1
|
Liu H, Yu Z, Li Y, Xu B, Yan B, Paschen W, Warner DS, Yang W, Sheng H. Novel Modification of Potassium Chloride Induced Cardiac Arrest Model for Aged Mice. Aging Dis 2018; 9:31-39. [PMID: 29392079 PMCID: PMC5772856 DOI: 10.14336/ad.2017.0221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/21/2017] [Indexed: 12/27/2022] Open
Abstract
Experimental cardiac arrest (CA) in aging research is infrequently studied in part due to the limitation of animal models. We aimed to develop an easily performed mouse CA model to meet this need. A standard mouse KCl-induced CA model using chest compressions and intravenous epinephrine for resuscitation was modified by blood withdrawal prior to CA onset, so as to decrease the requisite KCl dose to induce CA by decreasing the circulating blood volume. The modification was then compared to the standard model in young adult mice subjected to 8 min CA. 22-month old mice were then subjected to 8 min CA, resuscitated, and compared to young adult mice. Post-CA functional recovery was evaluated by measuring spontaneous locomotor activity pre-injury, and on post-CA days 1, 2, and 3. Neurological score and brain histology were examined on day 3. Brain elF2α phosphorylation levels were measured at 1 h to verify tissue stress. Compared to the standard model, the modification decreased cardiopulmonary resuscitation duration and increased 3-day survival in young mice. For aged mice, survival was 100 % at 24 h and 54% at 72 h. Neurological deficit was present 3 days post-CA, although more severe versus young mice. Mild neuronal necrosis was present in the cortex and hippocampus. The modified model markedly induced elF2α phosphorylation in both age groups. This modified procedure makes the CA model feasible in aged mice and provides a practical platform for understanding injury mechanisms and developing therapeutics for elderly patients.
Collapse
Affiliation(s)
- Huaqin Liu
- 1The Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,2Department of Anesthesiology, The 4th Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhui Yu
- 1The Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,3Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Li
- 1The Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,4Department of Cardiology, The 5th Hospital of Tianjin, Tianjin, China
| | - Bin Xu
- 1The Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,5Department of Environmental Health, China Medical University, Shenyang, China
| | - Baihui Yan
- 1The Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,6Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wulf Paschen
- 1The Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - David S Warner
- 1The Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wei Yang
- 1The Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Huaxin Sheng
- 1The Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|