post trauma elicit a response to injury that is distinct from those who experience “good” outcome, tailored therapeutics is an emerging concept aimed at improving current treatment regimens by promoting patient-specific therapies. Making use of recent advancements in the fields of genomics, proteomics and metabolomics, numerous groups have undertaken a systems-based approach to analysing the acute immune and inflammatory response to major traumatic and thermal injury in an attempt to uncover a single or combination of biomarkers that can identify patients at risk of adverse outcome. Early results are encouraging, with all three approaches capable of discriminating patients with “good” outcome from those who develop nosocomial infections, sepsis and multiple organ failure, with differences apparent in blood samples acquired as early as 2 h post injury. In particular, genomic data is proving to be highly informative, identifying patients at risk of “poor” outcome with a higher degree of sensitivity and specificity than statistical models built upon data obtained from existing anatomical and physiological scoring systems. Here, focussing predominantly upon human-based research, we provide an overview of the findings of studies that have investigated the immune and inflammatory response to major traumatic and thermal injury at the genomic, protein and metabolite level, and consider both the diagnostic and prognostic potential of these approaches.
Collapse
Affiliation(s)
- Jon Hazeldine
- NIHR Surgical Reconstruction and Microbiology Research Centre, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK
| | - Peter Hampson
- NIHR Surgical Reconstruction and Microbiology Research Centre, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK ; Healing Foundation Centre for Burns Research, Queen Elizabeth Hospital, Birmingham, B15 2WB UK
| | - Janet M Lord
- NIHR Surgical Reconstruction and Microbiology Research Centre, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK
| |
Collapse
|
5
|
Dickson RP. The microbiome and critical illness. THE LANCET. RESPIRATORY MEDICINE 2016; 4:59-72. [PMID: 26700442 PMCID: PMC4752077 DOI: 10.1016/s2213-2600(15)00427-0] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
The central role of the microbiome in critical illness is supported by a half century of experimental and clinical study. The physiological effects of critical illness and the clinical interventions of intensive care substantially alter the microbiome. In turn, the microbiome predicts patients' susceptibility to disease, and manipulation of the microbiome has prevented or modulated critical illness in animal models and clinical trials. This Review surveys the microbial ecology of critically ill patients, presents the facts and unanswered questions surrounding gut-derived sepsis, and explores the radically altered ecosystem of the injured alveolus. The revolution in culture-independent microbiology has provided the tools needed to target the microbiome rationally for the prevention and treatment of critical illness, holding great promise to improve the acute and chronic outcomes of the critically ill.
Collapse
Affiliation(s)
- Robert P Dickson
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|