1
|
Triantaris A, Aidonidis I, Hatziefthimiou A, Gourgoulianis K, Zakynthinos G, Makris D. Elevated PaCO 2 levels increase pulmonary artery pressure. Sci Prog 2022; 105:368504221094161. [PMID: 35440248 PMCID: PMC10358613 DOI: 10.1177/00368504221094161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Permissive hypercapnia is commonly used in mechanically ventilated patients to avoid lung injury but its effect on pulmonary artery pressure (PAP) is still unclear, particularly in combination with tidal volume (Vt). Therefore, an in vivo study was performed on adult rabbits ventilated with low (9 ml/Kg, LVt group) or high (15 ml/Kg, HVt group) tidal volume (Vt) and alterations in PAP were estimated. Both groups of animals initially were ventilated with FiO2 0.3 (Normocapnia-1) followed by inhalation of enriched CO2 gas mixture (FiCO2 0.10) to develop hypercapnia (Hypercapnia-1). After 30 min of hypercapnia, animals were re-ventilated with FiO2 0.3 to develop normocapnia (Normocapnia-2) again and then with FiCO2 0.10 to develop hypercapnia (Hypercapnia-2). Systolic, diastolic and mean PAP were assessed with a catheter in the pulmonary artery. In HP-1 and HP-2, PaCO2 increased (p < 0.0001) in both LVt and HVt animals compared to baseline values. pH decreased to ≈7.2 in HP-1 and ≈7.1 in HP -2. In normocapnia, the rise in Vt from 9 to 15 ml/Kg induced an increase in static compliance (Cstat), plateau airway pressure (Pplat) and PAP. Hypercapnia increased PAP in either LVt or HVt animals without significant effect on Cstat or Pplat. A two-way ANOVA revealed that there was not a statistically significant interaction between the effects of hypercapnia and tidal volume on mPAP (p = 0.76). In conclusion, increased Vt per se induced an increase in Cstat, Pplat and PAP in normocapnia. Hypercapnia increased PAP in rabbits ventilated with low or high Vt but this effect was not long-lasting.
Collapse
Affiliation(s)
- Apostolos Triantaris
- Intensive Care Unit, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Isaak Aidonidis
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Apostolia Hatziefthimiou
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Konstantinos Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Georgios Zakynthinos
- Intensive Care Unit, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Demosthenes Makris
- Intensive Care Unit, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
2
|
Liao LM, Zhou L, Wang CR, Hu JY, Lu YJ, Huang S. Opposing responses of the rat pulmonary artery and vein to phenylephrine and other agents in vitro. BMC Pulm Med 2021; 21:189. [PMID: 34090386 PMCID: PMC8180060 DOI: 10.1186/s12890-021-01558-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Different from current cognition, our study demonstrated that adrenergic receptors agonist phenylephrine significantly relaxed isolated pulmonary artery but constricted pulmonary veins. Through comparing differences in the effects of commonly used vasoactive drugs on pulmonary artery and veins, the study aimed to improve efficiency and accuracy of isolated pulmonary vascular experiments, and to provide experimental basis for clinical drug use. Methods The contractile responses of pulmonary arteries and veins from twelve-week-old Male Sprague-Dawley rats to phenylephrine, arginine vasopressin (AVP), U46619, endothelin-1, and potassium chloride (KCl) were recorded, as well as the relaxation in response to phenylephrine, AVP, acetylcholine. To further explore the mechanism, some vessels was also pre-incubated with adrenergic receptors antagonists propranolol, prazosin and nitric oxide synthesis inhibitor N[gamma]-nitro-L-arginine methyl ester (L-NAME) before addition of the experimental drugs. Results Phenylephrine constricted pulmonary veins directly, but constricted pulmonary artery only after incubation with propranolol or/and L-NAME. The pulmonary artery exhibited significant relaxation to AVP with or without L-NAME incubation. AVP more clearly constricted the veins after incubation with L-NAME. Changes in vascular tension also varied from pulmonary artery to veins for KCl stimulation. Different from phenomena presented in veins, acetylcholine did not relax pulmonary artery preconstricted by KCl, U46619, and endothelin-1. Conclusions According to the results, phenylephrine, KCl, AVP, and acetylcholine could be used to distinguish pulmonary arteries and pulmonary veins in vitro. This also suggested that the pulmonary arteries and pulmonary veins have great differences in physiology and drug reactivity.
