1
|
Fatemi N, Mirbahari SN, Tierling S, Sanjabi F, Shahrivari S, AmeliMojarad M, Amelimojarad M, Mirzaei Rezaei M, Nobaveh P, Totonchi M, Nazemalhosseini Mojarad E. Emerging Frontiers in Colorectal Cancer Therapy: From Targeted Molecules to Immunomodulatory Breakthroughs and Cell-Based Approaches. Dig Dis Sci 2025; 70:919-942. [PMID: 39869166 PMCID: PMC11919954 DOI: 10.1007/s10620-024-08774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/20/2024] [Indexed: 01/28/2025]
Abstract
Colorectal cancer (CRC) is ranked as the second leading cause of cancer-related deaths globally, necessitating urgent advancements in therapeutic approaches. The emergence of groundbreaking therapies, including chimeric antigen receptor-T (CAR-T) cell therapies, oncolytic viruses, and immune checkpoint inhibitors, marks a transformative era in oncology. These innovative modalities, tailored to individual genetic and molecular profiles, hold the promise of significantly enhancing patient outcomes. This comprehensive review explores the latest clinical trials and advancements, encompassing targeted molecular therapies, immunomodulatory agents, and cell-based therapies. By evaluating the strengths, limitations, and potential synergies of these approaches, this research aims to reshape the treatment landscape and improve clinical outcomes for CRC patients, offering new found hope for those who have exhausted conventional options. The culmination of this work is anticipated to pave the way for transformative clinical trials, ushering in a new era of personalized and effective CRC therapy.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Nasim Mirbahari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Fatemeh Sanjabi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical, Tehran, Iran
| | - Shabnam Shahrivari
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical, Tehran, Iran
| | - Mandana AmeliMojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Melika Amelimojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Meygol Mirzaei Rezaei
- School of Advanced Sciences and Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Parsa Nobaveh
- School of Advanced Sciences and Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman St, Chamran Expressway, P.O. Box 19857-17413, Tehran, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
2
|
Rastin F, Javid H, Oryani MA, Rezagholinejad N, Afshari AR, Karimi-Shahri M. Immunotherapy for colorectal cancer: Rational strategies and novel therapeutic progress. Int Immunopharmacol 2024; 126:111055. [PMID: 37992445 DOI: 10.1016/j.intimp.2023.111055] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023]
Abstract
There are increasing incidences and mortality rates for colorectal cancer in the world. It is common for chemotherapy and radiation given to patients with colorectal cancer to cause toxicities that limit their effectiveness and cause cancer cells to become resistant to these treatments. Additional targeted treatments are needed to improve patient's quality of life and outcomes. Immunotherapy has rapidly emerged as an incredibly exciting and promising avenue for cancer treatment in recent years. This innovative approach provides novel options for tackling solid tumors, effectively establishing itself as a new cornerstone in cancer treatment. Specifically, in the realm of colorectal cancer (CRC), there is great promise in developing new drugs that target immune checkpoints, offering a hopeful and potentially transformative solution. While immunotherapy of CRC has made significant advances, there are still obstacles and limitations. CRC patients have a poor response to treatment because of the immune-suppressing function of their tumor microenvironment (TME). In addition to blocking inhibitory immune checkpoints, checkpoint-blocking antibodies may also boost immune responses against tumors. The review summarizes recent advances in immune checkpoint inhibitors (ICIs) for CRC, including CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3.
Collapse
Affiliation(s)
- Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir-R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
3
|
McCarthy PM, Valdera FA, Smolinsky TR, Adams AM, O’Shea AE, Thomas KK, Van Decar S, Carpenter EL, Tiwari A, Myers JW, Hale DF, Vreeland TJ, Peoples GE, Stojadinovic A, Clifton GT. Tumor infiltrating lymphocytes as an endpoint in cancer vaccine trials. Front Immunol 2023; 14:1090533. [PMID: 36960052 PMCID: PMC10029975 DOI: 10.3389/fimmu.2023.1090533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Checkpoint inhibitors have invigorated cancer immunotherapy research, including cancer vaccination. Classic early phase trial design and endpoints used in developing chemotherapy are not suited for evaluating all forms of cancer treatment. Peripheral T cell response dynamics have demonstrated inconsistency in assessing the efficacy of cancer vaccination. Tumor infiltrating lymphocytes (TILs), reflect the local tumor microenvironment and may prove a superior endpoint in cancer vaccination trials. Cancer vaccines may also promote success in combination immunotherapy treatment of weakly immunogenic tumors. This review explores the impact of TILs as an endpoint for cancer vaccination in multiple malignancies, summarizes the current literature regarding TILs analysis, and discusses the challenges of providing validity and a standardized implementation of this approach.
Collapse
Affiliation(s)
- Patrick M. McCarthy
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, United States
| | - Franklin A. Valdera
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, United States
| | - Todd R. Smolinsky
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, United States
- *Correspondence: Todd R. Smolinsky, ; Elizabeth L. Carpenter,
| | - Alexandra M. Adams
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, United States
| | - Anne E. O’Shea
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, United States
| | - Katryna K. Thomas
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, United States
| | - Spencer Van Decar
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, United States
| | - Elizabeth L. Carpenter
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, United States
- *Correspondence: Todd R. Smolinsky, ; Elizabeth L. Carpenter,
| | - Ankur Tiwari
- Department of Surgery, University of Texas Health Science Center, San Antonio, TX, United States
| | - John W. Myers
- Department of Surgery, Madigan Army Medical Center, Ft. Lewis, WA, United States
| | - Diane F. Hale
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, United States
| | - Timothy J. Vreeland
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, United States
| | | | | | - Guy T. Clifton
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, United States
| |
Collapse
|
4
|
Jia W, Zhang T, Huang H, Feng H, Wang S, Guo Z, Luo Z, Ji X, Cheng X, Zhao R. Colorectal cancer vaccines: The current scenario and future prospects. Front Immunol 2022; 13:942235. [PMID: 35990683 PMCID: PMC9384853 DOI: 10.3389/fimmu.2022.942235] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Current therapies such as surgery, chemotherapy, and radiotherapy encounter obstacles in preventing metastasis of CRC even when applied in combination. Immune checkpoint inhibitors depict limited effects due to the limited cases of CRC patients with high microsatellite instability (MSI-H). Cancer vaccines are designed to trigger the elevation of tumor-infiltrated lymphocytes, resulting in the intense response of the immune system to tumor antigens. This review briefly summarizes different categories of CRC vaccines, demonstrates the current outcomes of relevant clinical trials, and provides particular focus on recent advances on nanovaccines and neoantigen vaccines, representing the trend and emphasis of CRC vaccine development.
