1
|
Sharma S, Sarkar R, Mitra K, Giri L. Computational framework to understand the clinical stages of COVID-19 and visualization of time course for various treatment strategies. Biotechnol Bioeng 2023; 120:1640-1656. [PMID: 36810760 DOI: 10.1002/bit.28358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Coronavirus disease 2019 is known to be regulated by multiple factors such as delayed immune response, impaired T cell activation, and elevated levels of proinflammatory cytokines. Clinical management of the disease remains challenging due to interplay of various factors as drug candidates may elicit different responses depending on the staging of the disease. In this context, we propose a computational framework which provides insights into the interaction between viral infection and immune response in lung epithelial cells, with an aim of predicting optimal treatment strategies based on infection severity. First, we formulate the model for visualizing the nonlinear dynamics during the disease progression considering the role of T cells, macrophages and proinflammatory cytokines. Here, we show that the model is capable of emulating the dynamic and static data trends of viral load, T cell, macrophage levels, interleukin (IL)-6 and TNF-α levels. Second, we demonstrate the ability of the framework to capture the dynamics corresponding to mild, moderate, severe, and critical condition. Our result shows that, at late phase (>15 days), severity of disease is directly proportional to pro-inflammatory cytokine IL6 and tumor necrosis factor (TNF)-α levels and inversely proportional to the number of T cells. Finally, the simulation framework was used to assess the effect of drug administration time as well as efficacy of single or multiple drugs on patients. The major contribution of the proposed framework is to utilize the infection progression model for clinical management and administration of drugs inhibiting virus replication and cytokine levels as well as immunosuppressant drugs at various stages of the disease.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Rahuldeb Sarkar
- Departments of Respiratory Medicine and Critical Care, Medway NHS Foundation Trust, Gillingham, Kent, UK.,Faculty of Life Sciences, King's College London, London, UK
| | - Kishalay Mitra
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| |
Collapse
|
2
|
Pauly I, Kumar Singh A, Kumar A, Singh Y, Thareja S, Kamal MA, Verma A, Kumar P. Current Insights and Molecular Docking Studies of the Drugs under Clinical Trial as RdRp Inhibitors in COVID-19 Treatment. Curr Pharm Des 2023; 28:3677-3705. [PMID: 36345244 DOI: 10.2174/1381612829666221107123841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Study Background & Objective: After the influenza pandemic (1918), COVID-19 was declared a Vth pandemic by the WHO in 2020. SARS-CoV-2 is an RNA-enveloped single-stranded virus. Based on the structure and life cycle, Protease (3CLpro), RdRp, ACE2, IL-6, and TMPRSS2 are the major targets for drug development against COVID-19. Pre-existing several drugs (FDA-approved) are used to inhibit the above targets in different diseases. In coronavirus treatment, these drugs are also in different clinical trial stages. Remdesivir (RdRp inhibitor) is the only FDA-approved medicine for coronavirus treatment. In the present study, by using the drug repurposing strategy, 70 preexisting clinical or under clinical trial molecules were used in scrutiny for RdRp inhibitor potent molecules in coronavirus treatment being surveyed via docking studies. Molecular simulation studies further confirmed the binding mechanism and stability of the most potent compounds. MATERIAL AND METHODS Docking studies were performed using the Maestro 12.9 module of Schrodinger software over 70 molecules with RdRp as the target and remdesivir as the standard drug and further confirmed by simulation studies. RESULTS The docking studies showed that many HIV protease inhibitors demonstrated remarkable binding interactions with the target RdRp. Protease inhibitors such as lopinavir and ritonavir are effective. Along with these, AT-527, ledipasvir, bicalutamide, and cobicistat showed improved docking scores. RMSD and RMSF were further analyzed for potent ledipasvir and ritonavir by simulation studies and were identified as potential candidates for corona disease. CONCLUSION The drug repurposing approach provides a new avenue in COVID-19 treatment.
