1
|
Zhang B, Wang X, Wang J, Wang M, Guan Y, Liu Z, Zhang Y, Zhao M, Ding H, Xu K, Deng J, Li T, Luan G, Zhou J. The Effect of Stereoelectroencephalography on the Long-Term Outcomes of Different Side Anterior Temporal Lobectomy: A Single-Center Retrospective Study. World Neurosurg 2024:S1878-8750(24)01593-6. [PMID: 39278540 DOI: 10.1016/j.wneu.2024.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
PURPOSE Anterior temporal lobectomy (ATL) is the most common surgical treatment for temporal lobe epilepsy (TLE), and Stereoelectroencephalography (SEEG) plays a critical role in precisely localizing the epileptogenic zone (EZ). This study aimed to explore the effect of SEEG on the long-term outcomes of different side ATL. METHODS From March 2012 to February 2020, a retrospective analysis was conducted on 231 TLE patients who underwent standard ATL surgery. According to the surgical sides and the utilization of SEEG during preoperative evaluation, the patients were categorized into 4 groups, with a follow-up period exceeding 2 years. RESULTS Among the 231 TLE patients, the probability of being seizure-free 2 years after the surgery was 80.52%, which decreased to 65.65% after 5 years. There was no significant difference in outcomes between SEEG and non-SEEG patients. For overall and non-SEEG patients, there was no significant difference in short-term outcomes between different surgical sides. However, the long-term outcomes of right ATL patients were significantly better than left. Interestingly, for patients who underwent SEEG, there was no significant difference in both short-term and long-term outcomes between different surgical sides. CONCLUSIONS Some TLE patients encounter challenges in localizing the EZ through noninvasive evaluation, necessitating the use of SEEG for precise localization. Furthermore, their seizure outcomes after surgery can be the same with the patients who have a clear EZ in noninvasive evaluation. And SEEG patients can achieve a more stable long-term prognosis than non-SEEG patients.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Mengyang Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuguang Guan
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zhao Liu
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yao Zhang
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Meng Zhao
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Haoran Ding
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ke Xu
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiahui Deng
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Yindeedej V, Uda T, Tanoue Y, Kojima Y, Kawashima T, Koh S, Uda H, Nishiyama T, Takagawa M, Shuto F, Goto T. A scoping review of seizure onset pattern in SEEG and a proposal for morphological classification. J Clin Neurosci 2024; 123:84-90. [PMID: 38554649 DOI: 10.1016/j.jocn.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Seizure onset pattern (SOP) represents an alteration of electroencephalography (EEG) morphology at the beginning of seizure activity in epilepsy. With stereotactic electroencephalography (SEEG), a method for intracranial EEG evaluation, many morphological SOP classifications have been reported without established consensus. These inconsistent classifications with ambiguous terminology present difficulties to communication among epileptologists. METHODS We reviewed SOP in SEEG by searching the PubMed database. Reported morphological classifications and the ambiguous terminology used were collected. After thoroughly reviewing all reports, we reconsidered the definitions of these terms and explored a more consistent and simpler morphological SOP classification. RESULTS Of the 536 studies initially found, 14 studies were finally included after screening and excluding irrelevant studies. We reconsidered the definitions of EEG onset, period for determining type of SOP, core electrode and other terms in SEEG. We proposed a more consistent and simpler morphological SOP classification comprising five major types with two special subtypes. CONCLUSIONS A scoping review of SOP in SEEG was performed. Our classification may be suitable for describing SOP morphology.
