1
|
Xu J, Xue D, Li Y, Zhou J, Chen H, Fan L. Mechanisms of vemurafenib-induced anti-tumor effects in ATC FRO cells. Heliyon 2024; 10:e27629. [PMID: 38509927 PMCID: PMC10951592 DOI: 10.1016/j.heliyon.2024.e27629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Background Anaplastic Thyroid Carcinoma (ATC) is a rare and deadly malignant tumor in humans. It is prone to developing resistance to radiotherapy and chemotherapy. Molecular targeted therapy offers a novel way to treat ATC. The BRAF mutation is closely associated with many cancers, including thyroid carcinoma. Vemurafenib, a small-molecule inhibitor, is specifically designed to target the mutant serine/threonine kinase BRAF. The objective of this study is to elucidate the regulatory mechanisms underlying the effects of vemurafenib on human anaplastic thyroid carcinoma cell line FRO and to assess its potential therapeutic role. Methods The effects of vemurafenib on the proliferation of FRO cells were assessed by the CCK-8 method and Colony-forming assay. Transwell chambers and scratch tests were employed to examine the impact of vemurafenib on the invasion and migration of FRO cells. Apoptosis and cycle distribution of FRO cells were analyzed by tunel assay and flow cytometry. The effects of vemurafenib on the expression of BRAF-activated non-protein coding RNA (BANCR), Bax, Bcl2, and E-cadherin were evaluated by qRT-PCR. Furthermore, the effects of vemurafenib on the expression of phosphoinositol-3-kinase (PI3K)/phosphoinositol-3-kinase (AKT) pathway-related proteins, BRAF, CyclinD1, Bcl-2, Bax, and E-cadherin proteins in FRO cells were investigated through the western-blot method. All experiments were conducted in three replicates. Results Vemurafenib was observed to inhibit proliferation and induce apoptosis in a dose- and time-dependent manner (P < 0.05). The formation of FRO cell colonies, as well as migration and invasion, all showed a dose-dependent reduction (P < 0.05). Flow cytometric analysis indicated G0/G1 cell cycle arrest (P < 0.05). QRT-PCR revealed that vemurafenib could suppress the expression of BANCR and Bcl2 while increasing the expression of Bax and E-cadherin in a dose-dependent manner (P < 0.05). The protein expression levels of Bax and E-cadherin were up-regulated significantly, and the expression levels of BRAF, CyclinD1, Bcl-2, p-PI3K, p-AKT, and p-mTOR were markedly down-regulated with increasing concentrations of vemurafenib (P < 0.05). Conclusions The proliferation and metastasis of FRO cells can be suppressed by vemurafenib through the silencing of BRAF and BANCR expression, inhibition of PI3K/AKT signaling pathway activation, induction of apoptosis, and cell cycle arrest.
Collapse
Affiliation(s)
- Jingwei Xu
- Department of General Surgery, The First Affiliated Hospital of Qiqihar Medical University, Heilongjiang, 161041, China
| | - Di Xue
- Research Institute of Medicine and Pharmacy of Qiqihar Medical University, Heilongjiang, 16006, China
| | - Yang Li
- Research Institute of Medicine and Pharmacy of Qiqihar Medical University, Heilongjiang, 16006, China
| | - Jianwen Zhou
- Research Institute of Medicine and Pharmacy of Qiqihar Medical University, Heilongjiang, 16006, China
| | - Hongyue Chen
- Department of General Surgery, The First Affiliated Hospital of Qiqihar Medical University, Heilongjiang, 161041, China
| | - Li Fan
- Research Institute of Medicine and Pharmacy of Qiqihar Medical University, Heilongjiang, 16006, China
| |
Collapse
|
2
|
Gu H, Wang J, Ran W, Li G, Hu S, Zhao H, Wang X, Wang J. Anaplastic and poorly differentiated thyroid carcinomas: genetic evidence of high-grade transformation from differentiated thyroid carcinoma. J Pathol Clin Res 2024; 10:e356. [PMID: 38602501 PMCID: PMC10796291 DOI: 10.1002/cjp2.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 04/12/2024]
Abstract
Anaplastic thyroid carcinoma (ATC) is the most advanced and aggressive thyroid cancer, and poorly differentiated thyroid carcinoma (PDTC) lacks anaplastic histology but has lost architectural and cytologic differentiation. Only a few studies have focused on the genetic relationship between the two advanced carcinomas and coexisting differentiated thyroid carcinomas (DTCs). In the present study, we investigated clinicopathologic features and genetic profiles in 57 ATC and PDTC samples, among which 33 cases had concomitant DTC components or DTC history. We performed immunohistochemistry for BRAF V600E, p53, and PD-L1 expression, Sanger sequencing for TERT promoter and RAS mutations, and fluorescence in situ hybridization for ALK and RET rearrangements. We found that ATCs and PDTCs shared similar gene alterations to their coexisting DTCs, and most DTCs were aggressive subtypes harboring frequent TERT promoter mutations. A significantly higher proportion of ATCs expressed p53 and PD-L1, and a lower proportion expressed PAX-8 and TTF-1, than the coexisting DTCs. Our findings provide more reliable evidence that ATCs and PDTCs are derived from DTCs.
