1
|
Cai Y, Xiao H, Zhou Q, Lin J, Liang X, Xu W, Cao Y, Zhang X, Wang H. Comprehensive Analyses of PANoptosome with Potential Implications in Cancer Prognosis and Immunotherapy. Biochem Genet 2025; 63:331-353. [PMID: 38436818 PMCID: PMC11832696 DOI: 10.1007/s10528-024-10687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/04/2024] [Indexed: 03/05/2024]
Abstract
Cell death resistance significantly contributes to poor therapeutic outcomes in various cancers. PANoptosis, a unique inflammatory programmed cell death (PCD) pathway activated by specific triggers and regulated by the PANoptosome, possesses key features of apoptosis, pyroptosis, and necroptosis, but these cannot be accounted for by any of the three PCD pathways alone. While existing studies on PANoptosis have predominantly centered on infectious and inflammatory diseases, its role in cancer malignancy has been understudied. In this comprehensive investigation, we conducted pan-cancer analyses of PANoptosome component genes across 33 cancer types. We characterized the genetic, epigenetic, and transcriptomic landscapes, and introduced a PANoptosome-related potential index (PANo-RPI) for evaluating the intrinsic PANoptosome assembly potential in cancers. Our findings unveil PANo-RPI as a prognostic factor in numerous cancers, including KIRC, LGG, and PAAD. Crucially, we established a significant correlation between PANo-RPI and tumor immune responses, as well as the infiltration of diverse lymphoid and myeloid cell subsets across nearly all cancer types. Moreover, a high PANo-RPI was consistently associated with improved immunotherapy response and efficacy, as evidenced by re-analysis of multiple immunotherapy cohorts. In conclusion, our study suggests that targeting PANoptosome components and modulating PANoptosis may hold tremendous therapeutic potential in the context of cancer.
Collapse
Affiliation(s)
- Yonghua Cai
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Heng Xiao
- Southern Medical School, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Qixiong Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jie Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xianqiu Liang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Wei Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yongfu Cao
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xian Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Hai Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Yang S, Zou R, Dai Y, Hu Y, Li F, Hu H. Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review). Int J Oncol 2023; 63:137. [PMID: 37888583 PMCID: PMC10631767 DOI: 10.3892/ijo.2023.5585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly heterogeneous malignancy originating from the epithelial system of the bile ducts, and its incidence in recent years is steadily increasing. The immune microenvironment of CCA is characterized by diversity and complexity, with a substantial presence of cancer‑associated fibroblasts and immune cell infiltration, which plays a key role in regulating the distinctive biological behavior of cholangiocarcinoma, including tumor growth, angiogenesis, lymphangiogenesis, invasion and metastasis. Despite the notable success of immunotherapy in the treatment of solid tumors in recent years, patients with CCA have responded poorly to immune checkpoint inhibitor therapy. The interaction of tumor cells with cellular components of the immune microenvironment can regulate the activity and function of immune cells and form an immunosuppressive microenvironment, which may cause ineffective immunotherapy. Therefore, the components of the tumor immune microenvironment appear to be novel targets for immune therapies. Combination therapy focusing on immune checkpoint inhibitors is a promising and valuable first‑line or translational treatment approach for intractable biliary tract malignancies. The present review discusses the compositional characteristics and regulatory factors of the CCA immune microenvironment and the possible immune escape mechanisms. In addition, a summary of the advances in immunotherapy for CCA is also provided. It is hoped that the present review may function as a valuable reference for the development of novel immunotherapeutic strategies for CCA.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruiqi Zou
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yushi Dai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yafei Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fuyu Li
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Haijie Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
3
|
Tomlinson JL, Valle JW, Ilyas SI. Immunobiology of cholangiocarcinoma. J Hepatol 2023; 79:867-875. [PMID: 37201670 PMCID: PMC10524996 DOI: 10.1016/j.jhep.2023.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
Recent literature has significantly advanced our knowledge and understanding of the tumour immune microenvironment of cholangiocarcinoma. Detailed characterisation of the immune landscape has defined new patient subtypes. While not utilised in clinical practice yet, these novel classifications will help inform decisions regarding immunotherapeutic approaches. Suppressive immune cells, such as tumour-associated macrophages and myeloid-derived suppressor cells, form a barrier that shields tumour cells from immune surveillance. The presence of this immunosuppressive barrier in combination with a variety of immune escape mechanisms employed by tumour cells leads to poor tumour immunogenicity. Broad strategies to re-equip the immune system include blockade of suppressive immune cell recruitment to priming cytotoxic effector cells against tumour antigens. While immunotherapeutic strategies are gaining traction for the treatment of cholangiocarcinoma, there is a long road of discovery ahead in order to make meaningful contributions to patient therapy and survival.
Collapse
Affiliation(s)
| | - Juan W Valle
- Division of Cancer Sciences, University of Manchester & Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
The Role of Metabolic Plasticity of Tumor-Associated Macrophages in Shaping the Tumor Microenvironment Immunity. Cancers (Basel) 2022; 14:cancers14143331. [PMID: 35884391 PMCID: PMC9316955 DOI: 10.3390/cancers14143331] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer cells possess a high metabolic demand for their rapid proliferation, survival, and progression and thus create an acidic and hypoxic tumor microenvironment (TME) deprived of nutrients. Moreover, acidity within the TME is the central regulator of tumor immunity that influences the metabolism of the immune cells and orchestrates the local and systemic immunity, thus, the TME has a major impact on tumor progression and resistance to anti-cancer therapy. Specifically, myeloid cells, which include myeloid-derived suppressor cells (MDSC), dendritic cells, and tumor-associated macrophages (TAMs), often reprogram their energy metabolism, resulting in stimulating the angiogenesis and immunosuppression of tumors. This review summarizes the recent findings of glucose, amino acids, and fatty acid metabolism changes of the tumor-associated macrophages (TAMs), and how the altered metabolism shapes the TME and anti-tumor immunity. Multiple proton pumps/transporters are involved in maintaining the alkaline intracellular pH which is necessary for the glycolytic metabolism of the myeloid cells and acidic TME. We highlighted the roles of these proteins in modulating the cellular metabolism of TAMs and their potential as therapeutic targets for improving immune checkpoint therapy.
Collapse
|