1
|
Pantaleo A, Forte G, Fasano C, Lepore Signorile M, Sanese P, De Marco K, Di Nicola E, Latrofa M, Grossi V, Disciglio V, Simone C. Understanding the Genetic Landscape of Pancreatic Ductal Adenocarcinoma to Support Personalized Medicine: A Systematic Review. Cancers (Basel) 2023; 16:56. [PMID: 38201484 PMCID: PMC10778202 DOI: 10.3390/cancers16010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies worldwide. While population-wide screening recommendations for PDAC in asymptomatic individuals are not achievable due to its relatively low incidence, pancreatic cancer surveillance programs are recommended for patients with germline causative variants in PDAC susceptibility genes or a strong family history. In this study, we sought to determine the prevalence and significance of germline alterations in major genes (ATM, BRCA1, BRCA2, CDKN2A, EPCAM, MLH1, MSH2, MSH6, PALB2, PMS2, STK11, TP53) involved in PDAC susceptibility. We performed a systematic review of PubMed publications reporting germline variants identified in these genes in PDAC patients. Overall, the retrieved articles included 1493 PDAC patients. A high proportion of these patients (n = 1225/1493, 82%) were found to harbor alterations in genes (ATM, BRCA1, BRCA2, PALB2) involved in the homologous recombination repair (HRR) pathway. Specifically, the remaining PDAC patients were reported to carry alterations in genes playing a role in other cancer pathways (CDKN2A, STK11, TP53; n = 181/1493, 12.1%) or in the mismatch repair (MMR) pathway (MLH1, MSH2, MSH6, PMS2; n = 87/1493, 5.8%). Our findings highlight the importance of germline genetic characterization in PDAC patients for better personalized targeted therapies, clinical management, and surveillance.
Collapse
Affiliation(s)
- Antonino Pantaleo
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Marialaura Latrofa
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
2
|
Wu J, Wang H, Ricketts CJ, Yang Y, Merino MJ, Zhang H, Shi G, Gan H, Linehan WM, Zhu Y, Ye D. Germline mutations of renal cancer predisposition genes and clinical relevance in Chinese patients with sporadic, early-onset disease. Cancer 2018; 125:1060-1069. [PMID: 30548481 DOI: 10.1002/cncr.31908] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND An inherited susceptibility to renal cancers is associated with multiple predisposing genes, but most screening tests are limited to patients with a family history. Next-generation sequencing (NGS)-based multigene panels provide an efficient and adaptable tool for investigating pathogenic germline mutations on a larger scale. This study investigated the frequency of pathogenic germline mutations in renal cancer predisposition genes in patients with sporadic, early-onset disease. METHODS An NGS-based panel of 23 known and potential renal cancer predisposition genes was used to analyze germline mutations in 190 unrelated Chinese patients under the age of 45 years who presented with renal tumors. The detected variants were filtered for pathogenicity, and then their frequencies were calculated and correlated with clinical features. Germline variants of the fumarate hydratase (FH) and BRCA1-associated protein 1 (BAP1) genes were comprehensively analyzed because of their aggressive potential. RESULTS In total, 18 patients (9.5%) had germline mutations in 10 genes. Twelve of these 18 patients had alterations in renal cancer predisposition genes (6.3%), and 6 patients had mutations in potential predisposition genes such as BRCA1/2. Notably, pathogenic mutation carriers had a significant family history in second-degree relatives in comparison with those without pathogenic mutations (P < .001). Variants of unknown clinical significance in FH and BAP1 demonstrated evidence of additional somatic loss in tumors. CONCLUSIONS In patients with early-onset disease, a multigene panel identified a high pathogenic germline mutation rate in renal cancer predisposition genes. This study emphasizes the importance of screening patients with early-onset disease for mutations in cancer predisposition genes. Germline screening should be encouraged in early-onset patients to provide personalized medicine and improve patient outcomes.