Collapse
Affiliation(s)
- Haiyan Gu
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoPR China
| | - Jingnan Wang
- Department of PathologySchool of Basic Medicine, Qingdao UniversityQingdaoPR China
| | - Wenwen Ran
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoPR China
| | - Guangqi Li
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoPR China
| | - Shasha Hu
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoPR China
| | - Han Zhao
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoPR China
| | - Xiaonan Wang
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoPR China
| | - Jigang Wang
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoPR China
| |
Collapse
|
3
|
Pita JM, Raspé E, Coulonval K, Decaussin-Petrucci M, Tarabichi M, Dom G, Libert F, Craciun L, Andry G, Wicquart L, Leteurtre E, Trésallet C, Marlow LA, Copland JA, Durante C, Maenhaut C, Cavaco BM, Dumont JE, Costante G, Roger PP. CDK4 phosphorylation status and rational use for combining CDK4/6 and BRAF/MEK inhibition in advanced thyroid carcinomas. Front Endocrinol (Lausanne) 2023; 14:1247542. [PMID: 37964967 PMCID: PMC10641312 DOI: 10.3389/fendo.2023.1247542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Background CDK4/6 inhibitors (CDK4/6i) have been established as standard treatment against advanced Estrogen Receptor-positive breast cancers. These drugs are being tested against several cancers, including in combinations with other therapies. We identified the T172-phosphorylation of CDK4 as the step determining its activity, retinoblastoma protein (RB) inactivation, cell cycle commitment and sensitivity to CDK4/6i. Poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinomas, the latter considered one of the most lethal human malignancies, represent major clinical challenges. Several molecular evidence suggest that CDK4/6i could be considered for treating these advanced thyroid cancers. Methods We analyzed by two-dimensional gel electrophoresis the CDK4 modification profile and the presence of T172-phosphorylated CDK4 in a collection of 98 fresh-frozen tissues and in 21 cell lines. A sub-cohort of samples was characterized by RNA sequencing and immunohistochemistry. Sensitivity to CDK4/6i (palbociclib and abemaciclib) was assessed by BrdU incorporation/viability assays. Treatment of cell lines with CDK4/6i and combination with BRAF/MEK inhibitors (dabrafenib/trametinib) was comprehensively evaluated by western blot, characterization of immunoprecipitated CDK4 and CDK2 complexes and clonogenic assays. Results CDK4 phosphorylation was detected in all well-differentiated thyroid carcinomas (n=29), 19/20 PDTC, 16/23 ATC and 18/21 thyroid cancer cell lines, including 11 ATC-derived ones. Tumors and cell lines without phosphorylated CDK4 presented very high p16CDKN2A levels, which were associated with proliferative activity. Absence of CDK4 phosphorylation in cell lines was associated with CDK4/6i insensitivity. RB1 defects (the primary cause of intrinsic CDK4/6i resistance) were not found in 5/7 tumors without detectable phosphorylated CDK4. A previously developed 11-gene expression signature identified the likely unresponsive tumors, lacking CDK4 phosphorylation. In cell lines, palbociclib synergized with dabrafenib/trametinib by completely and permanently arresting proliferation. These combinations prevented resistance mechanisms induced by palbociclib, most notably Cyclin E1-CDK2 activation and a paradoxical stabilization of phosphorylated CDK4 complexes. Conclusion Our study supports further clinical evaluation of CDK4/6i and their combination with anti-BRAF/MEK therapies as a novel effective treatment against advanced thyroid tumors. Moreover, the complementary use of our 11 genes predictor with p16/KI67 evaluation could represent a prompt tool for recognizing the intrinsically CDK4/6i insensitive patients, who are potentially better candidates to immediate chemotherapy.