Collapse
Affiliation(s)
- Li-Mei Liao
- Department of Anaesthesia, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang road, Shanghai, 200090, China.,Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jinsui Road, Guangzhou, 510623, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, 130 Dongan Road, Shanghai, 200032, China.
| | - Chen-Ran Wang
- Department of Anaesthesia, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang road, Shanghai, 200090, China
| | - Jian-Ying Hu
- Department of Anaesthesia, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang road, Shanghai, 200090, China
| | - Yao-Jun Lu
- Department of Anaesthesia, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang road, Shanghai, 200090, China
| | - Shaoqiang Huang
- Department of Anaesthesia, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang road, Shanghai, 200090, China.
| |
Collapse
|
3
|
Abstract
Diffuse alveolar hemorrhage (DAH) is a rare condition with reported mortality ranging between 20 and 100%. There are many etiologies of DAH. Cardiac diseases are likely underreported causes of DAH. Heart failure and mitral valve diseases are the most common cardiac causes of DAH. The DAH results from pulmonary venous hypertension leading to stress failure of the pulmonary capillaries. There is also a contribution of the bronchial circulation. The Alveolar-capillary membrane or blood-gas barrier is an extremely thin structure that allows rapid and passive diffusion of oxygen from the inhaled air to the pulmonary capillaries while preventing pulmonary edema and DAH with chronic elevation of the transmural hydrostatic pressure. The purpose of this manuscript is to inform the clinician about this rare cause of DAH, which may be overlooked unless specifically sought after. We also discuss the pathophysiologic aspects of DAH and the safety mechanisms in place to prevent such occurrences.
Collapse
|
4
|
Zhang J, He Q, Du L, Ji R, Yuan L, Zhang H, Yuan X, Shen L, Li Y. Risk factor for lung infection in recipients after liver transplantation: A meta-analysis. Artif Organs 2021; 45:289-296. [PMID: 32979870 DOI: 10.1111/aor.13826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 11/26/2022]
Abstract
Lung infection (LI) often occurs in patients with liver transplantation (LT). This meta-analysis was conducted to determine the risk factors associated with LI after LT. We retrieved relevant research published as of February 2020 from eight electronic databases. The studies were reviewed against the inclusion and exclusion criteria. The Z test was used to determine the combined odds ratio (OR) or the standardized mean difference (SMD) of the risk factors. We used the OR and its corresponding 95% confidence interval (CI) or the SMD and its corresponding 95% CI to identify significant differences in risk factors. A total of nine studies were included, comprising a total of 1624 recipients. Six risk factors associated with LI were identified after LT: Model for end-stage liver disease score (MELD score) (SMD = 0.40), Child-Pugh class C (OR = 3.00), intensive care unit (ICU) hospital stay (SMD = 1.35), mechanical ventilation (SMD = 1.03), bilirubin (SMD = 0.39), and atelectasis (OR = 7.28). Although certain risk factors have been identified as important factors for LI after LT, which may provide a basis for clinical prevention, a well-designed prospective study should be conducted to validate the findings of this study.
Collapse
Affiliation(s)
- Jiaxue Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Qiang He
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ling Du
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Renyue Ji
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Lingyue Yuan
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hongyang Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xinyu Yuan
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - LiFei Shen
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingli Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Liu J, Huang X, Hu S, Meng Z, He H. Individualized lung protective ventilation vs. conventional ventilation during general anesthesia in laparoscopic total hysterectomy. Exp Ther Med 2020; 19:3051-3059. [PMID: 32256792 PMCID: PMC7086193 DOI: 10.3892/etm.2020.8549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
Laparoscopic total hysterectomy is performed by carbon dioxide insufflation, Trendelenburg position and mechanical ventilation of patients under general anesthesia. However, this may induce pulmonary atelectasis and/or hyperdistention of the lungs. Multiple studies have indicated that mechanical ventilation with the use of low tidal volumes, moderate positive end-expiratory pressure (PEEP) and regular alveolar recruitment maneuvers may improve post-operative outcomes. However, the benefits of an individualized level of PEEP have not been clearly established. In the present study, it was hypothesized that a moderate fixed PEEP may not suit all patients and an individually-titrated PEEP during anesthesia may improve the peri-operative pulmonary oxygenation function. The aim of the present study was to compare the pulmonary oxygenation function and post-operative pulmonary complications (PPCs) in patients receiving individualized lung-protective mechanical ventilation (LPV) vs. conventional ventilation (CV) during laparoscopic total hysterectomy. The present study was a randomized double-blinded clinical trial on 87 patients who were randomly divided to receive CV or protective ventilation (PV). An optimal individualized PEEP value was determined using a static pulmonary compliance-directed PEEP titration procedure. Pulmonary oxygenation function, serum inflammatory factors, including interleukin-8 and Clara cell protein 16, the incidence of PPCs and the post-operative length of stay were also determined. Patients in the PV group exhibited improved pulmonary oxygenation function during and after the operation. The total percentage of PPCs during the first 7 days after surgery was significantly lower in the PV group compared with those in the CV group. In conclusion, as compared to CV, intra-operative individualized LPV significantly improved pulmonary oxygenation function and reduced the incidence of PPCs during the first 7 days after laparoscopic total hysterectomy (Clinical trial registration no. ChiCTR1900027738).