Collapse
Affiliation(s)
- Wenqing Jia
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaodong Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichao Guo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiping Luo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaopin Ji
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaopin Ji, ; Xi Cheng, ; Ren Zhao,
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaopin Ji, ; Xi Cheng, ; Ren Zhao,
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaopin Ji, ; Xi Cheng, ; Ren Zhao,
| |
Collapse
|
5
|
Xu Y, Miller CP, Warren EH, Tykodi SS. Current status of antigen-specific T-cell immunotherapy for advanced renal-cell carcinoma. Hum Vaccin Immunother 2021; 17:1882-1896. [PMID: 33667140 PMCID: PMC8189101 DOI: 10.1080/21645515.2020.1870846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In renal-cell carcinoma (RCC), tumor-reactive T-cell responses can occur spontaneously or in response to systemic immunotherapy with cytokines and immune checkpoint inhibitors. Cancer vaccines and engineered T-cell therapies are designed to selectively augment tumor antigen-specific CD8+ T-cell responses with the goal to elicit tumor regression and avoid toxicities associated with nonspecific immunotherapies. In this review, we provide an overview of the central role of T-cell immunity in the treatment of advanced RCC. Clinical outcomes for antigen-targeted vaccines or other T-cell-engaging therapies for RCC are summarized and evaluated, and emerging new strategies to enhance the effectiveness of antigen-specific therapy for RCC are discussed.
Collapse
Affiliation(s)
- Yuexin Xu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chris P Miller
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Scott S Tykodi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Wan YL, Sapra P, Bolton J, Chua JX, Durrant LG, Stern PL. Combination Treatment with an Antibody-Drug Conjugate (A1mcMMAF) Targeting the Oncofetal Glycoprotein 5T4 and Carboplatin Improves Survival in a Xenograft Model of Ovarian Cancer. Target Oncol 2020; 14:465-477. [PMID: 31332693 PMCID: PMC6684567 DOI: 10.1007/s11523-019-00650-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Recurrence occurs in over 75% of women with epithelial ovarian cancer despite optimal treatment. Selectively killing tumour cells thought to initiate relapse using an antibody–drug conjugate could prolong progression-free survival and offer an improved side-effect profile. A1mcMMAF is an antibody–drug conjugate designed to target cells expressing the tumour-associated antigen 5T4. It has shown to be efficacious in various cell line models and have a greater impact when combined with routine chemotherapeutic regimes. Objectives This study aims to explore the potential for the use of a 5T4 antibody–drug conjugate in women with ovarian cancer both as a monotherapy and in combination with platinum-based chemotherapy. Methods Immunohistochemical analysis was used to assess 5T4 expression in tumours from patients with ovarian cancer. Effectiveness of A1mcMMAF therapy as a single agent and in combination with carboplatin was assessed in vitro in the ovarian cancer cell line SKOV3 and confirmed in vivo using a serial bioluminescence assay in a SKOV3 xenograft model of ovarian cancer. Results 5T4 is confirmed as suitably expressed in epithelial ovarian cancers prior to adjuvant therapy and is an independent predictor of poor survival. A1mcMMAF showed specific activity, both in vitro and in vivo, against SKOV3 ovarian cancer cells. When used in combination with carboplatin, in vivo tumour growth was inhibited resulting in prolonged survival in a SKOV3 xenograft model. Conclusions These data support further investigation of A1mcMMAF in combination with platinum-based chemotherapy in ovarian and other cancer treatments. Electronic supplementary material The online version of this article (10.1007/s11523-019-00650-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Y Louise Wan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 5th Floor Research, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Puja Sapra
- Oncology Research and Development, Pfizer Inc., 401 N. Middletown Road, Pearl River, NY, 10954, USA
| | - James Bolton
- Department of Histopathology, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, UK
| | - Jia Xin Chua
- Academic Clinical Oncology, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Lindy G Durrant
- Academic Clinical Oncology, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Peter L Stern
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
7
|
Oncofetal Chondroitin Sulfate: A Putative Therapeutic Target in Adult and Pediatric Solid Tumors. Cells 2020; 9:cells9040818. [PMID: 32231047 PMCID: PMC7226838 DOI: 10.3390/cells9040818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Solid tumors remain a major challenge for targeted therapeutic intervention strategies such as antibody-drug conjugates and immunotherapy. At a minimum, clear and actionable solid tumor targets have to comply with the key biological requirement of being differentially over-expressed in solid tumors and metastasis, in contrast to healthy organs. Oncofetal chondroitin sulfate is a cancer-specific secondary glycosaminoglycan modification to proteoglycans expressed in a variety of solid tumors and metastasis. Normally, this modification is found to be exclusively expressed in the placenta, where it is thought to facilitate normal placental implantation during pregnancy. Informed by this biology, oncofetal chondroitin sulfate is currently under investigation as a broad and specific target in solid tumors. Here, we discuss oncofetal chondroitin sulfate as a potential therapeutic target in childhood solid tumors in the context of current knowhow obtained over the past five years in adult cancers.
Collapse
|
8
|
Tran TB, Maker VK, Maker AV. Impact of Immunotherapy after Resection of Pancreatic Cancer. J Am Coll Surg 2019; 229:19-27.e1. [PMID: 30742911 DOI: 10.1016/j.jamcollsurg.2019.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 01/28/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Adjuvant immunotherapy has improved outcomes in patients with advanced melanoma; however, the potential benefit for patients with pancreatic ductal adenocarcinoma (PDAC) remains unknown. The aim of this study was to determine the impact of adjuvant chemotherapy and immunotherapy (CTx-IT) compared with CTx alone on patient survival after resection of PDAC. STUDY DESIGN Patients who underwent resection of PDAC from 2004 to 2015 were identified from the National Cancer Database. Univariate and multivariate Cox proportional hazards models were used to determine predictors of overall survival (OS) based on the type of adjuvant therapy received. Patients who received adjuvant immunotherapy were compared with those who received adjuvant CTx alone by propensity score matching. RESULTS Of 21,313 patients who received curative-intent resection for PDAC followed by adjuvant systemic therapy, 269 (1.3%) patients were treated with adjuvant CTx-IT. Propensity score matching resulted in a cohort of 477 patients: (229 CTx only and 248 CTx-IT). The 5-year OS was higher in the CTx-IT group compared with CTx alone (29.2% vs 18.3%; p = 0.0045). On multivariate analysis, the addition of adjuvant immunotherapy was associated was improved overall survival (hazard ratio 0.74; p = 0.007). CONCLUSIONS The addition of adjuvant immunotherapy to chemotherapy is associated with improved survival compared with chemotherapy alone after curative-intent resection of pancreatic adenocarcinoma. Future research is warranted to match specific immunotherapy agents with susceptible patient populations to improve outcomes for this aggressive disease.