Collapse
Affiliation(s)
- Junlong Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Hongkai Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Youfeng Yang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria J Merino
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Hualei Gan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Mohammadpour A, Derakhshan M, Darabi H, Hedayat P, Momeni M. Melanoma: Where we are and where we go. J Cell Physiol 2018; 234:3307-3320. [PMID: 30362507 DOI: 10.1002/jcp.27286] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
Abstract
Melanoma is known as an aggressive tumor which shows an increasing incidence and poor prognosis in the metastatic phase. Hence, it seems that diagnosis and effective management (including early diagnosis, choosing of the effective therapeutic platform, caring, and training of patients for early detection) are major aspects of melanoma therapy. Early detection of melanoma is a key point for melanoma therapy. There are various diagnosis options such as assessing of biopsy, imaging techniques, and biomarkers (i.e., several proteins, polymorphism, and liquid biopsy). Among the various biomarkers, assessing circulating tumor cells, cell-free DNAs, cell-free RNAs, and microRNAs (miRNAs) have emerged as powerful diagnosis tools for melanoma patients. Deregulations of these molecules are associated with melanoma pathogenesis. After detection of melanoma, choosing of effective therapeutic regimen is a key step for recovery of melanoma patients. Several studies indicated that various therapeutic approaches including surgery, immunotherapy, systematic therapy, radiation therapy and antibodies therapy could be used as potential therapeutic candidates for melanoma therapy. Caring for melanoma patients is one of the important components of melanoma therapy. Caring and training for melanoma patients could contribute to better monitoring of patients in response to various therapeutic options. Here, we summarized various diagnosis approaches such as assessing biopsy, imaging techniques, and utilization of various biomarkers (i.e., proteins, CTCs, cfDNAs, and miRNAs) as a diagnostic biomarker for detection and monitoring patients with melanoma. Moreover, we highlighted various therapeutic options and caring aspects in patients with melanoma.
Collapse
Affiliation(s)
- Ali Mohammadpour
- Faculty of Nursing and Midwifery, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maryam Derakhshan
- Department of Pathology, Medical University of Isfahan, Isfahan, Iran
| | - Hassan Darabi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pegah Hedayat
- Department of Pathology, Medical University of Isfahan, Isfahan, Iran
| | - Mohammad Momeni
- Department of Radiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Soura E, Eliades PJ, Shannon K, Stratigos AJ, Tsao H. Hereditary melanoma: Update on syndromes and management: Genetics of familial atypical multiple mole melanoma syndrome. J Am Acad Dermatol 2016; 74:395-407; quiz 408-10. [PMID: 26892650 DOI: 10.1016/j.jaad.2015.08.038] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022]
Abstract
Malignant melanoma is considered the most lethal skin cancer if it is not detected and treated during its early stages. About 10% of melanoma patients report a family history of melanoma; however, individuals with features of true hereditary melanoma (ie, unilateral lineage, multigenerational, multiple primary lesions, and early onset of disease) are in fact quite rare. Although many new loci have been implicated in hereditary melanoma, CDKN2A mutations remain the most common. Familial melanoma in the presence of multiple atypical nevi should raise suspicion for a germline CDKN2A mutation. These patients have a high risk of developing multiple primary melanomas and internal organ malignancies, especially pancreatic cancer; therefore, a multidisciplinary approach is necessary in many cases. The value of dermoscopic examination and total body photography performed at regular intervals has been suggested by a number of studies, and should therefore be considered for these patients and their first-degree relatives. In addition, genetic counseling with the possibility of testing can be a valuable adjunct for familial melanoma patients. This must be performed with care, however, and only by qualified individuals trained in cancer risk analysis.
