1
|
Ibrahim NE, Raafat Hamed RM, Refaat A, Mosaad YO, Mekawy DM. Genetic Polymorphism in FSCN1 rs3801004 C/G and CD44 rs353639 A/C, as Prognostic Factor in Egyptian Breast Cancer Patients. Asian Pac J Cancer Prev 2023; 24:3517-3523. [PMID: 37898858 PMCID: PMC10770661 DOI: 10.31557/apjcp.2023.24.10.3517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND One of the main causes of cancer-related deaths is breast cancer. Fascin-1(FSCN1) is an actin-binding protein that is present in the mesenchymal, neuronal, and endothelial cells of mammals. Patients with breast cancer have been found to have FSCN1 overexpression. CD44 is crucial for the development, invasion, and tumour spread. Therefore, we aimed to investigate the role of FSCN1&CD44 gene polymorphisms in breast cancer (BC) risk and prognosis. MATERIALS & METHODS A total of 96 BC patients and 50 controls were included in the case-control study for risk prediction. We examined the association between The SNPs on FSCN1(rs3801004) and CD44(rs353639) and BC susceptibility and clinicopathological features using a real-time PCR in a cohort of the Egyptian population. Results: A significant association of both SNPs on FSCN1(rs3801004)C allele and CD44(rs353639)A allele and BC susceptibility(adjusted OR=4.38,95%CI:2.6-7.4,p<0.001, and adjusted OR=4.44,95%CI:2.65-7.44,p <0.001,respectively). Moreover, CC genotype in FSCN1(rs3801004) were likely to progress to developing G2&G3 and N2&N3 and stage II & stage IV, according to the TNM staging and GG+GC genotypes increased within individuals who had a positive family history of BC. Individuals who carry at least one A allele for CD44rs353639 were likely to progress developing N2 according to the TNM in BC patients. CONCLUSIONS These findings suggest that both SNPs on FSCN1 (rs3801004) and CD44 (rs353639) affected BC susceptibility. FSCN1 (rs3801004) genetic variants may have a significant effect on BC prognosis. However, CD44 (rs353639) affected lymph node invasions in BC patients.
Collapse
Affiliation(s)
- Noha E. Ibrahim
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza, P.O. 12622, Egypt.
| | | | - Ahmed Refaat
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Yasser O. Mosaad
- Department of Pharmacy Practice & Clinical Pharmacy, Future University, Egypt.
| | - Dina Mohamed Mekawy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
- Department of Medical biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Badr city, Egypt.
| |
Collapse
|
2
|
Duque G, Manterola C, Otzen T, Arias C, Palacios D, Mora M, Galindo B, Holguín JP, Albarracín L. Cancer Biomarkers in Liquid Biopsy for Early Detection of Breast
Cancer: A Systematic Review. Clin Med Insights Oncol 2022; 16:11795549221134831. [PMCID: PMC9634213 DOI: 10.1177/11795549221134831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Breast cancer (BC) is the most common neoplasm in women worldwide. Liquid
biopsy (LB) is a non-invasive diagnostic technique that allows the analysis
of biomarkers in different body fluids, particularly in peripheral blood and
also in urine, saliva, nipple discharge, volatile respiratory fluids, nasal
secretions, breast milk, and tears. The objective was to analyze the
available evidence related to the use of biomarkers obtained by LB for the
early diagnosis of BC. Methods: Articles related to the use of biomarkers for the early diagnosis of BC due
to LB, published between 2010 and 2022, from the databases (WoS, EMBASE,
PubMed, and SCOPUS) were included. The MInCir diagnostic scale was applied
in the articles to determine their methodological quality (MQ). Descriptive
statistics were used, as well as determination of weighted averages of each
variable, to analyze the extracted data. Sensitivity, specificity, and area
under the curve values for specific biomarkers (individual or in panels) are
described. Results: In this systematic review (SR), 136 articles met the selection criteria,
representing 17 709 patients with BC. However, 95.6% were case-control
studies. In 96.3% of cases, LB was performed in peripheral blood samples.