Collapse
Affiliation(s)
- Thuy B Tran
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, and the Creticos Cancer Center at Advocate Illinois Masonic Medical Center, Chicago, IL
| | - Vijay K Maker
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, and the Creticos Cancer Center at Advocate Illinois Masonic Medical Center, Chicago, IL
| | - Ajay V Maker
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, and the Creticos Cancer Center at Advocate Illinois Masonic Medical Center, Chicago, IL.
| |
Collapse
|
9
|
Correale P, Botta C, Ciliberto D, Pastina P, Ingargiola R, Zappavigna S, Tassone P, Pirtoli L, Caraglia M, Tagliaferri P. Immunotherapy of colorectal cancer: new perspectives after a long path. Immunotherapy 2017; 8:1281-1292. [PMID: 27993089 DOI: 10.2217/imt-2016-0089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although significant therapeutic improvement has been achieved in the last 10 years, the survival of metastatic colorectal cancer patients remains in a range of 28 to 30 months. Presently, systemic treatment includes combination chemotherapy with oxaliplatin and/or irinotecan together with a backbone of 5-fluorouracil/levofolinate, alone or in combination with monoclonal antibodies to VEGFA (bevacizumab) or EGF receptor (cetuximab and panitumumab). The recent rise of immune checkpoint inhibitors in the therapeutic scenario has renewed scientific interest in the investigation of immunotherapy in metastatic colorectal cancer patients. According to our experience and view, here, we review the immunological strategies investigated for the treatment of this disease, including the use of tumor target-specific cancer vaccines, chemo-immunotherapy and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Pierpaolo Correale
- Unit of Radiotherapy, Department of Medicine, Surgery & Neuroscience, Siena University School of Medicine, Viale Bracci 11, 53100 Siena, Italy
| | - Cirino Botta
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| | - Domenico Ciliberto
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| | - Pierpaolo Pastina
- Unit of Radiotherapy, Department of Medicine, Surgery & Neuroscience, Siena University School of Medicine, Viale Bracci 11, 53100 Siena, Italy
| | - Rossana Ingargiola
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| | - Silvia Zappavigna
- Department of Biochemistry, Biophysics & General Pathology, Second Naples University, Naples, Italy
| | - Pierfrancesco Tassone
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| | - Luigi Pirtoli
- Unit of Radiotherapy, Department of Medicine, Surgery & Neuroscience, Siena University School of Medicine, Viale Bracci 11, 53100 Siena, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics & General Pathology, Second Naples University, Naples, Italy
| | - Pierosandro Tagliaferri
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| |
Collapse
|
10
|
Stern PL, Harrop R. 5T4 oncofoetal antigen: an attractive target for immune intervention in cancer. Cancer Immunol Immunother 2017; 66:415-426. [PMID: 27757559 PMCID: PMC11029567 DOI: 10.1007/s00262-016-1917-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/12/2016] [Indexed: 01/18/2023]
Abstract
The natural history of a patient's cancer is often characterised by genetic diversity and sequential sweeps of clonal dominance. It is therefore not surprising that identifying the most appropriate tumour-associated antigen for targeted intervention is challenging. The 5T4 oncofoetal antigen was identified by searching for surface molecules shared between human trophoblast and cancer cells with the rationale that they may function to allow survival of the foetus as a semi-allograft in the mother or a tumour in its host. The 5T4 protein is expressed by many different cancers but rarely in normal adult tissues. 5T4 molecules are 72 kD, heavily N-glycosylated proteins with several leucine-rich repeats which are often associated with protein-protein interactions. 5T4 expression is associated with the directional movement of cells through epithelial mesenchymal transition, potentiation of CXCL12/CXCR4 chemotaxis and inhibition of canonical Wnt/beta-catenin while favouring non-canonical pathway signalling; all processes which help drive the spread of cancer cells. The selective pattern of 5T4 tumour expression, association with a tumour-initiating phenotype plus a mechanistic involvement with cancer spread have underwritten the clinical development of different immunotherapeutic strategies including a vaccine, a tumour-targeted superantigen and an antibody drug conjugate. In addition, a chimeric antigen receptor T cell approach targeting 5T4 expressing tumour cells is in pre-clinical development. A key challenge will include how best to combine each 5T4 targeted immunotherapy with the most appropriate standard of care treatment (or adjunct therapy) to maximise the recovery of immune control and ultimately eliminate the tumour.
Collapse
Affiliation(s)
- Peter L Stern
- Institute of Cancer Studies, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Richard Harrop
- Oxford BioMedica Plc, Windrush Court, Transport Way, Oxford, OX4 6LT, UK.
| |
Collapse
|
11
|
Pardieck IN, Jawahier PA, Swets M, van de Velde CJH, Kuppen PJK. Novel avenues in immunotherapies for colorectal cancer. Expert Rev Gastroenterol Hepatol 2016; 10:465-80. [PMID: 26582071 DOI: 10.1586/17474124.2016.1122522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since it is known that the immune system affects tumor growth, it has been studied if immunotherapy can be developed to combat cancer. While some successes have been claimed, the increasing knowledge on tumor-immune interactions has, however, also shown the limitations of this approach. Tumors may show selective outgrowth of cells escaped from immune control. Escape variants arise spontaneously due to the genetically instable nature of tumor cells. This is one of the most obvious limitations of cancer immunotherapy. However, new therapies are becoming available, designed to respond to tumor-immune escape.
Collapse
Affiliation(s)
- Iris N Pardieck
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | - Priscilla A Jawahier
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | - Marloes Swets
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | | | - Peter J K Kuppen
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| |
Collapse
|
12
|
Berry J, Vreeland T, Trappey A, Hale D, Peace K, Tyler J, Walker A, Brown R, Herbert G, Yi F, Jackson D, Clifton G, Peoples GE. Cancer vaccines in colon and rectal cancer over the last decade: lessons learned and future directions. Expert Rev Clin Immunol 2016; 13:235-245. [PMID: 27552944 DOI: 10.1080/1744666x.2016.1226132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Great advances have been made in screening for and treatment of colorectal cancer (CRC), but recurrence rates remain high and additional therapies are needed. There is great excitement around the field of immunotherapy and many attempts have been made to bring immunotherapy to CRC through a cancer vaccine. Areas covered: This is a detailed review of the last decade's significant CRC vaccine trials. Expert commentary: Monotherapy with a CRC vaccine is likely best suited for adjuvant therapy in disease free patients. Vaccine therapy elicits crucial tumor infiltrating lymphocytes, which are lacking in microsatellite-stable tumors, and therefore may be better suited for these patients. The combination of CRC vaccines with checkpoint inhibitors may unlock the potential of immunotherapy for a much broader range of patients. Future studies should focus on vaccine monotherapy in correctly selected patients and combination therapy in more advanced disease.