Collapse
Affiliation(s)
- Jaime M. Pita
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eric Raspé
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Katia Coulonval
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Maxime Tarabichi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Geneviève Dom
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
- BRIGHTCore, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ligia Craciun
- Tumor Bank of the Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy Andry
- Department of Head & Neck and Thoracic Surgery, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Wicquart
- Tumorothèque du Groupement de Coopération Sanitaire-Centre Régional de Référence en Cancérologie (C2RC) de Lille, Lille, France
| | - Emmanuelle Leteurtre
- Department of Pathology, Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Inserm, Centre Hospitalo-Universitaire (CHU) Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Christophe Trésallet
- Department of General and Endocrine Surgery - Pitié-Salpêtrière Hospital, Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
- Department of Digestive, Bariatric and Endocrine Surgery - Avicenne University Hospital, Paris Nord - Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Laura A. Marlow
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carine Maenhaut
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Branca M. Cavaco
- Molecular Endocrinology Group, Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacques E. Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Costante
- Departments of Endocrinology and Medical Oncology, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre P. Roger
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
4
|
Wang J, Tan J, Wu B, Wu R, Han Y, Wang C, Gao Z, Jiang D, Xia X. Customizing cancer treatment at the nanoscale: a focus on anaplastic thyroid cancer therapy. J Nanobiotechnology 2023; 21:374. [PMID: 37833748 PMCID: PMC10571362 DOI: 10.1186/s12951-023-02094-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/15/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare but highly aggressive kind of thyroid cancer. Various therapeutic methods have been considered for the treatment of ATC, but its prognosis remains poor. With the advent of the nanomedicine era, the use of nanotechnology has been introduced in the treatment of various cancers and has shown great potential and broad prospects in ATC treatment. The current review meticulously describes and summarizes the research progress of various nanomedicine-based therapeutic methods of ATC, including chemotherapy, differentiation therapy, radioiodine therapy, gene therapy, targeted therapy, photothermal therapy, and combination therapy. Furthermore, potential future challenges and opportunities for the currently developed nanomedicines for ATC treatment are discussed. As far as we know, there are few reviews focusing on the nanomedicine of ATC therapy, and it is believed that this review will generate widespread interest from researchers in a variety of fields to further expedite preclinical research and clinical translation of ATC nanomedicines.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Jie Tan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruolin Wu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Yanmei Han
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Chenyang Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Zairong Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| |
Collapse
|
5
|
Stenman A, Juhlin CC. Novel Insights in the Genomics of Anaplastic Thyroid Carcinoma: A Role for Cyclin-Dependent Kinase Inhibition? Cancers (Basel) 2023; 15:4621. [PMID: 37760590 PMCID: PMC10526404 DOI: 10.3390/cancers15184621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) stands as a rare but extraordinarily lethal tumor, marked by its limited treatment options [...].
Collapse
Affiliation(s)
- Adam Stenman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital Solna, 17176 Stockholm, Sweden
| | - Carl Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, 17176 Stockholm, Sweden
| |
Collapse
|