Most of the articles were based on microRNA (miRNA) analysis. The mean MQ
score was 25/45 points. Sensitivity, specificity, and area under the curve
values for specific biomarkers (individual or in panels) have been
found. Conclusions: The determination of biomarkers through LB is a useful mechanism for the
diagnosis of BC. The analysis of miRNA in peripheral blood is the most
studied methodology. Our results indicate that LB has a high sensitivity and
specificity for the diagnosis of BC, especially in early stages.
Collapse
Affiliation(s)
- Galo Duque
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador,Galo Duque, Faculty of Medicine,
Universidad del Azuay. Postal address: Av. 24 de Mayo y Hernán Malo, Cuenca,
Ecuador 010107.
| | - Carlos Manterola
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Center of Excellence in Morphological
and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Tamara Otzen
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Center of Excellence in Morphological
and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Cristina Arias
- Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | | | - Miriann Mora
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Bryan Galindo
- Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Juan Pablo Holguín
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Lorena Albarracín
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
3
|
Single nucleotide polymorphisms in the PD1 gene with susceptibility to breast cancer in women. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Gomari MM, Farsimadan M, Rostami N, Mahmoudi Z, Fadaie M, Farhani I, Tarighi P. CD44 polymorphisms and its variants, as an inconsistent marker in cancer investigations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108374. [PMID: 34083044 DOI: 10.1016/j.mrrev.2021.108374] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/23/2020] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Among cell surface markers, CD44 is considered the main marker for identifying and isolating the cancer stem cells (CSCs) among other cells and has attracted significant attention in a variety of research areas. Many studies have shown the essential roles of CD44 in initiation, metastasis, and tumorigenesis in different types of cancer; however, the validity of CD44 as a therapeutic or diagnostic target has not been fully confirmed in some other studies. Whereas the association of specific single nucleotide polymorphisms (SNPs) in the CD44 gene and related variants with cancer risk have been observed in clinical investigations, the significance of these findings remains controversial. Here, we aimed to provide an up-to-date overview of recent studies on the association of CD44 polymorphisms and its variants with different kinds of cancer to determine whether or not it can be used as an appropriate candidate for cancer tracking.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Zahra Mahmoudi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Fadaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ibrahim Farhani
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Min J, Ningappa M, So J, Shin D, Sindhi R, Subramaniam S. Systems Analysis of Biliary Atresia Through Integration of High-Throughput Biological Data. Front Physiol 2020; 11:966. [PMID: 32848883 PMCID: PMC7426509 DOI: 10.3389/fphys.2020.00966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023] Open
Abstract
Biliary atresia (BA), blockage of the proper bile flow due to loss of extrahepatic bile ducts, is a rare, complex disease of the liver and the bile ducts with unknown etiology. Despite ongoing investigations to understand its complex pathogenesis, BA remains the most common cause of liver failure requiring liver transplantation in children. To elucidate underlying mechanisms, we analyzed the different types of high-throughput genomic and transcriptomic data collected from the blood and liver tissue samples of children suffering from BA. Through use of a novel integrative approach, we identified potential biomarkers and over-represented biological functions and pathways to derive a comprehensive network showing the dysfunctional mechanisms associated with BA. One of the pathways highlighted in the integrative network was hypoxia signaling. Perturbation with hypoxia inducible factor activator, dimethyloxalylglycine, induced the biliary defects of BA in a zebrafish model, serving as a validation for our studies. Our approach enables a systems-level understanding of human BA biology that is highlighted by the interaction between key biological functions such as fibrosis, inflammation, immunity, hypoxia, and development.
