1
|
Rossato Viana A, Nicola I, Franco C, Caetano PA, Jacob-Lopes E, Zepka LQ, Santos D, Moraes Flores EM, Stefanello Vizzotto B, Wolf K, Ferreira Ourique A, Mortari SR, Bohn Rhoden CR, Fontanari Krause LM. Phytochemical characterization and toxicological activity attributed to the acetonic extract of South American Vassobia breviflora. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:816-832. [PMID: 37667472 DOI: 10.1080/15287394.2023.2254316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The particular plant species found in southern Brazil, Vassobia breviflora (Solanaceae) has only a few apparent studies examining its biological effect. Thus, the aim of the present study was to determine the activity of the acetone extract fraction derived from V. breviflora. Four compounds were identified by ESI-qTOF-MS: eucalrobusone R, aplanoic acid B, pheophorbide A, and pheophytin A. In addition, 5 compounds were identified by HPLC-PDA-MS/MS: all-trans-lutein, 15-cis-lutein, all-trans-β-carotene, 5,8-epoxy-β-carotene, and cis-β-carotene. Cell lines A549 (lung cancer), A375 (melanoma cancer) and HeLa (cervical cancer) were incubated with different concentrations of each studied extract using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and 2'-7'dichlorofluorescin diacetate (DCFH-DA) assays. The acetonic extract exhibited cytotoxic activity at a concentration of 0.03 mg/ml in the HeLa strain and 0.1 mg/ml in the others. In addition to increased production of reactive oxygen species (ROS). Antibacterial activity was assessed utilizing minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in 9 ATCCs strains and 7 clinical isolates, as well as determination of biofilm production. Data demonstrated that MIC and MBC were approximately 256 mg/ml in most of the strains tested and antibiofilm effect at S. aureus, S. epidermidis, A. baumannii, and E. faecalis, concentrations below the MIC. Genotoxic activity on plasmid DNA did not produce significant elevated levels in breaks in the isolated genetic material.
Collapse
Affiliation(s)
- Altevir Rossato Viana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Camila Franco
- Biomedicine, Franciscan University, Santa Maria, Brazil
| | - Patrícia Acosta Caetano
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Eduardo Jacob-Lopes
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Leila Queiroz Zepka
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Daniel Santos
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Katianne Wolf
- Laboratory of Nanotechnology, Franciscan University, Santa Maria, Brazil
| | | | | | - Cristiano Rodrigo Bohn Rhoden
- Laboratory of Nanotechnology, Franciscan University, Santa Maria, Brazil
- Laboratory of Nanoesctructurated Magnetic Materials - LaMMaN, Nanosciences Post-graduation Program, Franciscan University, Santa Maria, Brazil
| | | |
Collapse
|
2
|
Deng YP, Fu YT, Yao C, Shao R, Zhang XL, Duan DY, Liu GH. Emerging bacterial infectious diseases/pathogens vectored by human lice. Travel Med Infect Dis 2023; 55:102630. [PMID: 37567429 DOI: 10.1016/j.tmaid.2023.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/02/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Human lice have always been a major public health concern due to their vector capacity for louse-borne infectious diseases, like trench fever, louse-borne relapsing fever, and epidemic fever, which are caused by Bartonella quintana, Borrelia recurrentis, and Rickettsia prowazekii, respectively. Those diseases are currently re-emerging in the regions of poor hygiene, social poverty, or wars with life-threatening consequences. These louse-borne diseases have also caused outbreaks among populations in jails and refugee camps. In addition, antibodies and DNAs to those pathogens have been steadily detected in homeless populations. Importantly, more bacterial pathogens have been detected in human lice, and some have been transmitted by human lice in laboratories. Here, we provide a comprehensive review and update on louse-borne infectious diseases/bacterial pathogens.