Collapse
Affiliation(s)
- Efthymia Soura
- 1st Department of Dermatology, University Clinic, "Andreas Sygros" Hospital, Athens, Greece
| | - Philip J Eliades
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts; Tufts University School of Medicine, Boston, Massachusetts
| | - Kristen Shannon
- Melanoma Genetics Program/MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Alexander J Stratigos
- 1st Department of Dermatology, University Clinic, "Andreas Sygros" Hospital, Athens, Greece
| | - Hensin Tsao
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts; Melanoma Genetics Program/MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
5
|
Martín-Algarra S, Fernández-Figueras MT, López-Martín JA, Santos-Briz A, Arance A, Lozano MD, Berrocal A, Ríos-Martín JJ, Espinosa E, Rodríguez-Peralto JL. Guidelines for biomarker testing in metastatic melanoma: a National Consensus of the Spanish Society of Pathology and the Spanish Society of Medical Oncology. Clin Transl Oncol 2013; 16:362-73. [DOI: 10.1007/s12094-013-1090-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/16/2013] [Indexed: 12/19/2022]
|
6
|
Abstract
It is estimated that 5% to 10% of pancreatic cancer is familial. Although there is evidence of a major pancreatic cancer susceptibility gene, the majority of families with multiple cases of pancreatic cancer do not have an identifiable causative gene or syndrome. However, a subset of pancreatic cancer is attributable to known inherited cancer predisposition syndromes, including several hereditary breast cancer genes (BRCA1, BRCA2, and PALB2), CDKN2A, hereditary pancreatitis, hereditary nonpolyposis colorectal cancer, and Peutz-Jeghers syndrome. In addition to explaining a proportion of familial pancreatic cancer, individuals with these conditions are at increased risk for pancreatic cancer. Relatives from familial pancreatic cancer kindreds without one of these identifiable syndromes may have as high as a 32-fold risk of pancreatic cancer, depending on the number of affected first-degree relatives. Such high-risk individuals may benefit from increased surveillance, and strategies for early detection of pancreatic cancer are under evaluation.
Collapse
|
7
|
Johnson KJ, Carozza SE, Chow EJ, Fox EE, Horel S, McLaughlin CC, Mueller BA, Puumala SE, Reynolds P, Von Behren J, Spector LG. Birth characteristics and childhood carcinomas. Br J Cancer 2011; 105:1396-401. [PMID: 21915125 PMCID: PMC3241539 DOI: 10.1038/bjc.2011.359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Carcinomas in children are rare and have not been well studied. Methods: We conducted a population-based case–control study and examined associations between birth characteristics and childhood carcinomas diagnosed from 28 days to 14 years during 1980–2004 using pooled data from five states (NY, WA, MN, TX, and CA) that linked their birth and cancer registries. The pooled data set contained 57 966 controls and 475 carcinoma cases, including 159 thyroid and 126 malignant melanoma cases. We used unconditional logistic regression to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Results: White compared with ‘other’ race was positively associated with melanoma (OR=3.22, 95% CI 1.33–8.33). Older maternal age increased the risk for melanoma (ORper 5-year age increase=1.20, 95% CI 1.00–1.44), whereas paternal age increased the risk for any carcinoma (OR=1.10per 5-year age increase, 95% CI 1.01–1.20) and thyroid carcinoma (ORper 5-year age increase=1.16, 95% CI 1.01–1.33). Gestational age <37 vs 37–42 weeks increased the risk for thyroid carcinoma (OR=1.87, 95% CI 1.07–3.27). Plurality, birth weight, and birth order were not significantly associated with childhood carcinomas. Conclusion: This exploratory study indicates that some birth characteristics including older parental age and low gestational age may be related to childhood carcinoma aetiology.
