1
|
Cao J, Hu B, Li T, Fang D, Jiang L, Wang J. Cellular heterogeneity and cytokine signatures in acute myeloid leukemia: A novel prognostic model. Transl Oncol 2025; 52:102194. [PMID: 39689517 PMCID: PMC11719339 DOI: 10.1016/j.tranon.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/19/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is a complex hematological malignancy distinguished by its heterogeneity in genetic aberrations, cellular composition, and clinical outcomes. This diversity complicates the development of effective, universally applicable therapeutic strategies and highlights the necessity for personalized approaches to treatment. In our study, we utilized high-resolution single-cell RNA sequencing from publicly available datasets to dissect the complex cellular landscape of AML. This approach uncovered a diverse array of cellular subpopulations within the bone marrow samples of AML patients. Through meticulous analysis, we identified 156 differentially expressed cytokine-related genes that underscore the nuanced interplay between AML cells and their microenvironment. Leveraging this comprehensive dataset, we constructed a prognostic risk score model based on seven pivotal cytokine-related genes: CCL23, IL2RA, IL3RA, IL6R, INHBA, TNFSF15, and TNFSF18. The mRNA levels of 7 genes in the risk score model have significant different. This model was rigorously validated across several independent AML patient cohorts, showcasing its robust prognostic capability to stratify patients into distinct risk categories. Patients classified under the high-risk category exhibited significantly poorer survival outcomes compared to their low-risk counterparts, underscoring the model's clinical relevance. Additionally, our in-depth investigation into the immune landscape revealed marked differences in immune cell infiltration and cytokine signaling between the identified risk groups, shedding light on potential immune-mediated mechanisms driving disease progression and treatment resistance. This comprehensive analysis not only advances our understanding of the cellular and molecular underpinnings of AML but also introduces a novel, clinically applicable risk score model. This tool holds significant promise for enhancing the precision of prognostic assessments in AML, thereby paving the way for more tailored and effective therapeutic interventions. Our findings represent a pivotal step toward the realization of personalized medicine in the management of AML, offering new avenues for research and treatment optimization in this challenging disease landscape.
Collapse
Affiliation(s)
- Jinxia Cao
- Department of Hematology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Wuling District, Changde, Hunan Province, China
| | - Bin Hu
- Department of Hematology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Wuling District, Changde, Hunan Province, China
| | - Tianqi Li
- Department of Hematology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Wuling District, Changde, Hunan Province, China
| | - Dan Fang
- Department of Hematology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Wuling District, Changde, Hunan Province, China
| | - Ling Jiang
- Department of Hematology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Wuling District, Changde, Hunan Province, China
| | - Jun Wang
- Department of Hematology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Wuling District, Changde, Hunan Province, China.
| |
Collapse
|
2
|
Drokow EK, Sun K, Ahmed HAW, Akpabla GS, Song J, Shi M. Circulating microRNA as diagnostic biomarkers for haematological cancers: a systematic review and meta-analysis. Cancer Manag Res 2019; 11:4313-4326. [PMID: 31190996 PMCID: PMC6520596 DOI: 10.2147/cmar.s199126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/10/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose: Recent studies have validated microRNAs (miRNAs) as a diagnostic biomarker for haematological cancers. This study aimed to estimate the overall diagnostic accuracy of circulating miRNAs in haematological malignancies. Materials and Methods: Multiple databases (Google Scholar, PubMed, EMBASE, Cochrane Library,) were searched until 19th August 2017. Results: The meta-analysis included 50 studies from 20 publications. The diagnostic accuracy was assessed by pooled specificity, sensitivity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve area (AUC) by random effect model. We used QUADAS (Quality Assessment for diagnostic accuracy studies) to evaluate the quality of the included studies. To perform the meta-analysis, we used Meta-Disk 1.4, Revman 5.3 and Stata 12.0 software. High diagnostic accuracy was demonstrated, with a sensitivity of 0.81, a specificity of 0.85, a PLR of 5.28, an NLR of 0.22, a DOR of 30.39, and an AUC of 0.91. Subgroup analyses showed better outcomes for the African population, combined miRNAs and leukaemia patients compared with other subgroups. Conclusion: Our results indicated that circulating miRNAs especially combined miRNA can be used as a diagnostic marker in haematological cancers.