Collapse
Affiliation(s)
- Jing Liu
- Department of Anesthesiology, Huzhou Maternity and Child Healthcare Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Xinhua Huang
- Department of Anesthesiology, Huzhou Maternity and Child Healthcare Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Siping Hu
- Department of Anesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Zhipeng Meng
- Department of Anesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Huanzhong He
- Department of Anesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| |
Collapse
|
6
|
De Winter FHR, 's Jongers B, Bielen K, Mancuso D, Timbermont L, Lammens C, Van Averbeke V, Boddaert J, Ali O, Kluytmans J, Ruzin A, Malhotra-Kumar S, Jorens PG, Goossens H, Kumar-Singh S. Mechanical Ventilation Impairs IL-17 Cytokine Family Expression in Ventilator-Associated Pneumonia. Int J Mol Sci 2019; 20:ijms20205072. [PMID: 31614857 PMCID: PMC6829394 DOI: 10.3390/ijms20205072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Mechanical ventilation (MV) is the primary risk factor for the development of ventilator-associated pneumonia (VAP). Besides inducing a pro-inflammatory T-helper (Th)-1 cytokine response, MV also induces an anti-inflammatory Th2 cytokine response, marked by increased IL-4 secretion and reduced bacterial phagocytic capacity of rodent lung macrophages. Since IL-4 is known to downregulate both Th1 and Th17 cytokines, the latter is important in mediating mucosal immunity and combating bacterial and fungal growth, we studied and showed here in a rat model of MV that Th17 cytokines (IL-17A, IL-17F, and IL-22) were significantly upregulated in the lung as a response to different MV strategies currently utilized in clinic. To study whether the increased IL-4 levels are associated with downregulation of the anti-bacterial Th17 cytokines, we subsequently challenged mechanically ventilated rats with an intratracheal inoculation of Pseudomonas aeruginosa (VAP model) and showed a dramatic downregulation of IL-17A, IL-17F, and IL-22, compared to animals receiving the same bacterial burden without MV. For the studied Th1 cytokines (IFNγ, TNFα, IL-6, and IL-1β), only IFNγ showed a significant decrease as a consequence of bacterial infection in mechanically ventilated rats. We further studied IL-17A, the most studied IL-17 family member, in intensive care unit (ICU) pneumonia patients and showed that VAP patients had significantly lower levels of IL-17A in the endotracheal aspirate compared to patients entering ICU with pre-existing pneumonia. These translational data, obtained both in animal models and in humans, suggest that a deficient anti-bacterial Th17 response in the lung during MV is associated with VAP development.