Collapse
Affiliation(s)
- John Berry
- a Department of Colorectal Surgery , Washington University School of Medicine , St. Louis , MO , USA.,b Cancer Vaccine Development Program San Antonio , TX , USA
| | - Timothy Vreeland
- b Cancer Vaccine Development Program San Antonio , TX , USA.,c Department of Surgery , Womack Army Medical Center, Fort Bragg , NC , USA
| | - Alfred Trappey
- d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Diane Hale
- b Cancer Vaccine Development Program San Antonio , TX , USA.,d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Kaitlin Peace
- d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Joshua Tyler
- e Department of Surgery , Keesler Air Force Medical Center, Keesler AFB , MS , USA
| | - Avery Walker
- f Department of Surgery , Brian Allgood Army Community Hospital , Seoul , South Korea
| | - Ramon Brown
- e Department of Surgery , Keesler Air Force Medical Center, Keesler AFB , MS , USA
| | - Garth Herbert
- d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Fia Yi
- d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Doreen Jackson
- b Cancer Vaccine Development Program San Antonio , TX , USA.,d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Guy Clifton
- b Cancer Vaccine Development Program San Antonio , TX , USA.,d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA.,g Department of Surgery , MD Anderson Cancer Center , Houston , TX , USA
| | | |
Collapse
|
13
|
Li P, Meng J, Zhai Y, Zhang H, Yu L, Wang Z, Zhang X, Cao P, Chen X, Han Y, Zhang Y, Chen H, Ling Y, Li Y, Cui Y, Bei JX, Zeng YX, He F, Zhou G. Argonaute 2 and nasopharyngeal carcinoma: a genetic association study and functional analysis. BMC Cancer 2015; 15:862. [PMID: 26545861 PMCID: PMC4636795 DOI: 10.1186/s12885-015-1895-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Background Argonaute 2 (AGO2), a central component of RNA-induced silencing complex, plays critical roles in cancer. We examined whether the single nucleotide polymorphisms (SNPs) of AGO2 were related to the risk of nasopharyngeal carcinoma (NPC). Methods Twenty-five tag SNPs within AGO2 were genotyped in Guangxi population consisting of 855 NPC patients and 1036 controls. The SNPs significantly associated with NPC were further replicated in Guangdong population consisting of 996 NPC patients and 972 controls. Functional experiments were conducted to examine the biologic roles of AGO2 in NPC. Results A significantly increased risk of advanced lymph node metastasis of NPC was identified for the AGO2 rs3928672 GA + AA genotype compared with GG genotype in both the Guangxi and Guangdong populations (combined odd ratio = 2.08, 95 % confidence interval = 1.44-3.01, P = 8.60 × 10−5). Moreover, the AGO2 protein expression levels of rs3928672 GA + AA genotype carriers were higher than the GG genotype carriers in the NPC tissues (P = 0.041), and AGO2 was significantly over-expressed in NPC tissues compared with non-cancerous nasopharyngeal tissues (P = 0.011). In addition, AGO2 knockdown reduced cell proliferation, induced apoptosis, and inhibited migration of NPC cells. Furthermore, gene expression microarray showed that genes altered following AGO2 knockdown were clustered in tumorigenesis and metastasis relevant pathways. Conclusions Our findings suggest that the genetic polymorphism in AGO2 may be a risk factor for the advanced lymph node metastasis of NPC in Chinese populations, and AGO2 acts as an oncogene in the development of NPC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1895-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peiyao Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Jinfeng Meng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China. .,Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Basic Medical Sciences, Beijing, P.R. China.
| | - Yun Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Hongxing Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Lixia Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Zhifu Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Xiaoai Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Pengbo Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Xi Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Yuqing Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Yang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Huipeng Chen
- Laboratory of Microbial Genomics, Beijing Institute of Biotechnology, Beijing, P.R. China.
| | - Yan Ling
- Laboratory of Microbial Genomics, Beijing Institute of Biotechnology, Beijing, P.R. China.
| | - Yuxia Li
- Laboratory of Microbial Genomics, Beijing Institute of Biotechnology, Beijing, P.R. China.
| | - Ying Cui
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning, P.R. China.
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| |
Collapse
|
14
|
Abstract
Currently, the backbone of therapy for metastatic disease is cytotoxic chemotherapy, along with the recent addition of targeted therapy based on molecular markers with KRAS testing. Despite the improvement in survival for metastatic colon cancer, newer agents are still needed. The clinical activity of TroVax in metastatic colon cancer has been studied in a small number of clinical trials. There is evidence that supports the vaccine's ability to induce humoral and cellular responses, as demonstrated by positive 5T4 and MVA-specific antibody titers and cellular proliferation assays. Future strategies should focus on investigating the immunomodulatory effects of chemotherapy in conjunction with TroVax, understanding the optimal dosing and schedule of the combination, and examining potential predictive biomarkers to determine which patients may benefit from immunotherapy from those who do not.
Collapse
Key Words
- 5T4-antigen
- ADCC, Antibody-dependent cell-mediated cytotoxicity
- CEA, Carcinoembryonic antigen
- CRC, Colorectal cancer
- DT, Doubling time
- EBNA-1, Epstein Barr-Virus nuclear antigen-1
- EGFR, Epidermal growth factor receptor
- HRPC, Hormone refractory prostate cancer
- IHC, Immunohistochemoical
- ITT, Intention to treat
- LMP-2, Latent membrane protein-2 antigens
- MSKCC, Memorial Sloan-Kettering Cancer Center
- MVAs, Modified vaccinia Ankara
- NSCLC, Non-small cell lung cancer
- OS, Overall survival
- PD-1, Programmed death 1 receptor
- PD-L1, Programmed-death ligand 1
- PFS, Progression free survival
- PMNs, Peripheral blood mononuclear cells
- RCC, Renal cell carcinoma
- T-FOLFIRI, Trovax and FOLFIRI
- T-FOLFOX, Trovax and FOLFOX
- TAAs, Tumor-associated antigens
- TILs, Tumor-infiltrating lymphocytes
- TTP, Time to progression
- TroVax
- VEGF, Vascular-endothelial growth factor
- immunotherapy
- mCRC, Metastatic colon cancer
- mRCC, Metastatic renal cell carcinoma
- metastatic colon cancer
- modified vaccinia Ankara
Collapse
Affiliation(s)
- Julie Rowe
- a Division of Oncology; Department of Internal Medicine ; The University of Texas Health Science Center at Houston and Memorial Hermann Cancer Center ; Houston , TX USA
| | | |
Collapse
|
15
|
Gómez CE, Perdiguero B, García-Arriaza J, Esteban M. Clinical applications of attenuated MVA poxvirus strain. Expert Rev Vaccines 2013; 12:1395-416. [PMID: 24168097 DOI: 10.1586/14760584.2013.845531] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The highly attenuated poxvirus strain modified vaccinia virus Ankara (MVA) has reached maturity as a vector delivery system and as a vaccine candidate against a broad spectrum of diseases. This has been largely recognized from research on virus-host cell interactions and immunological studies in pre-clinical and clinical trials. This review addresses the studies of MVA vectors used in phase I/II clinical trials, with the aim to provide the main findings obtained on their behavior when tested against relevant human diseases and cancer and also highlights the strategies currently implemented to improve the MVA immunogenicity. The authors assess that MVA vectors are progressing as strong vaccine candidates either alone or when administered in combination with other vectors.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
16
|
Scurr M, Bloom A, Pembroke T, Srinivasan R, Brown C, Smart K, Bridgeman H, Davies M, Hargest R, Phillips S, Christian A, Hockey T, Gallimore A, Godkin A. Escalating regulation of 5T4-specific IFN-γ + CD4 + T cells distinguishes colorectal cancer patients from healthy controls and provides a target for in vivo therapy. Cancer Immunol Res 2013; 1. [PMID: 24409450 DOI: 10.1158/2326-6066.cir-13-0035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relationship between the adaptive CD4+ T cell response and human cancer is unclear. The oncofetal antigen 5T4 is expressed on many human carcinomas, including colorectal cancer (CRC) cells, but has limited expression on normal tissues. We previously identified anti-5T4 CD4+ T cells in a proportion of CRC patients, and we extended this study to examine whether the quality or quantity of the T cell response reflects tumor stage. An overlapping peptide library spanning 5T4 was used as a target to enumerate cognate IFN-γ+CD4+ T-cells (measured as spot forming cells [SFC]/105 cultured T cells) in peripheral blood-derived lymphocytes following a 12-day in vitro culture period comparing patients pre-operatively (n = 27) to healthy controls (n = 17). Robust 5T4-specific T cell responses were present in 100% of healthy donors. There was a steady loss of T cell responses with advancing tumors with a significant negative correlation from stage I to III (P = 0.008). The predictability of the decline meant < 200 SFC/105 was only found in subjects with stage III CRC. The mechanism of loss of T cell response is independent of HLA-DR type or patient age, but does correspond to increases in Foxp3+ regulatory T cells (Tregs). Using low-dose cyclophosphamide to reduce the proportion of Tregs in vivo resulted in increased anti-5T4 T cell responses in CRC patients. The selective loss of 5T4-specific IFN-γ+CD4+ T cell responses implies a link between tumor stage and antitumor Th1 effector function; depleting Tregs can enhance such responses.