Collapse
Affiliation(s)
- Jun Min
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Mylarappa Ningappa
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Juhoon So
- Department of Developmental Biology, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Departments of Cellular and Molecular Medicine and Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
Lin X, You X, Cao X, Pan S. Association of Single-Nucleotide Polymorphisms of CD44 Gene with Susceptibility to Breast Cancer in Chinese Women. Med Sci Monit 2018; 24:3077-3083. [PMID: 29748526 PMCID: PMC5973502 DOI: 10.12659/msm.907422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background This study aimed to evaluate the association of CD44 gene single-nucleotide polymorphisms with susceptibility to breast cancer. Material/Methods This case-control study included 242 breast cancer patients and 252 normal people without disease. The single-nucleotide polymorphisms of the CD44 gene in the 2 groups were genotyped by PCR-LDR method. The OR and its 95% CI was calculated by chi-square test and logistic regression analysis. The construction of haplotypes and their interaction analysis with relevant factors were carried out by SHEsis and SNPStats online. Results The genotype distribution of CC and CT, CC and CC+CT, and CC+CT and TT in rs13347 showed a significant difference between cases and controls, and the difference in distribution of alleles C and T was statistically significant. The genotype and alleles distribution of rs4756195 and rs8193 showed no statistically significant difference (P>0.05). The haplotypes distribution of CAC, CGT, TAC, and TGT showed a significant difference between the 2 groups (P<0.05). The results of analysis of haplotypes and their interactions with relevant factors showed that breast cancer risk in the PR-negative group was significantly higher than that in the PR-positive group (P=0.016). We found an interaction between haplotypes and PR status. Conclusions The genotypes CT, CT+TT, TT, and allele T in rs13347 may be risk factors for breast cancer. The haplotype CAC may be a protective factor against breast cancer, and CGT, TAC, and TGT may be risk factors for breast cancer. The PR status interacts with CD44 gene SNP.
Collapse
Affiliation(s)
- Xiao Lin
- Department of Thyroid and Breast Surgery, Ruian People's Hospital of Zhejiang Province, Wenzhou, Zhejiang, China (mainland)
| | - Xiaojing You
- Department of Tumor Radiotherapy, Ruian People's Hospital of Zhejiang Province, Wenzhou, Zhejiang, China (mainland)
| | - Xuezhen Cao
- Department of Tumor Radiotherapy, Ruian People's Hospital of Zhejiang Province, Wenzhou, Zhejiang, China (mainland)
| | - Shenghua Pan
- Department of Pathology, Ruian People's Hospital of Zhejiang Province, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
7
|
Unique CD44 intronic SNP is associated with tumor grade in breast cancer: a case control study and in silico analysis. Cancer Cell Int 2018; 18:28. [PMID: 29483847 PMCID: PMC5824488 DOI: 10.1186/s12935-018-0522-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Background CD44 encoded by a single gene is a cell surface transmembrane glycoprotein. Exon 2 is one of the important exons to bind CD44 protein to hyaluronan. Experimental evidences show that hyaluronan–CD44 interaction intensifies the proliferation, migration, and invasion of breast cancer cells. Therefore, the current study aimed at investigating the association between specific polymorphisms in exon 2 and its flanking region of CD44 with predisposition to breast cancer. Methods In the current study, 175 Iranian female patients with breast cancer and 175 age-matched healthy controls were recruited in biobank, Breast Cancer Research Center, Tehran, Iran. Single nucleotide polymorphisms of CD44 exon 2 and its flanking were analyzed via polymerase chain reaction and gene sequencing techniques. Association between the observed variation with breast cancer risk and clinico-pathological characteristics were studied. Subsequently, bioinformatics analysis was conducted to predict potential exonic splicing enhancer (ESE) motifs changed as the result of a mutation. Results A unique polymorphism of the gene encoding CD44 was identified at position 14 nucleotide upstream of exon 2 (A37692→G) by the sequencing method. The A > G polymorphism exhibited a significant association with higher-grades of breast cancer, although no significant relation was found between this polymorphism and breast cancer risk. Finally, computational analysis revealed that the intronic mutation generated a new consensus-binding motif for the splicing factor, SC35, within intron 1. Conclusions The current study results indicated that A > G polymorphism was associated with breast cancer development; in addition, in silico analysis with ESE finder prediction software showed that the change created a new SC35 binding site.