Collapse
Affiliation(s)
- Fien H. R. De Winter
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Bart 's Jongers
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Kenny Bielen
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Domenico Mancuso
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Leen Timbermont
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Vincent Van Averbeke
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Omar Ali
- Microbial Sciences, R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, MD 20877, USA
| | - Jan Kluytmans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, HP Stratenum 6.131, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Alexey Ruzin
- Microbial Sciences, R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, MD 20877, USA
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Philippe G Jorens
- Department of Critical Care Medicine, Antwerp University Hospital and University of Antwerp, LEMP, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| |
Collapse
|
7
|
Bielen K, 's Jongers B, Boddaert J, Lammens C, Jorens PG, Malhotra-Kumar S, Goossens H, Kumar-Singh S. Mechanical Ventilation Induces Interleukin 4 Secretion in Lungs and Reduces the Phagocytic Capacity of Lung Macrophages. J Infect Dis 2019; 217:1645-1655. [PMID: 29140452 DOI: 10.1093/infdis/jix573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/06/2017] [Indexed: 12/24/2022] Open
Abstract
Patients receiving mechanical ventilation are at risk of developing ventilator-associated pneumonia. Here, we show that clinically utilized ventilation protocols in rats with 5 mL/kg or 8 mL/kg tidal volumes cause increased interleukin 4 (IL-4) expression, lowered ratio of TH1:TH2 transcriptional factors (Tbet:Gata3), and increased arginase 1-positive (Arg1+) macrophages and eosinophils in lungs. Macrophages from ventilated lungs had reduced ex vivo capacity toward phagocytosing bacteria. Ventilated animals, when further challenged with bacterial pneumonia, continued to show persistence of Arg1+ M2 macrophages as well as an increased bacterial burden compared with spontaneously breathing animals receiving the same bacterial dose. Increased IL-4 expression also occurred in a mouse ventilation model, and abrogation of IL-4 signaling restored lung bacterial burden in an IL-4Rα-/- ventilator-associated pneumonia model. Our data suggest that mechanical ventilation induces an immunosuppressive state in lungs, providing new insight in the development of ventilator-associated pneumonia.
Collapse
Affiliation(s)
- Kenny Bielen
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp Wilrijk Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Bart 's Jongers
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp Wilrijk Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp Wilrijk Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Philippe G Jorens
- Department of Critical Care Medicine, Antwerp University Hospital and University of Antwerp, Laboratory of Experimental Medicine and Pediatrics (LEMP), Edegem, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp Wilrijk Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| |
Collapse
|
8
|
Costa J, Zhu Y, Cox T, Fawcett P, Shaffer T, Alapati D. Inflammatory Response of Pulmonary Artery Smooth Muscle Cells Exposed to Oxidative and Biophysical Stress. Inflammation 2018; 41:1250-1258. [DOI: 10.1007/s10753-018-0772-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Sipmann FS, Santos A, Tusman G. Heart-lung interactions in acute respiratory distress syndrome: pathophysiology, detection and management strategies. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:27. [PMID: 29430444 DOI: 10.21037/atm.2017.12.07] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is the most severe form of acute respiratory failure characterized by diffuse alveolar and endothelial damage. The severe pathophysiological changes in lung parenchyma and pulmonary circulation together with the effects of positive pressure ventilation profoundly affect heart lung interactions in ARDS. The term pulmonary vascular dysfunction (PVD) refers to the specific involvement of the vascular compartment in ARDS and is expressed clinically by an increase in pulmonary arterial (PA) pressure and pulmonary vascular resistance both affecting right ventricular (RV) afterload. When severe, PVD can lead to RV failure which is associated to an increased mortality. The effect of PVD on RV function is not only a consequence of increased pulmonary vascular resistance as afterload is a much more complex phenomenon that includes all factors that oppose efficient ventricular ejection. Impaired pulmonary vascular mechanics including increased arterial elastance and augmented wave-reflection phenomena are commonly seen in ARDS and can additionally affect RV afterload. The use of selective pulmonary vasodilators and lung protective mechanical ventilation strategies are therapeutic interventions that can ameliorate PVD. Prone positioning and the open lung approach (OLA) are especially attractive strategies to improve PVD due to their effects on increasing functional lung volume. In this review we will describe some pathophysiological aspects of heart-lung interactions during the ventilatory support of ARDS, its clinical assessment and discuss therapeutic interventions to prevent the occurrence and progression of PVD and RV failure.
