1
|
Yoshizaki Y, Yuba E, Komatsu T, Udaka K, Harada A, Kono K. Improvement of Peptide-Based Tumor Immunotherapy Using pH-Sensitive Fusogenic Polymer-Modified Liposomes. Molecules 2016; 21:molecules21101284. [PMID: 27681717 PMCID: PMC6274290 DOI: 10.3390/molecules21101284] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 01/23/2023] Open
Abstract
To establish peptide vaccine-based cancer immunotherapy, we investigated the improvement of antigenic peptides by encapsulation with pH-sensitive fusogenic polymer-modified liposomes for induction of antigen-specific immunity. The liposomes were prepared by modification of egg yolk phosphatidylcholine and l-dioleoyl phosphatidylethanolamine with 3-methyl-glutarylated hyperbranched poly(glycidol) (MGlu-HPG) and were loaded with antigenic peptides derived from ovalbumin (OVA) OVA-I (SIINFEKL), and OVA-II (PSISQAVHAAHAEINEAPβA), which bind, respectively, to major histocompatibility complex (MHC) class I and class II molecules on dendritic cell (DCs). The peptide-loaded liposomes were taken up efficiently by DCs. The peptides were delivered into their cytosol. Administration of OVA-I-loaded MGlu-HPG-modified liposomes to mice bearing OVA-expressing E.G7-OVA tumors induced the activation of OVA-specific CTLs much more efficiently than the administration of free OVA-I peptide did. Mice strongly rejected E.G7-OVA cells after immunization with OVA-I peptide-loaded MGlu-HPG liposomes, although mice treated with free OVA-I peptide only slightly rejected the cells. Furthermore, efficient suppression of tumor volume was observed when tumor-bearing mice were immunized with OVA-I-peptide-loaded liposomes. Immunization with OVA-II-loaded MGlu-HPG-modified liposomes exhibited much lower tumor-suppressive effects. Results indicate that MGlu-HPG liposomes might be useful for improvement of CTL-inducing peptides for efficient cancer immunotherapy.
Collapse
Affiliation(s)
- Yuta Yoshizaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Toshihiro Komatsu
- Department of Immunology, School of Medicine, Kochi University, Kohasu, Okou-cho, Nankoku, Kochi 783-8505, Japan.
| | - Keiko Udaka
- Department of Immunology, School of Medicine, Kochi University, Kohasu, Okou-cho, Nankoku, Kochi 783-8505, Japan.
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
2
|
Allorecognition of HLA-DP by CD4+ T cells is affected by polymorphism in its alpha chain. Mol Immunol 2014; 59:19-29. [DOI: 10.1016/j.molimm.2013.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 11/18/2013] [Accepted: 12/27/2013] [Indexed: 11/21/2022]
|
3
|
Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P. Database of T cell-defined human tumor antigens: the 2013 update. CANCER IMMUNITY 2013; 13:15. [PMID: 23882160 PMCID: PMC3718731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The plethora of tumor antigens that have been--and are still being--defined required systematization to provide a comprehensive overview of those tumor antigens that are the most relevant targets for cancer immunotherapy approaches. Here, we provide a new update of a peptide database resource that we initiated many years ago. This database compiles all human antigenic peptides described in the literature that fulfill a set of strict criteria needed to ascertain their actual "tumor antigen" nature, as we aim at guiding scientists and clinicians searching for appropriate cancer vaccine candidates (www.cancerimmunity.org/peptide). In this review, we revisit those criteria in light of recent findings related to antigen processing. We also introduce the 29 new tumor antigens that were selected for this 2013 update. Two of the new peptides show unusual features, which will be briefly discussed. The database now comprises a total of 403 tumor antigenic peptides.
Collapse
Affiliation(s)
- Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- WELBIO and de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- WELBIO and de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Benoît J. Van den Eynde
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- WELBIO and de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- WELBIO and de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|