Collapse
Affiliation(s)
- Martin Scurr
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Anja Bloom
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Tom Pembroke
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Rohit Srinivasan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Clare Brown
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Kathryn Smart
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Hayley Bridgeman
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Mike Davies
- Department of Surgery, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Rachel Hargest
- Department of Surgery, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Simon Phillips
- Department of Surgery, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Adam Christian
- Department of Histopathology, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Tom Hockey
- Department of Histopathology, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Awen Gallimore
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Andrew Godkin
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Harrop R, Chu F, Gabrail N, Srinivas S, Blount D, Ferrari A. Vaccination of castration-resistant prostate cancer patients with TroVax (MVA-5T4) in combination with docetaxel: a randomized phase II trial. Cancer Immunol Immunother 2013; 62:1511-20. [PMID: 23877659 PMCID: PMC11029002 DOI: 10.1007/s00262-013-1457-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/09/2013] [Indexed: 11/25/2022]
Abstract
The attenuated vaccinia virus, modified vaccinia Ankara, has been engineered to deliver the tumor antigen 5T4 (TroVax®). Here, we report results from a randomized open-label phase II trial in castration-resistant prostate cancer patients in which TroVax was administered in combination with docetaxel and compared against docetaxel alone. The aim was to recruit 80 patients (40 per arm), but the study was terminated early due to recruitment challenges. Therefore, this paper reports the comparative safety and immunological and clinical efficacy in 25 patients, 12 of whom were treated with TroVax plus docetaxel and 13 with docetaxel alone. 5T4-specific immune responses were monitored throughout the study. Clinical responses were assessed by measuring changes in tumor burden by CT and bone scan and by quantifying PSA concentrations. TroVax was well tolerated in all patients. Of 10 immunologically evaluable patients, 6 mounted 5T4-specific antibody responses. Patients treated with TroVax plus docetaxel showed a greater median progression-free survival of 9.67 months compared with 5.10 months for patients on the docetaxel alone arm (P = 0.097; HR = 0.31; 95% CI 0.08-1.24). Importantly, a pre-treatment biomarker previously demonstrated to predict 5T4 immune response and treatment benefit showed a strong association with 5T4 antibody response and a statistically significant association with progression-free survival in patients treated with TroVax plus docetaxel, but not docetaxel alone.
Collapse
Affiliation(s)
- Richard Harrop
- Oxford BioMedica (UK) Ltd., The Medawar Centre, Oxford Science Park, Oxford, OX4 4GA, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Status of Active Specific Immunotherapy for Stage II, Stage III, and Resected Stage IV Colon Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0182-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Said R, Amato RJ. Identification of Pre- and Post-Treatment Markers, Clinical, and Laboratory Parameters Associated with Outcome in Renal Cancer Patients Treated with MVA-5T4. Front Oncol 2013; 3:185. [PMID: 23875174 PMCID: PMC3711044 DOI: 10.3389/fonc.2013.00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/02/2013] [Indexed: 01/20/2023] Open
Abstract
The recent approvals of immunotherapeutic agents (Sipuleucel-T and Ipilimumab) for the treatment of different solid tumors gave a boost to the growing cancer immunotherapy field, even though few immunotherapy studies have demonstrated convincingly that there is a direct link between the predicted mode of action of an immunological compound and therapeutic benefit. MVA-5T4 (TroVax®) is a novel vaccine combining the tumor-associated antigen 5T4 to an engineered vector-modified vaccinia Ankara (MVA). MVA helps to express the oncofetal 5T4 antigen and subsequently trigger a tumor-directed immune reaction. The safety and clinical benefit reported in multiple phase I and II clinical trials using MVA-5T4 were encouraging; immune responses were induced in almost all treated patients, and associations between 5T4-specific cellular or humoral responses and clinical benefit were reported in most of the nine phase II trials. In particular, clinical studies conducted in renal cell carcinoma (RCC) patients have demonstrated an association between 5T4-specific (but not MVA) antibody responses and enhanced survival. This review describes the clinical studies using MVA-5T4 conducted in RCC that convincingly demonstrated that an antigen-specific immune response induced by vaccination is associated with enhanced patient survival and is not simply a function of the general “health” of patients. We will also provide our expert opinions on possible future better-designed clinical trials based on relevant biomarkers. In addition, various combinations of MVA-5T4 and different and newer immunomodulator agents with promising clinical benefit will be discussed.
Collapse
Affiliation(s)
- Rabih Said
- Division of Oncology, Department of Internal Medicine, Memorial Hermann Cancer Center, University of Texas Health Science Center at Houston (Medical School) , Houston, TX , USA
| | | |
Collapse
|
20
|
Campbell CT, Gulley JL, Oyelaran O, Hodge JW, Schlom J, Gildersleeve JC. Serum antibodies to blood group A predict survival on PROSTVAC-VF. Clin Cancer Res 2013; 19:1290-9. [PMID: 23362327 PMCID: PMC3594414 DOI: 10.1158/1078-0432.ccr-12-2478] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE There is evidence that therapeutic cancer vaccines can lengthen survival for some patients with cancer, but responses vary widely from one person to another. Methods to predict clinical outcomes will advance the field and provide new insights into critical determinants of in vivo efficacy. EXPERIMENTAL DESIGN This retrospective study included 141 subjects from phase II trials of PROSTVAC-VF, a poxvirus-based cancer vaccine currently in phase III clinical trials for advanced prostate cancer. A glycan microarray was used to profile prevaccination antiglycan antibody populations in sera as potential biomarkers for PROSTVAC-VF. The screen for predictive biomarkers identified antiglycan antibodies that consistently stratified subjects into groups with different Kaplan-Meier survival estimates. Because of the potential for overfitting, a permutation test was used to estimate the false discovery rate. RESULTS Prevaccination antibody levels to blood group A trisaccharide (BG-Atri) were found to have a statistically significant correlation with survival. Long-term survival was approximately doubled in subjects with abundant anti-BG-Atri immunoglobulin M (IgM) relative to subjects with little or no preexisting IgM for BG-Atri. This survival correlation was specific to vaccine treatment, as no correlation was observed in control patients immunized with wild-type poxviruses lacking the key tumor antigen, prostate-specific antigen (PSA). Moreover, anti-BG-Atri IgM levels were not correlated with general measures of disease severity, such as PSA levels, Gleason score, or Halabi predicted survival. CONCLUSION In addition to reporting a new potentially predictive biomarker for PROSTVAC-VF, this study highlights the use of glycan microarray technology for improving our understanding of vaccine immunology. Clin Cancer Res; 19(5); 1290-9. ©2012 AACR.