Collapse
Affiliation(s)
- Fernando Suarez Sipmann
- Department of Surgical Sciences section of Anesthesia and Critical Care, Uppsala University, Sweden.,Ciber de enfermedades respiratorias (CIBERES) Instituto de Investigación Carlos III, MadridSpain.,Department of Intensive Care, University Hospital La Fe, Valencia, Spain
| | - Arnoldo Santos
- Department of Surgical Sciences section of Anesthesia and Critical Care, Uppsala University, Sweden.,Ciber de enfermedades respiratorias (CIBERES) Instituto de Investigación Carlos III, MadridSpain
| | - Gerardo Tusman
- Department of Anesthesia, Hospital Privado de comunidad, Mar del Plata, Argentina
| |
Collapse
|
10
|
Affiliation(s)
- Laura C Price
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - S John Wort
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
11
|
Pandolfi R, Barreira B, Moreno E, Lara-Acedo V, Morales-Cano D, Martínez-Ramas A, de Olaiz Navarro B, Herrero R, Lorente JÁ, Cogolludo Á, Pérez-Vizcaíno F, Moreno L. Role of acid sphingomyelinase and IL-6 as mediators of endotoxin-induced pulmonary vascular dysfunction. Thorax 2016; 72:460-471. [DOI: 10.1136/thoraxjnl-2015-208067] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 06/23/2016] [Accepted: 07/07/2016] [Indexed: 11/04/2022]
|
12
|
Abstract
Postperfusion lung syndrome is a rare but sometimes lethal complication secondary to cardiopulmonary bypass. It often leads to multiorgan failure and mixed acid-base disturbances, thus making a refractory condition. A 69-year-old female, undergoing a successful cardiac lipoma resection under cardiopulmonary bypass, unfortunately developed postperfusion lung syndrome with associated multiorgan failure and triple acid-base disturbances (TABDs). Her condition deteriorated rapidly on postoperative day three and became moribund. This article reports a rare association following a surgical resection of cardiac lipoma, complicated with postperfusion lung syndrome and high-anion-gap and hyperchloride TABDs. It is recommended that proper positive end-expiratory pressure (PEEP) (5-10 cmH2O) with low tidal volume (6 mL/kg) be applied in order to minimize the compromise to cardiac function of cardiac surgical patients.
Collapse
Affiliation(s)
- Shi-Min Yuan
- Department of Cardiothoracic Surgery, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian 351100, China
| |
Collapse
|
13
|
Protective versus Conventional Ventilation for Surgery: A Systematic Review and Individual Patient Data Meta-analysis. Anesthesiology 2015; 123:66-78. [PMID: 25978326 DOI: 10.1097/aln.0000000000000706] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent studies show that intraoperative mechanical ventilation using low tidal volumes (VT) can prevent postoperative pulmonary complications (PPCs). The aim of this individual patient data meta-analysis is to evaluate the individual associations between VT size and positive end-expiratory pressure (PEEP) level and occurrence of PPC. METHODS Randomized controlled trials comparing protective ventilation (low VT with or without high levels of PEEP) and conventional ventilation (high VT with low PEEP) in patients undergoing general surgery. The primary outcome was development of PPC. Predefined prognostic factors were tested using multivariate logistic regression. RESULTS Fifteen randomized controlled trials were included (2,127 patients). There were 97 cases of PPC in 1,118 patients (8.7%) assigned to protective ventilation and 148 cases in 1,009 patients (14.7%) assigned to conventional ventilation (adjusted relative risk, 0.64; 95% CI, 0.46 to 0.88; P < 0.01). There were 85 cases of PPC in 957 patients (8.9%) assigned to ventilation with low VT and high PEEP levels and 63 cases in 525 patients (12%) assigned to ventilation with low VT and low PEEP levels (adjusted relative risk, 0.93; 95% CI, 0.64 to 1.37; P = 0.72). A dose-response relationship was found between the appearance of PPC and VT size (R2 = 0.39) but not between the appearance of PPC and PEEP level (R2 = 0.08). CONCLUSIONS These data support the beneficial effects of ventilation with use of low VT in patients undergoing surgery. Further trials are necessary to define the role of intraoperative higher PEEP to prevent PPC during nonopen abdominal surgery.
Collapse
|
14
|
Silva PL, Negrini D, Rocco PRM. Mechanisms of ventilator-induced lung injury in healthy lungs. Best Pract Res Clin Anaesthesiol 2015; 29:301-13. [PMID: 26643096 DOI: 10.1016/j.bpa.2015.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/20/2015] [Indexed: 11/17/2022]
Abstract
Mechanical ventilation is an essential method of patient support, but it may induce lung damage, leading to ventilator-induced lung injury (VILI). VILI is the result of a complex interplay among various mechanical forces that act on lung structures, such as type I and II epithelial cells, endothelial cells, macrophages, peripheral airways, and the extracellular matrix (ECM), during mechanical ventilation. This article discusses ongoing research focusing on mechanisms of VILI in previously healthy lungs, such as in the perioperative period, and the development of new ventilator strategies for surgical patients. Several experimental and clinical studies have been conducted to evaluate the mechanisms of mechanotransduction in each cell type and in the ECM, as well as the role of different ventilator parameters in inducing or preventing VILI. VILI may be attenuated by reducing the tidal volume; however, the use of higher or lower levels of positive end-expiratory pressure (PEEP) and recruitment maneuvers during the perioperative period is a matter of debate. Many questions concerning the mechanisms of VILI in surgical patients remain unanswered. The optimal threshold value of each ventilator parameter to reduce VILI is also unclear. Further experimental and clinical studies are necessary to better evaluate ventilator settings during the perioperative period in different types of surgery.