Collapse
|
8
|
Expression of Cancer Stem Cell Marker CD44 and Its Polymorphisms in Patients with Chronic Gastritis, Precancerous Gastric Lesion, and Gastric Cancer: A Cross-Sectional Multicenter Study in Thailand. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4384823. [PMID: 29445738 PMCID: PMC5763069 DOI: 10.1155/2017/4384823] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022]
Abstract
Here we investigated CD44 protein expression and its polymorphisms in patients with chronic gastritis, precancerous gastric lesions, and gastric cancer; and we evaluated our result with the risk of CD44 protein expression and clinicopathological characteristics. Our results obtained by analyzing 162 gastric cancer patients, 125 chronic gastritis, and 165 precancerous gastric lesions from three study centers in Thailand showed that CD44 expression was significantly higher in patients with precancerous gastric lesions and gastric cancer while patients with chronic gastritis were negative for CD44 staining (p = 0.036). We further observed the significant association of variant genotype; gastric cancer patients carrying AG or GG of CD44 rs187116 had more increased risk of CD44 expression than wild-type (WT) carriers (AG: odds ratio (OR) = 5.67; 95% CI = 1.57-7.23; p = 0.024 and GG: OR = 8.32; 95% CI = 2.94-11.42; p = 0.016), but no significant difference in the risk of CD44 expression due to polymorphism in patients with precancerous gastric lesions. Our results suggested that CD44 expression could be used as a marker for the prediction of gastric cancer development, particularly in patients with precancerous gastric lesions carrying AG or GG, who were selected to surveillance follow-up for gastric cancer prevention.
Collapse
|
9
|
Associations of five polymorphisms in the CD44 gene with cancer susceptibility in Asians. Sci Rep 2016; 6:39485. [PMID: 28000766 PMCID: PMC5175131 DOI: 10.1038/srep39485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022] Open
Abstract
CD44 polymorphisms have been previously associated with cancer risk. However, the results between independent studies were inconsistent. Here, a meta-analysis was performed to systematically evaluate associations between CD44 polymorphisms and cancer susceptibility. A comprehensive literature search conducted in PubMed, Embase, and Web of Science databases through August 10, 2016 yielded 11 eligible publications consisting of 5,788 cancer patients and 5,852 controls. Overall, odds ratios (OR) calculated with 95% confidence intervals (CI) identified a significant association between CD44 polymorphism rs13347 and cancer susceptibility under all genetic models. Additionally, the minor allele of polymorphism rs11821102 was associated with a decreased susceptibility to cancer in allele contrast, dominant, and heterozygous models, while no significant association was identified for polymorphisms rs10836347, rs713330, or rs1425802. Subgroup analysis by ethnicity revealed rs13347 was significantly associated with cancer susceptibility for Chinese but not for Indians. Linkage disequilibrium (LD) between different polymorphisms varied across diverse ethnic populations. In conclusion, the results indicate that CD44 polymorphism rs13347 acts as a risk factor for cancer, especially in Chinese, while the minor allele of polymorphism rs11821102 may be associated with a decreased susceptibility to cancer. Nevertheless, further studies on a larger population covering different ethnicities are warranted.
Collapse
|
10
|
Chandra V, Lee YM, Gupta U, Mittal B, Kim JJ, Rai R. Quantitative assessment of CD44 genetic variants and cancer susceptibility in Asians: a meta-analysis. Oncotarget 2016; 7:74286-74302. [PMID: 27521214 PMCID: PMC5342053 DOI: 10.18632/oncotarget.10951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
CD44 is a well-established cancer stem cell marker playing a crucial role in tumor metastasis, recurrence and chemo-resistance. Genetic variants of CD44 have been shown to be associated with susceptibility to various cancers; however, the results are confounding. Hence, we performed a meta-analysis to clarify these associations more accurately. Overall, rs13347 (T vs. C: OR=1.30, p=<0.004, pcorr=0.032; CT vs. CC: OR=1.29, p=0.015, pcorr=0.047; TT vs. CC: OR=1.77, p=<0.000, pcorr=0.018; CT+TT vs. CC: OR=1.34, p=<0.009, pcorr=0.041) and rs187115 (GG vs. AA: OR=2.34, p=<0.000, pcorr=0.025; AG vs. AA: OR=1.59, p=<0.000, pcorr=0.038; G vs. A allele OR=1.56, p=0.000, pcorr=0.05; AG+GG vs. AA: OR=1.63, p=<0.000, pcorr=0.013) polymorphisms were found to significantly increase the cancer risk in Asians. On the other hand, rs11821102 was found to confer low risk (A vs. G: OR=0.87, p=<0.027, pcorr=0.04; AG vs. GG: OR=0.85, p=<0.017, pcorr=0.01; AG+AA vs. GG: OR=0.86, p=<0.020, pcorr=0.02). Based on our analysis, we suggest significant role of CD44 variants (rs13347, rs187115 and rs11821102) in modulating individual's cancer susceptibility in Asians. Therefore, these variants may be used as predictive genetic biomarkers for cancer predisposition in Asian populations. However, more comprehensive studies involving other cancers and/or populations, haplotypes, gene-gene and gene-environment interactions are necessary to delineate the role of these variants in conferring cancer risk.