Collapse
Affiliation(s)
- Emmanuel Kwateng Drokow
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Kai Sun
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Hafiz Abdul Waqas Ahmed
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Gloria Selorm Akpabla
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Juanjuan Song
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Mingyue Shi
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| |
Collapse
|
3
|
Identification of circulating microRNAs as biomarkers in diagnosis of hematologic cancers: a meta-analysis. Tumour Biol 2014; 35:10467-78. [DOI: 10.1007/s13277-014-2364-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/14/2014] [Indexed: 01/08/2023] Open
|
4
|
Lebedev TD, Spirin PV, Orlova NN, Kudryavtseva AV, Melnikova NV, Speranskaya AS, Prasolov VS. RNA interference and deep sequencing as tools for identifying new genes involved in leukemogenesis. DOKL BIOCHEM BIOPHYS 2013; 448:49-51. [DOI: 10.1134/s1607672913010134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 11/23/2022]
|
5
|
Costa D, Vidal A, Carrió A, Muñoz C, Arias A, Gómez C, Berneaga D, Colomer D, Rozman M, Pratcorona M, Torrebadell M, Díaz-Beyá M, Esteve J, Campo E. Refining the diagnosis and prognostic categorization of acute myeloid leukemia patients with an integrated use of cytogenetic and molecular studies. Acta Haematol 2012; 129:65-71. [PMID: 23154527 DOI: 10.1159/000343616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022]
Abstract
Significant progress in the understanding of the genetic basis of acute myeloid leukemia (AML) has been made during the last 30 years. The aim of the present study was to assess whether the detection of recurrent gene rearrangements by fluorescent in situ hybridization (FISH) studies and NPM1 and FLT3 gene mutations by molecular studies added clinically relevant information to the karyotype in 113 AML patients. Thus, FISH and molecular studies were found to add new information in 22 and 55% of the patients, respectively, particularly in cases with normal karyotype (NK) or when a cytogenetic analysis failed. Patients with NK changed their genetic risk group to favorable in 27 and 29% of cases using FISH and molecular biology studies, respectively. Our results demonstrate that molecular biology and FISH studies provide relevant information in AML and should be routinely performed.
Collapse
Affiliation(s)
- Dolors Costa
- Hematopathology Section, Hospital Clínic, Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Juhl-Christensen C, Ommen HB, Aggerholm A, Lausen B, Kjeldsen E, Hasle H, Hokland P. Genetic and epigenetic similarities and differences between childhood and adult AML. Pediatr Blood Cancer 2012; 58:525-31. [PMID: 22331798 DOI: 10.1002/pbc.23397] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 09/20/2011] [Indexed: 12/29/2022]
Abstract
BACKGROUND The biology of acute myeloid leukemia (AML) is complex and includes both genetic and epigenetic aberrations. We addressed the combined consequences of promoter hypermethylation of p15, CDH1, ER, MDR1, and RARB2 and mutation of NPM1, CEBPA, FLT3, and WT1 in a Danish cohort of 70 pediatric and 383 adult AML patients. PROCEDURE Mutation analysis was done by fragment analysis followed by sequencing or by sequencing alone. Methylation status was determined using methylation-sensitive melting curve analysis (MS-MCA) after initial bisulfite modification. RESULTS Among pediatric AMLs, we found promoter hypermethylation in p15 (47%), CDH1 (64%), ER (62%), MDR1 (8%), and RARB2 (22%) and mutations in NPM1 (11%), CEBPA (3%), FLT3ITD (4%), FLT3D835 (7%), and WT1 (7%). Promoter hypermethylation was significantly more frequent in core binding factor leukemias (CBF) compared to AMLs with abnormalities involving 11q23 (P = 0.024). Compared to adult AML we found a significant difference in p15 (47% vs. 73%, P < 0.001) and RARB2 (22% vs. 42%, P = 0.003) methylation, as well as in NPM1 (11% vs. 31%, P = 0.001) and FLT3ITD (4% vs. 26%, P < 0.001) mutation. CONCLUSION Age-related differences exist in the frequency of mutations and it appears that promoter hypermethylation occurs in a non-random pattern in childhood AML accompanying specific genetic aberrations, and might represent an important step in the leukemogenic transformation.