Collapse
Affiliation(s)
- Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha do Fundão, 21941-902, Rio de Janeiro, Brazil
| | - Daniela Negrini
- Department of Surgical and Morphological Sciences, University of Insubria, Via J.H. Dunant 5, Varese, Italy
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha do Fundão, 21941-902, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Opposing actions of TRPV4 channel activation in the lung vasculature. Respir Physiol Neurobiol 2015; 219:43-50. [PMID: 26282788 DOI: 10.1016/j.resp.2015.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Transient receptor potential vanilloid 4 (TRPV4) calcium channels are known to promote endothelium-dependent relaxation of mouse mesenteric arteries but TRPV4's role in the pulmonary vasculature is uncertain. Thus, we characterized TRPV4 channel vascular tone regulation in mouse main pulmonary artery rings and in the isolated perfused pulmonary circulation and studied possible mechanisms behind these characterizations. METHODS AND RESULTS Using myography and a TRPV4 specific agonist GSK1016790A in a C57BL/6 WT mouse model of isolated constant-flow lung perfusion, we studied vascular tone regulation in arterial rings from the main left and right pulmonary arteries and vascular resistance of the intra-pulmonary circulation beyond the second branches of the pulmonary arteries. Removal of the endothelium confirmed endothelial dependence. GSK1016790A relaxed the main pulmonary artery (EC50 4 × 10(-8)mol/L), which was inhibited by removal of the endothelium from main pulmonary artery rings. GSK1016790A significantly increased vascular resistance of the pulmonary circulation in isolated perfused lungs, but these effects were inhibited by a TRPV4 antagonist AB159908. A nitric oxide inhibitor NG-nitro-L-arginine methyl ester (L-NAME) and K(+) channel blockers apamin plus charybdotoxin (ChTx) significantly inhibited GSK1016790A in the main pulmonary artery and in an isolated perfused lung in vitro. CONCLUSIONS Activated TRPV4 channels increase pulmonary vascular resistance and vasodilate the main pulmonary artery.
Collapse
|
16
|
Inhibition of Nitro-Oxidative Stress Attenuates Pulmonary and Systemic Injury Induced by High–Tidal Volume Mechanical Ventilation. Shock 2015; 44:36-43. [DOI: 10.1097/shk.0000000000000381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Mechanical Ventilation Induces an Inflammatory Response in Preinjured Lungs in Late Phase of Sepsis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:364020. [PMID: 26161235 PMCID: PMC4487711 DOI: 10.1155/2015/364020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 10/16/2014] [Indexed: 01/09/2023]
Abstract
Mechanical ventilation (MV) may amplify the lung-specific inflammatory response in preinjured lungs by elevating cytokine release and augmenting damage to the alveolar integrity. In this study, we test the hypothesis that MV exerts different negative impacts on inflammatory response at different time points of postlung injury. Basic lung injury was induced by cecal ligation and puncture (CLP) surgery in rats. Physiological indexes including blood gases were monitored during MV and samples were assessed following each experiment. Low VT (tidal volume) MV caused a slight increase in cytokine release and tissue damage at day 1 and day 4 after sepsis induced lung injury, while cytokine release from the lungs in the two moderately ventilated VT groups was amplified. Interestingly, in the two groups where rats received low VT MV, we found that infiltration of inflammatory cells was only profound at day 4 after CLP. Marked elevation of protein leakage indicated a compromise in alveolar integrity in rats that received moderate VT MV at day 4 following CLP, correlating with architectural damage to the alveoli. Our study indicates that preinjured lungs are more sensitive to mechanical MV at later phases of sepsis, and this situation may be a result of differing immune status.