Collapse
Affiliation(s)
- Vishal Chandra
- Department of Biosciences, Integral University, Lucknow, UP, India
- Stephenson Cancer Center (SCC), University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Yun-Mi Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Korea
| | - Usha Gupta
- Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Balraj Mittal
- Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Jong Joo Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Korea
| | - Rajani Rai
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Korea
| |
Collapse
|
11
|
Flister MJ, Endres BT, Rudemiller N, Sarkis AB, Santarriaga S, Roy I, Lemke A, Geurts AM, Moreno C, Ran S, Tsaih SW, De Pons J, Carlson DF, Tan W, Fahrenkrug SC, Lazarova Z, Lazar J, North PE, LaViolette PS, Dwinell MB, Shull JD, Jacob HJ. CXM: a new tool for mapping breast cancer risk in the tumor microenvironment. Cancer Res 2014; 74:6419-29. [PMID: 25172839 DOI: 10.1158/0008-5472.can-13-3212] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The majority of causative variants in familial breast cancer remain unknown. Of the known risk variants, most are tumor cell autonomous, and little attention has been paid yet to germline variants that may affect the tumor microenvironment. In this study, we developed a system called the Consomic Xenograft Model (CXM) to map germline variants that affect only the tumor microenvironment. In CXM, human breast cancer cells are orthotopically implanted into immunodeficient consomic strains and tumor metrics are quantified (e.g., growth, vasculogenesis, and metastasis). Because the strain backgrounds vary, whereas the malignant tumor cells do not, any observed changes in tumor progression are due to genetic differences in the nonmalignant microenvironment. Using CXM, we defined genetic variants on rat chromosome 3 that reduced relative tumor growth and hematogenous metastasis in the SS.BN3(IL2Rγ) consomic model compared with the SS(IL2Rγ) parental strain. Paradoxically, these effects occurred despite an increase in the density of tumor-associated blood vessels. In contrast, lymphatic vasculature and lymphogenous metastasis were unaffected by the SS.BN3(IL2Rγ) background. Through comparative mapping and whole-genome sequence analysis, we narrowed candidate variants on rat chromosome 3 to six genes with a priority for future analysis. Collectively, our results establish the utility of CXM to localize genetic variants affecting the tumor microenvironment that underlie differences in breast cancer risk.
Collapse
Affiliation(s)
- Michael J Flister
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Bradley T Endres
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nathan Rudemiller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allison B Sarkis
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Ishan Roy
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Angela Lemke
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aron M Geurts
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Carol Moreno
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sophia Ran
- SimonsCooper Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois. Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Shirng-Wern Tsaih
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffery De Pons
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Wenfang Tan
- Department of Animal Science, University of Minnesota, Saint Paul, Minnesota. Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Scott C Fahrenkrug
- Recombinetics Inc, Saint Paul, Minnesota. Department of Animal Science, University of Minnesota, Saint Paul, Minnesota. Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Zelmira Lazarova
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jozef Lazar
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paula E North
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Peter S LaViolette
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James D Shull
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin. Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin. UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Howard J Jacob
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
12
|