Collapse
Affiliation(s)
- Christopher T. Campbell
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - James L. Gulley
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Oyindasola Oyelaran
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| |
Collapse
|
21
|
Harrop R, Treasure P, de Belin J, Kelleher M, Bolton G, Naylor S, Shingler WH. Analysis of pre-treatment markers predictive of treatment benefit for the therapeutic cancer vaccine MVA-5T4 (TroVax). Cancer Immunol Immunother 2012; 61:2283-94. [PMID: 22692758 PMCID: PMC11029511 DOI: 10.1007/s00262-012-1302-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/30/2012] [Indexed: 01/21/2023]
Abstract
Cancer vaccines such as MVA-5T4 (TroVax(®)) must induce an efficacious immune response to deliver therapeutic benefit. The identification of biomarkers that impact on the clinical and/or immunological efficacy of cancer vaccines is required in order to select patients who are most likely to benefit from this treatment modality. Here, we sought to identify a predictor of treatment benefit for renal cancer patients treated with MVA-5T4. Statistical modeling was undertaken using data from a phase III trial in which patients requiring first-line treatment for metastatic renal cell carcinoma were randomized 1:1 to receive MVA-5T4 or placebo alongside sunitinib, IL-2 or IFN-α. Numerous pre-treatment factors associated with inflammatory anemia (e.g., CRP, hemoglobin, hematocrit, IL-6, ferritin, platelets) demonstrated a significant relationship with tumor burden and patient survival. From these prognostic factors, the pre-treatment mean corpuscular hemoglobin concentration (MCHC) was found to be the best predictor of treatment benefit (P < 0.01) for MVA-5T4 treated patients and also correlated positively with tumor shrinkage (P < 0.001). Furthermore, MCHC levels showed a significant positive association with 5T4 antibody response (P = 0.01). The latter result was confirmed using an independent data set comprising phase II trials of MVA-5T4 in patients with colorectal, renal and prostate cancers. Retrospective analyses demonstrated that RCC patients who had very large tumor burdens and low MCHC levels received little or no benefit from treatment with MVA-5T4; however, patients with smaller tumor burdens and normal MCHC levels received substantial benefit from treatment with MVA-5T4.
Collapse
Affiliation(s)
- Richard Harrop
- Oxford BioMedica (UK) Ltd, The Medawar Centre, Oxford Science Park, Oxford, OX4 4GA, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Vaccines have shown promise for the prevention and treatment of solid tumors. Colorectal cancer and renal cell carcinoma are common malignancies that may be amenable to vaccine strategies. This review summarizes target antigens in colorectal and renal cell carcinoma, discusses some of the vaccine approaches in development, and details the results of pivotal phase III trials evaluating therapeutic vaccines in patients with advanced colorectal and renal cell carcinoma. Finally, some of the challenges with vaccine development for colorectal and renal cell carcinoma are described.
Collapse
Affiliation(s)
- Katherine Kabaker
- Division of Hematology & Oncology and Rush University Cancer Center, Rush University Medical Center, Chicago, IL, USA
| | | | | |
Collapse
|
23
|
Abstract
Most viruses are naturally immunogenic and can be engineered to express tumor antigen transgenes. Moreover, many types of recombinant viruses have been shown to infect professional antigen-presenting cells, specifically dendritic cells, and express their transgenes. This enhanced presentation of tumor antigens to the immune system has led to an increase in the frequency and avidity of cytotoxic T lymphocytes that target tumor cells expressing the tumor antigen(s) encoded in the vaccine vector. Logistically, recombinant viruses can be produced, administered, and quality controlled more easily compared with other immunotherapy strategies. The intrinsic properties of each virus have distinct advantages and disadvantages, which can determine their applicability in a particular therapeutic setting. The disadvantage of some vectors is the development of host-induced neutralizing antibodies to the vector itself, thus limiting its continued use. The "off-the-shelf" nature of viral vaccine platforms renders them exceptionally suitable for multicenter randomized trials. This review described and discussed the strategies used and results using viral-based vaccines, with emphasis on phases II and III clinical trials. Future directions will involve the evaluation of viral-based vaccines in the adjuvant and neoadjuvant settings, in patients with low burden metastatic disease, and in combination with other forms of therapy including immunotherapy.
Collapse
|
24
|
Abstract
In the twentieth century vaccine development has moved from the use of attenuated or killed micro-organisms to protein sub-unit vaccines, with vaccine immunogenicity assessed by measuring antibodies induced by vaccination. However, for many infectious diseases T cells are an important part of naturally acquired protective immune responses, and inducing these by vaccination has been the aim of much research. The progress that has been made in developing effective T-cell-inducing vaccines against viral and parasitic diseases such as HIV and malaria is discussed, along with recent developments in therapeutic vaccine development for chronic viral infections and cancer. Although many ways of inducing T cells by vaccination have been assessed, the majority result in low level, non-protective responses. Sufficient clinical research has now been conducted to establish that replication-deficient viral vectored vaccines lead the field in inducing strong and broad responses, and efficacy studies of T-cell-inducing vaccines against a number of diseases are finally demonstrating that this is a valid approach to filling the gaps in our defence against not only infectious disease, but some forms of cancer.
Collapse
|
25
|
Zhang RT, Bines SD, Ruby C, Kaufman HL. TroVax® vaccine therapy for renal cell carcinoma. Immunotherapy 2012; 4:27-42. [DOI: 10.2217/imt.11.160] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common primary malignancy affecting the kidney. In the past decade, several well-designed clinical trials have shifted the treatment paradigm for RCC to favor targeted therapies as first-line agents. Recognition of the immunogenic nature of RCC has also resulted in the development of immunotherapy approaches with high-dose IL-2 treatment being the best established and associated with durable disease control. The lack of defined antigens in RCC has hindered more specific vaccine development. TroVax® is a novel vaccine based on a modified vaccinia virus Ankara vector engineered to express the 5T4 tumor-associated antigen, found on over 95% of clear cell and papillary RCC tumors. The safety and efficacy of TroVax has been evaluated in several Phase I/II clinical trials and in a multicenter Phase III trial. This article will discuss the clinical background of RCC, the rationale for TroVax development, results of several TroVax clinical trials and future directions for optimizing TroVax therapy in patients with RCC and other cancers.
Collapse
Affiliation(s)
- Rui-Tao Zhang
- Department of General Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Steven D Bines
- Department of General Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Carl Ruby
- Department of General Surgery, Rush University Medical Center, Chicago, IL, USA
- Departments of Immunology & Microbiology, Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
26
|
Speetjens FM, Zeestraten ECM, Kuppen PJK, Melief CJM, van der Burg SH. Colorectal cancer vaccines in clinical trials. Expert Rev Vaccines 2011; 10:899-921. [PMID: 21692708 DOI: 10.1586/erv.11.63] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article elucidates current strategies of active immunotherapy for colorectal cancer patients with a focus on T-cell mediated immunotherapy. Poor prognosis of especially stage III and IV colorectal cancer patients emphasizes the need for advanced therapeutic intervention. Here, we refer to clinical trials using either tumor cell-derived vaccines or tumor antigen vaccines with a special interest on safety, induced immune responses, clinical benefit and efforts to improve the clinical impact of these vaccines in the context of colorectal cancer treatment.