Collapse
|
18
|
Lan C, Wang J, Li L, Li H, Li L, Su Q, Che L, Liu L, Di M. Effects of different tidal volume ventilation on paraquat-induced acute lung injury in piglets. Med Sci Monit 2015; 21:452-8. [PMID: 25671690 PMCID: PMC4335577 DOI: 10.12659/msm.893179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The aim of this study was to explore the effects of different tidal volume (VT) ventilation on paraquat-induced acute lung injury or acute respiratory distress syndrome (ALI/ARDS) in piglets. Material/Methods We developed ALI/ARDS models in piglets by intraperitoneal injection of paraquat (PQ). The piglets were randomly divided into three groups: small VT group (VT=6 ml/kg, n=6), middle VT group (VT=10 ml/kg, n=6), and large VT group (VT=15 ml/kg, n=6), with the positive end-expiratory pressure (PEEP) set as 10 cmH2O. The hemodynamics were monitored by pulse-indicated continuous cardiac output (PiCCO) and the airway pressure changes and blood gas analysis indexes were recorded at different time points. The pathological changes were observed by lung puncture. Results The piglets showed ALI/ARDS in 4.5±0.8 hours after PQ intraperitoneal injection. PH, PaO2 and oxygenation indexes in the three groups all decreased after modeling success compared with baseline, and PaCO2 increased significantly. PH in the small VT group decreased most obviously after ventilation for 6 hours. PaO2 and oxygenation indexes in the small VT group showed the most obvious increase after ventilation for 2 hours and were much higher than the other two groups after ventilation for 6 hours. PaCO2 increased gradually after mechanical ventilation and the small VT group showed most obvious increase. The ELWI increased obviously after ventilation for 2 hours and then the small VT group clearly decreased. PIP and plateau pressure (Pplat) in the small VT group decreased gradually and in the middle and large VT group they increased after ventilation. The lung histopathology showed that the large VT group had the most severe damage and the small VT group had only minimal damage. Conclusions Small tidal volume ventilation combined with PEEP could alleviate the acute lung injury induced by paraquat and improve oxygenation.
Collapse
Affiliation(s)
- Chao Lan
- Department of Emergency Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Jinzhu Wang
- Department of Emergency Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Li Li
- Department of Emergency Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Haina Li
- Department of Emergency Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Lu Li
- Department of Emergency Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Qianqian Su
- Department of Emergency Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Lu Che
- Department of Emergency Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Lanping Liu
- Department of Anesthesiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Min Di
- Department of Ultrasonography, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
19
|
Reiss LK, Fragoulis A, Siegl S, Platen C, Kan YW, Nautiyal J, Parker M, Pufe T, Uhlig U, Martin C, Uhlig S, Wruck CJ. Interplay between nuclear factor erythroid 2-related factor 2 and amphiregulin during mechanical ventilation. Am J Respir Cell Mol Biol 2015; 51:668-77. [PMID: 24921206 DOI: 10.1165/rcmb.2013-0279oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mechanical ventilation (MV) elicits complex and clinically relevant cellular responses in the lungs. The current study was designed to define the role of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), a major regulator of the cellular antioxidant defense system, in the pulmonary response to MV. Nrf2 activity was quantified in ventilated isolated perfused mouse lungs (IPL). Regulation of amphiregulin (AREG) was investigated in BEAS-2B cells with inactivated Nrf2 or Keap1, the inhibitor of Nrf2, using a luciferase vector with AREG promoter. AREG-dependent Nrf2 activity was examined in BEAS-2B cells, murine precision-cut lung slices (PCLS), and IPL. Finally, Nrf2 knockout and wild-type mice were ventilated to investigate the interplay between Nrf2 and AREG during MV in vivo. Lung functions and inflammatory parameters were measured. Nrf2 was activated in a ventilation-dependent manner. The knockdown of Nrf2 and Keap1 via short hairpin RNA in BEAS-2B cells and an EMSA with lung tissue revealed that AREG is regulated by Nrf2. Conversely, AREG application induced a significant Nrf2 activation in BEAS-2B cells, PCLS, and IPL. The signal transduction of ventilation-induced Nrf2 activation was shown to be p38 MAP kinase-dependent. In vivo ventilation experiments indicated that AREG is regulated by Nrf2 during MV. We conclude that Areg expression is regulated by Nrf2. During high-pressure ventilation, Nrf2 becomes activated and induces AREG, leading to a positive feedback loop between Nrf2 and AREG, which involves the p38 MAPK and results in the expression of cytoprotective genes.