Collapse
Affiliation(s)
- Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China; Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Xue-Ling Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Zucca E, Rossi D, Bertoni F. Marginal zone lymphomas. Hematol Oncol 2023; 41 Suppl 1:88-91. [PMID: 37294969 DOI: 10.1002/hon.3152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The three main types of marginal zone lymphoma (MZL), recognized by the current lymphoma classifications are the extranodal MZL of mucosa-associated lymphoid tissue, the splenic MZL, and the nodal MZL. They share some karyotype lesions (trisomies of chromosomes 3 and 18, deletions at 6q23), and alterations of the nuclear factor kappa B (NFkB) pathway are also common in all of them. However, they differ in the presence of recurrent translocations, mutations affecting the Notch signaling pathway (NOTCH2 and less commonly NOTCH1), the transcription factors Kruppel-like factor 2 (KLF2) or the receptor-type protein tyrosine phosphatase delta (PTPRD). This review summarizes the most recent and significant advances in our understanding of the epidemiology, genetics, and biology of MZLs and outlines the current principles of the standard management of MZL at different anatomic sites.
Collapse
Affiliation(s)
- Emanuele Zucca
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Davide Rossi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Francesco Bertoni
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|
4
|
Zhao Z, Lu Y, Mi Y, Zhu Q, Meng J, Wang X, Cao X, Wang N. Modular Design in Triboelectric Sensors: A Review on the Clinical Applications for Real-Time Diagnosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:4194. [PMID: 37177395 PMCID: PMC10181202 DOI: 10.3390/s23094194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Triboelectric nanogenerators (TENGs) have garnered considerable interest as a promising technology for energy harvesting and stimulus sensing. While TENGs facilitate the generation of electricity from micro-motions, the modular design of TENG-based modular sensing systems (TMSs) also offers significant potential for powering biosensors and other medical devices, thus reducing dependence on external power sources and enabling biological processes to be monitored in real time. Moreover, TENGs can be customised and personalized to address individual patient needs while ensuring biocompatibility and safety, ultimately enhancing the efficiency and security of diagnosis and treatment. In this review, we concentrate on recent advancements in the modular design of TMSs for clinical applications with an emphasis on their potential for personalised real-time diagnosis. We also examine the design and fabrication of TMSs, their sensitivity and specificity, and their capabilities of detecting biomarkers for disease diagnosis and monitoring. Furthermore, we investigate the application of TENGs to energy harvesting and real-time monitoring in wearable and implantable medical devices, underscore the promising prospects of personalised and modular TMSs in advancing real-time diagnosis for clinical applications, and offer insights into the future direction of this burgeoning field.
Collapse
Affiliation(s)
- Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yin Lu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajun Mi
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiliang Zhu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiajing Meng
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xueqing Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
5
|
Zhao Z, Lu Y, Mi Y, Meng J, Wang X, Cao X, Wang N. Adaptive Triboelectric Nanogenerators for Long-Term Self-Treatment: A Review. BIOSENSORS 2022; 12:1127. [PMID: 36551094 PMCID: PMC9775114 DOI: 10.3390/bios12121127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 05/27/2023]
Abstract
Triboelectric nanogenerators (TENGs) were initially invented as an innovative energy-harvesting technology for scavenging mechanical energy from our bodies or the ambient environment. Through adaptive customization design, TENGs have also become a promising player in the self-powered wearable medical market for improving physical fitness and sustaining a healthy lifestyle. In addition to simultaneously harvesting our body's mechanical energy and actively detecting our physiological parameters and metabolic status, TENGs can also provide personalized medical treatment solutions in a self-powered modality. This review aims to cover the recent advances in TENG-based electronics in clinical applications, beginning from the basic working principles of TENGs and their general operation modes, continuing to the harvesting of bioenergy from the human body, and arriving at their adaptive design toward applications in chronic disease diagnosis and long-term clinical treatment. Considering the highly personalized usage scenarios, special attention is paid to customized modules that are based on TENGs and support complex medical treatments, where sustainability, biodegradability, compliance, and bio-friendliness may be critical for the operation of clinical systems. While this review provides a comprehensive understanding of TENG-based clinical devices that aims to reach a high level of technological readiness, the challenges and shortcomings of TENG-based clinical devices are also highlighted, with the expectation of providing a useful reference for the further development of such customized healthcare systems and the transfer of their technical capabilities into real-life patient care.
Collapse
Affiliation(s)
- Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yin Lu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajun Mi
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiajing Meng
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xueqing Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|