Collapse
|
7
|
Högstrand K, Hejll E, Sander B, Rozell B, Larsson LG, Grandien A. Inhibition of the intrinsic but not the extrinsic apoptosis pathway accelerates and drives MYC-driven tumorigenesis towards acute myeloid leukemia. PLoS One 2012; 7:e31366. [PMID: 22393362 PMCID: PMC3290626 DOI: 10.1371/journal.pone.0031366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/09/2012] [Indexed: 11/18/2022] Open
Abstract
Myc plays an important role in tumor development, including acute myeloid leukemia (AML). However, MYC is also a powerful inducer of apoptosis, which is one of the major failsafe programs to prevent cancer development. To clarify the relative importance of the extrinsic (death receptor-mediated) versus the intrinsic (mitochondrial) pathway of apoptosis in MYC-driven AML, we coexpressed MYC together with anti-apoptotic proteins of relevance for AML; BCL-X(L)/BCL-2 (inhibiting the intrinsic pathway) or FLIP(L) (inhibiting the extrinsic pathway), in hematopoietic stems cells (HSCs). Transplantation of HSCs expressing MYC into syngeneic recipient mice resulted in development of AML and T-cell lymphomas within 7-9 weeks as expected. Importantly, coexpression of MYC together with BCL-X(L)/BCL-2 resulted in strongly accelerated kinetics and favored tumor development towards aggressive AML. In contrast, coexpression of MYC and FLIP(L) did neither accelerate tumorigenesis nor change the ratio of AML versus T-cell lymphoma. However, a change in distribution of immature CD4(+)CD8(+) versus mature CD4(+) T-cell lymphoma was observed in MYC/FLIP(L) mice, possibly as a result of increased survival of the CD4+ population, but this did not significantly affect the outcome of the disease. In conclusion, our findings provide direct evidence that BCL-X(L) and BCL-2 but not FLIP(L) acts in synergy with MYC to drive AML development.
Collapse
Affiliation(s)
- Kari Högstrand
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eduar Hejll
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Sander
- Divisions of Clinical Research Center and Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Björn Rozell
- Divisions of Clinical Research Center and Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Alf Grandien
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
8
|
Spirin PV, Nikitenko NA, Lebedev TD, Rubtsov PM, Stocking C, Prasolov VS. Modulation of activated oncogene c-kit expression with RNA-interference. Mol Biol 2011. [DOI: 10.1134/s0026893311060136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Wang F, Wang XS, Yang GH, Zhai PF, Xiao Z, Xia LY, Chen LR, Wang Y, Wang XZ, Bi LX, Liu N, Yu Y, Gao D, Huang BT, Wang J, Zhou DB, Gong JN, Zhao HL, Bi XH, Yu J, Zhang JW. miR-29a and miR-142-3p downregulation and diagnostic implication in human acute myeloid leukemia. Mol Biol Rep 2011; 39:2713-22. [PMID: 21678057 DOI: 10.1007/s11033-011-1026-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 06/03/2011] [Indexed: 01/12/2023]
Abstract
Expression profiling of microRNAs (miRNAs) in most diseases might be popular and provide the possibility for diagnostic implication, but few studies have accurately quantified the expression level of dysregulated miRNAs in acute myeloid leukemia (AML). In this study, we analyzed the peripheral blood mononuclear cells (PBMCs) from 10 AML patients (subtypes M1 to M5) and six normal controls by miRNA microarray and identified several differentially expressed miRNAs. Among them miR-29a and miR-142-3p were selectively encountered in Northern blot analysis and their significantly decreased expression in AML was further confirmed. Quantitative real-time PCR in 52 primarily diagnosed AML patients and 100 normal controls not only verified the expression properties of these 2 miRNAs, but also established that the expression level of miR-142-3p and miR-29a in PBMCs could be used as novel diagnostic markers. A better diagnostic outcome was achieved by combining miR-29a and miR-142-3p with about 90% sensitivity, 100% specificity, and an area under the ROC curve (AUC) of 0.97. Our results provide insights into the involvement of miRNAs in leukemogenesis, and offer candidates for AML diagnosis and therapeutic strategy.