Collapse
|
20
|
Ventilation with lower tidal volumes for critically ill patients without the acute respiratory distress syndrome: a systematic translational review and meta-analysis. Curr Opin Crit Care 2014; 20:25-32. [PMID: 24275571 DOI: 10.1097/mcc.0000000000000044] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW There is convincing evidence for benefit from lung-protective mechanical ventilation with lower tidal volumes in patients with the acute respiratory distress syndrome (ARDS). It is uncertain whether this strategy benefits critically ill patients without ARDS as well. This manuscript systematically reviews recent preclinical studies of ventilation in animals with uninjured lungs, and clinical trials of ventilation in ICU patients without ARDS on the association between tidal volume size and pulmonary complications and outcome. RECENT FINDINGS Successive preclinical studies almost without exception show that ventilation with lower tidal volumes reduces the injurious effects of ventilation in animals with uninjured lungs. This finding is in line with results from recent trials in ICU patients without ARDS, demonstrating that ventilation with lower tidal volumes has a strong potential to prevent development of pulmonary complications and maybe even to improve survival. However, evidence mostly comes from nonrandomized clinical trials, and concerns are expressed regarding unselected use of lower tidal volumes in the ICU, that is, in all ventilated critically ill patients, since this strategy could also increase needs for sedation and/or neuromuscular blockade, and maybe even cause respiratory muscle fatigue. These all then could in fact worsen outcome, possibly counteracting the beneficial effects of ventilation with lower tidal volumes. SUMMARY Ventilation with lower tidal volumes protects against pulmonary complications, but well-powered randomized controlled trials are urgently needed to determine whether this ventilation strategy truly benefits all ventilated ICU patients without ARDS.
Collapse
|
21
|
Nickles HT, Sumkauskaite M, Wang X, Wegner I, Puderbach M, Kuebler WM. Mechanical ventilation causes airway distension with proinflammatory sequelae in mice. Am J Physiol Lung Cell Mol Physiol 2014; 307:L27-37. [DOI: 10.1152/ajplung.00288.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pathogenesis of ventilator-induced lung injury has predominantly been attributed to overdistension or mechanical opening and collapse of alveoli, whereas mechanical strain on the airways is rarely taken into consideration. Here, we hypothesized that mechanical ventilation may cause significant airway distension, which may contribute to the pathological features of ventilator-induced lung injury. C57BL/6J mice were anesthetized and mechanically ventilated at tidal volumes of 6, 10, or 15 ml/kg body wt. Mice were imaged by flat-panel volume computer tomography, and central airways were segmented and rendered in 3D for quantitative assessment of airway distension. Alveolar distension was imaged by intravital microscopy. Functional dead space was analyzed in vivo, and proinflammatory cytokine release was analyzed in isolated, ventilated tracheae. CT scans revealed a reversible, up to 2.5-fold increase in upper airway volume during mechanical ventilation compared with spontaneous breathing. Airway distension was most pronounced in main bronchi, which showed the largest volumes at tidal volumes of 10 ml/kg body wt. Conversely, airway distension in segmental bronchi and functional dead space increased almost linearly, and alveolar distension increased even disproportionately with higher tidal volumes. In isolated tracheae, mechanical ventilation stimulated the release of the early-response cytokines TNF-α and IL-1β. Mechanical ventilation causes a rapid, pronounced, and reversible distension of upper airways in mice that is associated with an increase in functional dead space. Upper airway distension is most pronounced at moderate tidal volumes, whereas higher tidal volumes redistribute preferentially to the alveolar compartment. Airway distension triggers proinflammatory responses and may thus contribute relevantly to ventilator-induced pathologies.
Collapse
Affiliation(s)
- Hannah T. Nickles
- Institute of Physiology, Charité, Universitaetsmedizin Berlin, Germany
| | | | - Xin Wang
- German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Ingmar Wegner
- German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Michael Puderbach
- German Cancer Research Center Heidelberg, Heidelberg, Germany
- Chest Clinic Heidelberg, Heidelberg, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité, Universitaetsmedizin Berlin, Germany
- Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
- The Keenan Research Center for Biomedical Science of St. Michael's, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Improvement of ventilation-induced lung injury in a rodent model by inhibition of inhibitory κB kinase. J Trauma Acute Care Surg 2014; 76:1417-24. [DOI: 10.1097/ta.0000000000000229] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
|