Collapse
Affiliation(s)
- Frank M Speetjens
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Song GY, Srivastava T, Ishizaki H, Lacey SF, Diamond DJ, Ellenhorn JDI. Recombinant modified vaccinia virus ankara (MVA) expressing wild-type human p53 induces specific antitumor CTL expansion. Cancer Invest 2011; 29:501-10. [PMID: 21843052 PMCID: PMC3260009 DOI: 10.3109/07357907.2011.606248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The p53 gene product is an attractive target for tumor immunotherapy. The present study aims to understand the potential of MVAp53 vaccine to induce expansion of p53-specific cytotoxic T lymphocyte ex vivo in cancer patients. The result indicated that 14 of 23 cancer patients demonstrated p53-specific IFN-γ production, degranulation, cell proliferation, and lysis of p53 overexpressed human tumor cell lines. These experiments show that MVAp53 stimulation has the potential to induce the expansion of p53-specific cytotoxic T lymphocyte from the memory T cell repertoire. The data suggest that MVAp53 vaccine is an ideal candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Guang-Yun Song
- Division of Translational Vaccine Research, City of Hope National Medical Center, Duarte, California, USA
| | | | | | | | | | | |
Collapse
|
28
|
Harrop R, Shingler WH, McDonald M, Treasure P, Amato RJ, Hawkins RE, Kaufman HL, de Belin J, Kelleher M, Goonewardena M, Naylor S. MVA-5T4-induced immune responses are an early marker of efficacy in renal cancer patients. Cancer Immunol Immunother 2011; 60:829-37. [PMID: 21387109 PMCID: PMC11028484 DOI: 10.1007/s00262-011-0993-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
Few immunotherapy compounds have demonstrated a direct link between the predicted mode of action of the product and benefit to the patient. Since cancer vaccines are thought to have a delayed therapeutic effect, identification of the active moiety may enable the development of an early marker of efficacy. Patients with renal cancer and requiring first-line treatment for metastatic disease were randomized 1:1 to receive MVA-5T4 (TroVax(®)) or placebo alongside Sunitinib, IL-2 or IFN-α in a multicentre phase III trial. Antibody responses were quantified following the 3rd and 4th vaccinations. A surrogate for 5T4 antibody response (the immune response surrogate; IRS) was constructed and then used in a survival analysis to evaluate treatment benefit. Seven hundred and thirty-three patients were randomized, and immune responses were assessed in 590 patients. A high 5T4 antibody response was associated with longer survival within the MVA-5T4-treated group. The IRS was constructed as a linear combination of pre-treatment 5T4 antibody levels, hemoglobin and hematocrit and was shown to be a significant predictor of treatment benefit in the phase III study. Importantly, the IRS was also associated with antibody response and survival in an independent dataset comprising renal, colorectal and prostate cancer patients treated with MVA-5T4 in phase I-II studies. The derivation of the IRS formed part of an exploratory, retrospective analysis; however, if confirmed in future studies, the results have important implications for the development and use of the MVA-5T4 vaccine and potentially for other similar vaccines.
Collapse
Affiliation(s)
- Richard Harrop
- Oxford BioMedica (UK) Ltd, The Medawar Centre, Oxford Science Park, Oxford, OX4 4GA, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abern M, Kaufman HL, Latchamsetty K. An update on TroVax for the treatment of progressive castration-resistant prostate cancer. Onco Targets Ther 2011; 4:33-41. [PMID: 21691576 PMCID: PMC3116792 DOI: 10.2147/ott.s14271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is a common human malignancy with few effective therapeutic options for treating advanced castration-resistant disease. The potential therapeutic effectiveness of immunotherapy and vaccines, in particular, has gained popularity based on the identification of prostate-associated antigens, potent expression vectors for vaccination, and data from recent clinical trials. A modified vaccinia Ankara (MVA) virus expressing 5T4, a tumor-associated glycoprotein, has shown promise in preclinical studies and clinical trials in patients with colorectal and renal cell carcinoma. This review will discuss the rationale for immunotherapy in prostate cancer and describe preclinical and limited clinical data in prostate cancer for the MVA-5T4 (TroVax®) vaccine.
Collapse
Affiliation(s)
- Michael Abern
- Department of Urology, Rush University Medical Center, Chicago, IL, USA
| | | | | |
Collapse
|
30
|
Immunotherapy for treating metastatic colorectal cancer. Surg Oncol 2011; 21:67-77. [PMID: 21292476 DOI: 10.1016/j.suronc.2010.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 10/10/2010] [Accepted: 10/14/2010] [Indexed: 01/17/2023]
Abstract
BACKGROUND Colorectal cancer remains one of the leading causes of death in the world. Surgery still remains the mainstay of treatment for primary and metastatic colorectal cancer. Immunotherapy used as an adjunct to surgery can play an important role in controlling the spread of tumour. METHODS The online databases PubMed, Medline, Scirus and Medscape Oncology were used to identify articles of relevance. Keywords included; "Immunotherapy", "Cellular Immunotherapy", "Metastatic Colorectal Cancer", "Monoclonal Antibody" "Tumour Vaccines" and "Adoptive Cell Therapy". The databases search was from the period of June 1995 until May 2010 inclusive. RESULTS Our understanding of tumour immunology has allowed the development of some successful therapies. Immunotherapy through the use of monoclonal antibodies is an effective adjunct to chemotherapy for metastatic colorectal cancer. Other modalities that are in the stages of development are cellular and conjugated vaccines. However, these vaccines are being experimented in advanced stages of colorectal tumours. CONCLUSION Colorectal cancer vaccines are being developed for advanced stages of colorectal tumour. However, their use as an early adjunct could potentially limit the spread of tumour or even result in cure. Further trials are required to ensure the safety and efficacy of cellular vaccines against colorectal tumours to allow their use on patients early in their disease presentation.
Collapse
|
31
|
Cross-trial Analysis of Immunologic and Clinical Data Resulting From Phase I and II Trials of MVA-5T4 (TroVax) in Colorectal, Renal, and Prostate Cancer Patients. J Immunother 2010; 33:999-1005. [DOI: 10.1097/cji.0b013e3181f5dac7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Amato RJ, Hawkins RE, Kaufman HL, Thompson JA, Tomczak P, Szczylik C, McDonald M, Eastty S, Shingler WH, de Belin J, Goonewardena M, Naylor S, Harrop R. Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-blind, placebo-controlled phase III study. Clin Cancer Res 2010; 16:5539-47. [PMID: 20881001 DOI: 10.1158/1078-0432.ccr-10-2082] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The TroVax Renal Immunotherapy Survival Trial was a randomized, placebo-controlled phase III study that investigated whether modified vaccinia Ankara encoding the tumor antigen 5T4 (MVA-5T4) prolonged survival of patients receiving first-line standard-of-care (SOC) treatment for metastatic renal cell cancer. EXPERIMENTAL DESIGN Patients with metastatic clear cell renal cancer, prior nephrectomy, and good or intermediate prognosis were randomized 1:1 to receive up to 13 immunizations of MVA-5T4/placebo in combination with either sunitinib, interleukin-2 or interferon-α. The primary end point was overall survival. Secondary end points included progression-free survival, overall response rate, and safety. RESULTS Seven hundred thirty-three patients were recruited (365 MVA-5T4 and 368 placebo). Treatment arms were well balanced for SOC and prognosis. No significant difference in the incidence of adverse events or serious adverse events was observed. No significant difference in overall survival was evident in the two treatment arms (median 20.1 months MVA-5T4 versus 19.2 months placebo; P = 0.55). The magnitude of the 5T4-specific antibody response induced by vaccination with MVA-5T4 was associated with enhanced patient survival. Furthermore, exploratory analyses suggested a number of pretreatment hematologic factors that could identify patients who derive significant benefit from this vaccine. CONCLUSION MVA-5T4 in combination with SOC was well tolerated, but no difference in survival was observed in the overall study population. Exploratory analyses indicate that there may be subsets of patients who could gain significant benefit from MVA-5T4, but such results would need to be confirmed in future randomized clinical studies.