Collapse
Affiliation(s)
- Vich Yindeedej
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan; Division of Neurosurgery, Department of Surgery, Thammasat University Hospital, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Takehiro Uda
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| | - Yuta Tanoue
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Yuichiro Kojima
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Toshiyuki Kawashima
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Saya Koh
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Uda
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Taro Nishiyama
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Masanari Takagawa
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Futoshi Shuto
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Takeo Goto
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Bu J, Yin H, Ren N, Zhu H, Xu H, Zhang R, Zhang S. Structural and functional changes in the default mode network in drug-resistant epilepsy. Epilepsy Behav 2024; 151:109593. [PMID: 38157823 DOI: 10.1016/j.yebeh.2023.109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE To investigate brain network properties and connectivity abnormalities of the default mode network (DMN) in drug-resistant epilepsy (DRE). The study was based on probabilistic fiber tracking and functional connectivity (FC) analysis, to explore the structural and functional connectivity patterns change between frontal lobe epilepsy (FLE) and temporal lobe epilepsy (TLE). METHODS A total of 33 DRE patients (18 TLE and 15 FLE) and 30 healthy controls (HCs) were recruited. The volume fraction of the septal brain region of the DMN in DRE was calculated using FreeSurfer. The FC analysis was performed using Data Processing and Analysis for Brain Imaging in MATLAB. The structural connections between brain regions of the DMN were calculated based on probabilistic fiber tracking. RESULTS The left precuneus (PCUN) volumes in epilepsy groups were lower than that in HCs. Compared with FLE, TLE showed reduced FC between the left hippocampus (HIP) and PCUN/medial frontal gyrus, and between the right inferior parietal lobule (IPL) and right superior temporal gyrus. Compared with HCs, FLE showed increased FCs between the right IPL and occipital lobe, and between the left superior frontal gyrus (SFG) and bilateral superior temporal gyrus. In terms of structural connectivity, TLE exhibited increased connectivity strength between the left SFG and left PCUN, and showed reduced connection strength between the left HIP and left posterior cingulate gyrus/left PCUN, when compared with the FLE. CONCLUSIONS TLE and FLE patients showed structural and functional changes in the DMN. Compared with FLE patients, the TLE patients showed reduced structural and functional connection strengths between the left HIP and PCUN. These alterations in connection strengths holds promise for the identification of TLE and FLE.
Collapse
Affiliation(s)
- Jinxin Bu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Hangxing Yin
- Department of Neurology, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Nanxiao Ren
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Haitao Zhu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Honghao Xu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Rui Zhang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Shugang Zhang
- Department of Neurology, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
4
|
Prognostic value of high-frequency oscillations combined with multimodal imaging methods for epilepsy surgery. Chin Med J (Engl) 2021; 135:1087-1095. [PMID: 35773966 PMCID: PMC9276102 DOI: 10.1097/cm9.0000000000001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: The combination of high-frequency oscillations (HFOs) with single-mode imaging methods has been proved useful in identifying epileptogenic zones, whereas few studies have examined HFOs combined with multimodal imaging methods. The aim of this study was to evaluate the prognostic value of ripples, an HFO subtype with a frequency of 80 to 200 Hz is combined with multimodal imaging methods in predicting epilepsy surgery outcome. Methods: HFOs were analyzed in 21 consecutive medically refractory epilepsy patients who underwent epilepsy surgery. All patients underwent positron emission tomography (PET) and deep electrode implantation for stereo-electroencephalography (SEEG); 11 patients underwent magnetoencephalography (MEG). Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy in predicting surgical outcome were calculated for ripples combined with PET, MEG, both PET and MEG, and PET combined with MEG. Kaplan-Meier survival analyses were conducted in each group to estimate prognostic value. Results: The study included 13 men and 8 women. Accuracy for ripples, PET, and MEG alone in predicting surgical outcome was 42.9%, 42.9%, and 81.8%, respectively. Accuracy for ripples combined with PET and MEG was the highest. Resection of regions identified by ripples, MEG dipoles, and combined PET findings was significantly associated with better surgical outcome (P < 0.05). Conclusions: Intracranial electrodes are essential to detect regions which generate ripples and to remove these areas which indicate good surgical outcome for medically intractable epilepsy. With the assistance of presurgical noninvasive imaging examinations, PET and MEG, for example, the SEEG electrodes would identify epileptogenic regions more effectively.
Collapse
|