Collapse
Affiliation(s)
- K J Johnson
- The Brown School and Department of Pediatrics, Washington University in St Louis, St Louis, MO 63130, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
McWilliams RR, Wieben ED, Rabe KG, Pedersen KS, Wu Y, Sicotte H, Petersen GM. Prevalence of CDKN2A mutations in pancreatic cancer patients: implications for genetic counseling. Eur J Hum Genet 2011; 19:472-8. [PMID: 21150883 PMCID: PMC3060321 DOI: 10.1038/ejhg.2010.198] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 09/27/2010] [Accepted: 10/07/2010] [Indexed: 12/15/2022] Open
Abstract
Germline mutations in CDKN2A have been reported in pancreatic cancer families, but genetic counseling for pancreatic cancer risk has been limited by lack of information on CDKN2A mutation carriers outside of selected pancreatic or melanoma kindreds. Lymphocyte DNA from consecutive, unselected white non-Hispanic patients with pancreatic adenocarcinoma was used to sequence CDKN2A. Frequencies of mutations that alter the coding of p16INK4 or p14ARF were quantified overall and in subgroups. Penetrance and likelihood of carrying mutations by family history were estimated. Among 1537 cases, 9 (0.6%) carried germline mutations in CDKN2A, including three previously unreported mutations. CDKN2A mutation carriers were more likely to have a family history of pancreatic cancer (P=0.003) or melanoma (P=0.03), and a personal history of melanoma (P=0.01). Among cases who reported having a first-degree relative with pancreatic cancer or melanoma, the carrier proportions were 3.3 and 5.3%, respectively. Penetrance for mutation carriers by age 80 was calculated to be 58% for pancreatic cancer (95% confidence interval (CI) 8-86%), and 39% for melanoma (95% CI 0-80). Among cases who ever smoked cigarettes, the risk for pancreatic cancer was higher for carriers compared with non-carriers (HR 25.8, P=2.1 × 10⁻¹³), but among nonsmokers, this comparison did not reach statistical significance. Germline mutations in CDKN2A among unselected pancreatic cancer patients are uncommon, although notably penetrant, especially among smokers. Carriers of germline mutations of CDKN2A should be counseled to avoid tobacco use to decrease risk of pancreatic cancer in addition to taking measures to decrease melanoma risk.
Collapse
|
10
|
Leachman SA, Carucci J, Kohlmann W, Banks KC, Asgari MM, Bergman W, Bianchi-Scarrà G, Brentnall T, Bressac-de Paillerets B, Bruno W, Curiel-Lewandrowski C, de Snoo FA, Debniak T, Demierre MF, Elder D, Goldstein AM, Grant-Kels J, Halpern AC, Ingvar C, Kefford RF, Lang J, MacKie RM, Mann GJ, Mueller K, Newton-Bishop J, Olsson H, Petersen GM, Puig S, Rigel D, Swetter SM, Tucker MA, Yakobson E, Zitelli JA, Tsao H. Selection criteria for genetic assessment of patients with familial melanoma. J Am Acad Dermatol 2009; 61:677.e1-14. [PMID: 19751883 DOI: 10.1016/j.jaad.2009.03.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/09/2009] [Accepted: 03/16/2009] [Indexed: 12/15/2022]
Abstract
Approximately 5% to 10% of melanoma may be hereditary in nature, and about 2% of melanoma can be specifically attributed to pathogenic germline mutations in cyclin-dependent kinase inhibitor 2A (CDKN2A). To appropriately identify the small proportion of patients who benefit most from referral to a genetics specialist for consideration of genetic testing for CDKN2A, we have reviewed available published studies of CDKN2A mutation analysis in cohorts with invasive, cutaneous melanoma and found variability in the rate of CDKN2A mutations based on geography, ethnicity, and the type of study and eligibility criteria used. Except in regions of high melanoma incidence, such as Australia, we found higher rates of CDKN2A positivity in individuals with 3 or more primary invasive melanomas and/or families with at least one invasive melanoma and two or more other diagnoses of invasive melanoma and/or pancreatic cancer among first- or second-degree relatives on the same side of the family. The work summarized in this review should help identify individuals who are appropriate candidates for referral for genetic consultation and possible testing.
Collapse
Affiliation(s)
- Sancy A Leachman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Udayakumar D, Tsao H. Melanoma genetics: an update on risk-associated genes. Hematol Oncol Clin North Am 2009; 23:415-29, vii. [PMID: 19464594 DOI: 10.1016/j.hoc.2009.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The past 15 years have seen rapid advances in both our understanding of hereditary melanoma genetics and the technologies that enable scientists to make discoveries. Despite great efforts by many groups worldwide, other high-risk melanoma loci besides CDKN2A still remain elusive. A panel of polymorphisms that appears to confer low-to-moderate risk for melanoma has been assembled through functional and genome-wide association studies. The goal of personalized melanoma risk prediction is within our reach, although true clinical use has yet to be established.
Collapse
Affiliation(s)
- Durga Udayakumar
- Department of Dermatology, Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Edwards 211, 50 Blossom Street, Boston, MA 02114, USA
| | | |
Collapse
|