Collapse
Affiliation(s)
- Fang Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Giguère A, Hébert J. Microhomologies and topoisomerase II consensus sequences identified near the breakpoint junctions of the recurrent t(7;21)(p22;q22) translocation in acute myeloid leukemia. Genes Chromosomes Cancer 2011; 50:228-38. [PMID: 21319259 DOI: 10.1002/gcc.20848] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/30/2010] [Indexed: 12/14/2022] Open
Abstract
RUNX1 rearrangements are common genetic abnormalities in acute leukemia. The t(7;21)(p22;q22) translocation, recently described in three cases of myeloid neoplasias, fuses the ubiquitin specific peptidase 42 gene, USP42, a member of the deubiquitinating enzyme family, to RUNX1. In this study, we characterized the semicryptic t(7;21)(p22;q22) translocation, identified by fluorescent in situ hybridization and spectral karyotyping, in a novel case of acute myeloid leukemia. Sequence analysis of the reverse transcription-polymerase chain reaction products confirmed the presence of two in-frame RUNX1-USP42 and one reciprocal in-frame USP42-RUNX1 fusion transcripts. Bioinformatic analysis of the genomic translocation breakpoints revealed microhomologies and insertion of shared nucleotides at the junctions. A topoisomerase II sequence was also detected near the break site. Additionally, we demonstrated a significant overexpression of the rearranged USP42 gene in t(7;21) positive cells using quantitative real-time PCR. Our results provide the first evidence of the possible involvement of the nonhomologous end-joining mechanism in the origin of the recurrent t(7;21) translocation. Moreover, presence of the complete catalytic USP site in the putative chimeric proteins and the upregulated expression of USP42 suggest a role of the deubiquitinating enzyme in the pathogenesis of this leukemia.
Collapse
Affiliation(s)
- Amélie Giguère
- Quebec Leukemia Cell Bank and Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada, H1T 2M4; Department of Medicine, University of Montreal, Quebec, Canada, H3C 3J7
| | | |
Collapse
|
11
|
Baskaran D, Spirin PV, Prassolov VS. Activated leukemic oncogenes responsible for neoplastic transformation of hematopoietic cells. Mol Biol 2010. [DOI: 10.1134/s0026893310030039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Rapamycin, the mTOR kinase inhibitor, sensitizes acute myeloid leukemia cells, HL-60 cells, to the cytotoxic effect of arabinozide cytarabine. Anticancer Drugs 2009; 20:693-701. [PMID: 19584709 DOI: 10.1097/cad.0b013e32832e89b4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mammalian target of rapamycin (mTOR) kinase is a key regulator of cell growth and proliferation. Overexpression of the mTOR signaling pathway has been described in several tumor cells, including the majority of acute myeloid leukemia (AML) cases. The anti-tumor efficacy of mTOR inhibitors was shown in several preclinical and clinical studies. In AML, however, the potential antineoplastic effect of mTOR inhibitors has received little attention thus far. In this in-vitro study of the human AML cell line, HL-60, we aimed to assess the antileukemic activity of rapamycin (RAPA), an mTOR inhibitor, alone and in combination with cytarabine (Ara-C). The study showed that RAPA in concentrations of 1-10 nmol/l arrested the cell cycle progression of Hl-60 cells in the G1 phase, without evident cytotoxic effect. This effect was associated with significant inhibition of cyclin E expression. At concentrations higher than 10 nmol/l, RAPA exerted a significant proapoptotic effect, with the collapse of mitochondrial potential and caspase-3 activation. The most prominent proapoptotic effect was observed for a combination of 1 nmol/l of RAPA and 50 nmol/l of Ara-C, especially when Ara-C was added at a 24-h interval after RAPA. In conclusion, these data indicate that RAPA might be effective in the treatment of acute leukemia patients, especially in combination with Ara-C, the drug routinely used in AML treatment. On the basis of these results, attempts to combine classical induction chemotherapy with an inhibitor of the mTOR kinase in AML treatment could be warranted.