Collapse
Affiliation(s)
- Robert J Amato
- The University of Texas/Memorial Hermann Hospital, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schreiber TH, Raez L, Rosenblatt JD, Podack ER. Tumor immunogenicity and responsiveness to cancer vaccine therapy: the state of the art. Semin Immunol 2010; 22:105-12. [PMID: 20226686 DOI: 10.1016/j.smim.2010.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/15/2010] [Indexed: 12/21/2022]
Abstract
Despite enormous effort, promising pre-clinical data in animal studies and over 900 clinical trials in the United States, no cancer vaccine has ever been approved for clinical use. Over the past decade a great deal of progress has been in both laboratory and clinical studies defining the interactions between developing tumors and the immune system. The results of these studies provide a rationale that may help explain the failure of recent therapeutic cancer vaccines in terms of vaccine principles, in selecting which tumors are the most appropriate to target and instruct the design and implementation of state-of-the-art cancer vaccines.
Collapse
Affiliation(s)
- Taylor H Schreiber
- Departmentof Microbiology and Immunology, University of Miami Leonard Miller School of Medicine, Miami, FL 33101, United States
| | | | | | | |
Collapse
|
34
|
Elkord E, Shablak A, Stern PL, Hawkins RE. 5T4 as a target for immunotherapy in renal cell carcinoma. Expert Rev Anticancer Ther 2010; 9:1705-9. [PMID: 19954280 DOI: 10.1586/era.09.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Ralph C, Elkord E, Burt DJ, O'Dwyer JF, Austin EB, Stern PL, Hawkins RE, Thistlethwaite FC. Modulation of lymphocyte regulation for cancer therapy: a phase II trial of tremelimumab in advanced gastric and esophageal adenocarcinoma. Clin Cancer Res 2010; 16:1662-72. [PMID: 20179239 DOI: 10.1158/1078-0432.ccr-09-2870] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Cytotoxic T lymphocyte antigen 4 (CTLA4), a key negative regulator of T-cell activation, is targeted by the antibody tremelimumab to release potentially useful antitumor activity. EXPERIMENTAL DESIGN This phase II trial investigated tremelimumab as a second-line treatment for patients with metastatic gastric and esophageal adenocarcinomas. Tremelimumab was given every 3 months until symptomatic disease progression. Safety, clinical efficacy, and immunologic activity were evaluated. RESULTS Eighteen patients received tremelimumab. Most drug-related toxicity was mild; however, there was a single death due to bowel perforation that complicated colitis. Four patients had stable disease with clinical benefit; one patient achieved a partial response after eight cycles (25.4 months) and remains well on study at 32.7 months. Markers of regulatory phenotype, forkhead box protein 3 and CTLA4, doubled transiently in CD4(+)CD25(high) lymphocytes in the first month after tremelimumab before returning to baseline. In contrast, CTLA4 increased in CD4(+)CD25(low/negative) lymphocytes throughout the cycle of treatment. De novo proliferative responses to tumor-associated antigens 5T4 (8 of 18 patients) and carcinoembryonic antigen (5 of 13) were detected. Patients with a posttreatment carcinoembryonic antigen proliferative response had median survival of 17.1 months compared with 4.7 months for nonresponders (P = 0.004). Baseline interleukin-2 release after T-cell activation was higher in patients with clinical benefit and toxicity. CONCLUSION Despite the disappointing response rate of tremelimumab, one patient had a remarkably durable benefit for this poor-prognosis disease. In vitro evidence of enhanced proliferative responses to relevant tumor-associated antigens suggests that combining CTLA4 blockade with antigen-targeted therapy may warrant further investigation.
Collapse
Affiliation(s)
- Christy Ralph
- Department of Medical Oncology, School of Cancer, Enabling Sciences and Technology, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Elkord E, Dangoor A, Burt DJ, Southgate TD, Daayana S, Harrop R, Drijfhout JW, Sherlock D, Hawkins RE, Stern PL. Immune evasion mechanisms in colorectal cancer liver metastasis patients vaccinated with TroVax (MVA-5T4). Cancer Immunol Immunother 2009; 58:1657-67. [PMID: 19221742 PMCID: PMC11029831 DOI: 10.1007/s00262-009-0674-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 01/27/2009] [Indexed: 01/01/2023]
Abstract
We have recently reported the results of a phase II trial in which two TroVax [modified vaccinia ankara (MVA) encoding the tumour antigen 5T4] vaccinations were given to patients both pre- and post-surgical resection of liver metastases secondary to colorectal cancer (CRC). 5T4-specific cellular responses were assessed at the entry and 2 weeks after each vaccination by proliferation of fresh lymphocytes and ELISA for antibody responses; 18 from the 19 CRC patients mounted a 5T4-specific cellular and/or humoral response. Here, we present a comparison of individual and between patient responses over the course of the treatments using cryopreserved peripheral blood mononuclear cells (PBMC) samples from the baseline until after the fourth vaccination at 14 weeks. Assays used were proliferation assay with 5T4-Fc fusion protein, overlapping 32mer 5T4 peptides, MVA-LacZ and MVA-5T4 infected autologous monocytes. Responses to 5T4 protein or one or more peptide pools were pre-existing in 12/20 patients and subsequently 10 and 12 patients showed boosted and/or de novo responses, respectively. Cumulatively, 13/20 patients showed proliferative responses by week 14. We also assessed the levels of systemic T regulatory cells, plasma cytokine levels, phenotype of tumour-infiltrating lymphocytes including T regulatory cells and tumour HLA class I loss of expression. More than half of the patients showed phenotypes consistent with relative immune suppression and/or escape highlighting the complexity of positive and negative factors challenging any simple correlation with clinical outcome.
Collapse
Affiliation(s)
- Eyad Elkord
- CR UK Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX UK
- Department of Medical Oncology, University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX UK
- Present Address: Cellular Immunology Section, Laboratory of Immunology, National Institutes of Health, Bethesda, MD 20892 USA
| | - Adam Dangoor
- CR UK Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX UK
- Department of Medical Oncology, University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX UK
| | - Deborah J. Burt
- CR UK Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX UK
| | - Thomas D. Southgate
- CR UK Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX UK
| | - Sai Daayana
- CR UK Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX UK
| | - Richard Harrop
- Oxford BioMedica, Medawar Centre, Oxford Science Park, Oxford, OX4 4GA UK
| | - Jan W. Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands
| | - David Sherlock
- Department of Surgery, North Manchester Healthcare NHS Trust, Manchester, UK
| | - Robert E. Hawkins
- Department of Medical Oncology, University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX UK
| | - Peter L. Stern
- CR UK Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX UK
| |
Collapse
|