Tulsyan S, Agarwal G, Lal P, Agrawal S, Mittal RD, Mittal B. CD44 gene polymorphisms in breast cancer risk and prognosis: a study in North Indian population. PLoS One 2013; 8:e71073. [PMID: 23940692 PMCID: PMC3733640 DOI: 10.1371/journal.pone.0071073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cell surface biomarker CD44 plays an important role in breast cancer cell growth, differentiation, invasion, angiogenesis and tumour metastasis. Therefore, we aimed to investigate the role of CD44 gene polymorphisms in breast cancer risk and prognosis in North Indian population. MATERIALS & METHODS A total of 258 breast cancer patients and 241 healthy controls were included in the case-control study for risk prediction. According to RECIST, 114 patients who received neo-adjuvant chemotherapy were recruited for the evaluation of breast cancer prognosis. We examined the association of tagging SNP (rs353639) of Hapmap Gujrati Indians in Houston (GIH population) in CD44 gene along with a significant reported SNP (rs13347) in Chinese population by genotyping using Taqman allelic discrimination assays. Statistical analysis was done using SPSS software, version 17. In-silico analysis for prediction of functional effects was done using F-SNP and FAST-SNP. RESULTS No significant association of both the genetic variants of the CD44 gene polymorphisms was found with breast cancer risk. On performing univariate analysis with clinicopathological characteristics and treatment response, we found significant association of genotype (CT+TT) of rs13347 polymorphism with earlier age of onset (P = 0.029, OR = 0.037). However, significance was lost in multivariate analysis. For rs353639 polymorphism, significant association was seen with clinical tumour size, both at the genotypic (AC+CC) (P = 0.039, OR = 3.02) as well as the allelic (C) (P = 0.042, OR = 2.87) levels. On performing multivariate analysis, increased significance of variant genotype (P = 0.017, OR = 4.29) and allele (P = 0.025, OR = 3.34) of rs353639 was found with clinical tumour size. In-silico analysis using F-SNP, showed altered transcriptional regulation for rs353639 polymorphism. CONCLUSIONS These findings suggest that CD44 rs353639 genetic variants may have significant effect in breast cancer prognosis. However, both the polymorphisms- rs13347 and rs353639 had no effect on breast cancer susceptibility.
Collapse
Affiliation(s)
- Sonam Tulsyan
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Gaurav Agarwal
- Department of Endocrine and Breast Surgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Punita Lal
- Department of Radiotherapy, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sushma Agrawal
- Department of Radiotherapy, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Rama Devi Mittal
- Department of Urology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Balraj Mittal
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
13
|
Jiang L, Deng J, Zhu X, Zheng J, You Y, Li N, Wu H, Lu J, Zhou Y. CD44 rs13347 C>T polymorphism predicts breast cancer risk and prognosis in Chinese populations. Breast Cancer Res 2012; 14:R105. [PMID: 22788972 PMCID: PMC3680922 DOI: 10.1186/bcr3225] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/12/2012] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION It has been demonstrated that the interplay of adhesion molecule CD44 and its ligands can regulate cancer cell proliferation, migration and invasion, as well as tumor-associated angiogenesis and is related to breast cancer patient survival. In this two-stage, case control study, we determined whether common functional tagSNPs (single nucleotide polymorphisms) are associated with breast cancer risk and prognosis. METHODS Five tagSNPs of CD44 (rs10836347C>T, rs13347C>T, rs1425802A>G, rs11821102G>A, rs713330T>C) were selected and genotyped in 1,853 breast cancer patients and 1,992 healthy control subjects in Eastern and Southern populations. Potential function of rs13347C>T and association between this variation and breast cancer were further studied. RESULTS Compared with the most common rs13347CC genotype, variant genotypes (CT and TT) increased an individual's susceptibility to breast cancer, especially in estrogen receptor (ER) negative patients (odds ratio (OR) = 1.37, 95%CI = 1.17 to 1.59 for ER positive patients; OR = 2.37, 95% CI = 2.00 to 2.80 for ER negative patients). We also found that rs13347CT+ TT genotypes predicts lower five-year survival rate (hazard ratio (HR) = 1.85, 95% CI = 1.09 to 3.15, P = 0.023), with the lowest survival probability in ER negative T allele carriers. Furthermore, our reporter assay findings, although preliminary and rather modest, showed that miR-509-3p may suppress CD44 expression more strongly in C allele carriers than T allele carriers (P < 0.01). Similarly, rs13347 variant genotypes (CT and TT) carriers were shown to have more CD44 expression than CC carriers in both immunohistochemistry (P < 0.001) and western blotting (P = 0.001) results. CONCLUSION These findings suggest that CD44 rs13347C>T polymorphism may affect breast cancer development and prognosis by increasing CD44 expression.
Collapse
|