Collapse
|
13
|
Matondo M, Bousquet-Dubouch MP, Gallay N, Uttenweiler-Joseph S, Recher C, Payrastre B, Manenti S, Monsarrat B, Burlet-Schiltz O. Proteasome inhibitor-induced apoptosis in acute myeloid leukemia: a correlation with the proteasome status. Leuk Res 2009; 34:498-506. [PMID: 19811823 DOI: 10.1016/j.leukres.2009.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 09/07/2009] [Accepted: 09/14/2009] [Indexed: 12/31/2022]
Abstract
The proteasome plays a critical role in the regulation of many cellular processes, including the cell cycle and tumor growth. The proteasome inhibitor bortezomib has recently been approved for the treatment of relapsed and refractory multiple myeloma. In this study, we investigated the induction of apoptosis by proteasome inhibitors in several human acute myeloid leukemia (AML) cell lines and in primary cells from patients. We demonstrate that these drugs induce a high level of apoptosis in the KG1a cell line, in which the therapeutic drug daunorubicin is poorly active, compared to other AML cell lines. In parallel, we found that significantly different levels of apoptosis were induced in primary cells from patients depending on the FAB-based differentiation status of these cells. Moreover, the level of 20S proteasome in KG1a cells was also high compared to other AML cell lines, suggesting a relationship between the high sensitivity to proteasome inhibitors and an elevated amount of 20S proteasome. In good accordance, we identified two groups of patient cells expressing high and low levels of 20S proteasome, with respective high and low sensitivity to proteasome inhibitors. Further comparison of the proteasome status in KG1a and U937 cells also suggests that a high proportion of the 19S regulatory complex in U937 cells compared to the 20S core complex may explain an increased proteasome activity. Altogether, our results suggest that various AML subtypes may present different responses to proteasome inhibitors, that these molecules can be potentially considered as interesting therapeutic alternatives for these pathologies, and that the amount of 20S proteasome in AML cells may be predictive of the cellular response to these inhibitors.
Collapse
Affiliation(s)
- Mariette Matondo
- CNRS, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, F-31077 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Renner AG, Dos Santos C, Recher C, Bailly C, Créancier L, Kruczynski A, Payrastre B, Manenti S. Polo-like kinase 1 is overexpressed in acute myeloid leukemia and its inhibition preferentially targets the proliferation of leukemic cells. Blood 2009; 114:659-62. [PMID: 19458358 DOI: 10.1182/blood-2008-12-195867] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a major mitotic regulator overexpressed in many solid tumors. Its role in hematopoietic malignancies is still poorly characterized. In this study, we demonstrate that Plk1 is highly expressed in leukemic cell lines, and overexpressed in a majority of samples from patients with acute myeloid leukemia compared with normal progenitors. A pharmacologic inhibitor, BI2536, blocks proliferation in established cell lines, and dramatically inhibits the clonogenic potential of leukemic cells from patients. Plk1 knockdown by small interfering RNA also blocked proliferation of leukemic cell lines and the clonogenic potential of primary cells from patients. Interestingly, normal primary hematopoietic progenitors are less sensitive to Plk1 inhibition than leukemic cells, whose proliferation is dramatically decreased by the inhibitor. These results highlight Plk1 as a potentially interesting therapeutic target for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Annelies G Renner
- INSERM Unité 563-IFR30, Centre de Physiopathologie Toulouse-Purpan, Département Oncogenèse et Signalisation dans les cellules hématopoïétiques, Centre Hospitalier Universitaire (CHU) Purpan, Toulouse
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Genomic instability in myeloid malignancies: Increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett 2008; 270:1-9. [DOI: 10.1016/j.canlet.2008.03.036] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 03/25/2008] [Accepted: 03/26/2008] [Indexed: 11/22/2022]
|
16
|
Haferlach T. Molecular genetic pathways as therapeutic targets in acute myeloid leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2008; 2008:400-411. [PMID: 19074117 DOI: 10.1182/asheducation-2008.1.400] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The heterogeneity of acute myeloid leukemia (AML) results from a complex network of cytogenetic aberrations and molecular mutations. These genetic markers are the basis for the categorization of cases within distinct subgroups and are highly relevant for the prediction of prognosis and for therapeutic decisions in AML. Clinical variances within distinct genetically defined subgroups could in part be linked to the interaction of diverse mutation classes, and the subdivision of normal karyotype AML on the basis of recurrent molecular mutations gains increasing relevance for therapeutic decisions. In parallel to these important insights in the complexity of the genetic networks in AML, a variety of diverse new compounds is being investigated in preclinical and clinical studies. These approaches aim to develop targeted treatment concepts that are based on interference with molecular genetic or epigenetic mechanisms. This review provides an overview on the most relevant genetic markers, which serve as basis for targeted therapy approaches now or might represent options for such approaches in the future, and summarizes recent results of targeted therapy studies.
Collapse
|
17
|
Current Awareness in Hematological Oncology. Hematol Oncol 2008. [DOI: 10.1002/hon.831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|