Collapse
Affiliation(s)
- Irine Pauly
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jaddah, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Australia Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, Australia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| |
Collapse
|
3
|
Network-Based Data Analysis Reveals Ion Channel-Related Gene Features in COVID-19: A Bioinformatic Approach. Biochem Genet 2022; 61:471-505. [PMID: 36104591 PMCID: PMC9473477 DOI: 10.1007/s10528-022-10280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
Coronavirus disease 2019 (COVID-19) seriously threatens human health and has been disseminated worldwide. Although there are several treatments for COVID-19, its control is currently suboptimal. Therefore, the development of novel strategies to treat COVID-19 is necessary. Ion channels are located on the membranes of all excitable cells and many intracellular organelles and are key components involved in various biological processes. They are a target of interest when searching for drug targets. This study aimed to reveal the relevant molecular features of ion channel genes in COVID-19 based on bioinformatic analyses. The RNA-sequencing data of patients with COVID-19 and healthy subjects (GSE152418 and GSE171110 datasets) were obtained from the Gene Expression Omnibus (GEO) database. Ion channel genes were selected from the Hugo Gene Nomenclature Committee (HGNC) database. The RStudio software was used to process the data based on the corresponding R language package to identify ion channel-associated differentially expressed genes (DEGs). Based on the DEGs, Gene Ontology (GO) functional and pathway enrichment analyses were performed using the Enrichr web tool. The STRING database was used to generate a protein-protein interaction (PPI) network, and the Cytoscape software was used to screen for hub genes in the PPI network based on the cytoHubba plug-in. Transcription factors (TF)-DEG, DEG-microRNA (miRNA) and DEG-disease association networks were constructed using the NetworkAnalyst web tool. Finally, the screened hub genes as drug targets were subjected to enrichment analysis based on the DSigDB using the Enrichr web tool to identify potential therapeutic agents for COVID-19. A total of 29 ion channel-associated DEGs were identified. GO functional analysis showed that the DEGs were integral components of the plasma membrane and were mainly involved in inorganic cation transmembrane transport and ion channel activity functions. Pathway analysis showed that the DEGs were mainly involved in nicotine addiction, calcium regulation in the cardiac cell and neuronal system pathways. The top 10 hub genes screened based on the PPI network included KCNA2, KCNJ4, CACNA1A, CACNA1E, NALCN, KCNA5, CACNA2D1, TRPC1, TRPM3 and KCNN3. The TF-DEG and DEG-miRNA networks revealed significant TFs (FOXC1, GATA2, HINFP, USF2, JUN and NFKB1) and miRNAs (hsa-mir-146a-5p, hsa-mir-27a-3p, hsa-mir-335-5p, hsa-let-7b-5p and hsa-mir-129-2-3p). Gene-disease association network analysis revealed that the DEGs were closely associated with intellectual disability and cerebellar ataxia. Drug-target enrichment analysis showed that the relevant drugs targeting the hub genes CACNA2D1, CACNA1A, CACNA1E, KCNA2 and KCNA5 were gabapentin, gabapentin enacarbil, pregabalin, guanidine hydrochloride and 4-aminopyridine. The results of this study provide a valuable basis for exploring the mechanisms of ion channel genes in COVID-19 and clues for developing therapeutic strategies for COVID-19.
Collapse
|
4
|
Loader J, Taylor FC, Lampa E, Sundström J. Renin-Angiotensin Aldosterone System Inhibitors and COVID-19: A Systematic Review and Meta-Analysis Revealing Critical Bias Across a Body of Observational Research. J Am Heart Assoc 2022; 11:e025289. [PMID: 35624081 PMCID: PMC9238740 DOI: 10.1161/jaha.122.025289] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/07/2022] [Indexed: 12/18/2022]
Abstract
Background Renin-angiotensin aldosterone system (RAAS) inhibitor-COVID-19 studies, observational in design, appear to use biased methods that can distort the interaction between RAAS inhibitor use and COVID-19 risk. This study assessed the extent of bias in that research and reevaluated RAAS inhibitor-COVID-19 associations in studies without critical risk of bias. Methods and Results Searches were performed in MEDLINE, EMBASE, and CINAHL databases (December 1, 2019 to October 21, 2021) identifying studies that compared the risk of infection and/or severe COVID-19 outcomes between those using or not using RAAS inhibitors (ie, angiotensin-converting enzyme inhibitors or angiotensin II type-I receptor blockers). Weighted hazard ratios (HR) and 95% CIs were extracted and pooled in fixed-effects meta-analyses, only from studies without critical risk of bias that assessed severe COVID-19 outcomes. Of 169 relevant studies, 164 had critical risks of bias and were excluded. Ultimately, only two studies presented data relevant to the meta-analysis. In 1 351 633 people with uncomplicated hypertension using a RAAS inhibitor, calcium channel blocker, or thiazide diuretic in monotherapy, the risk of hospitalization (angiotensin-converting enzyme inhibitor: HR, 0.76; 95% CI, 0.66-0.87; P<0.001; angiotensin II type-I receptor blockers: HR, 0.86; 95% CI, 0.77-0.97; P=0.015) and intubation or death (angiotensin-converting enzyme inhibitor: HR, 0.64; 95% CI, 0.48-0.85; P=0.002; angiotensin II type-I receptor blockers: HR, 0.74; 95% CI, 0.58-0.95; P=0.019) with COVID-19 was lower in those using a RAAS inhibitor. However, these protective effects are probably not clinically relevant. Conclusions This study reveals the critical risk of bias that exists across almost an entire body of COVID-19 research, raising an important question: Were research methods and/or peer-review processes temporarily weakened during the surge of COVID-19 research or is this lack of rigor a systemic problem that also exists outside pandemic-based research? Registration URL: www.crd.york.ac.uk/prospero/; Unique identifier: CRD42021237859.
Collapse
Affiliation(s)
- Jordan Loader
- Department of Medical SciencesUppsala UniversityUppsalaSweden
- Inserm U1300 – HP2CHU Grenoble AlpesGrenobleFrance
| | - Frances C. Taylor
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Mary MacKillop Institute for Health Research, Australian Catholic UniversityMelbourneVictoriaAustralia
| | - Erik Lampa
- Department of Medical SciencesUppsala UniversityUppsalaSweden
| | - Johan Sundström
- Department of Medical SciencesUppsala UniversityUppsalaSweden
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
| |
Collapse
|
5
|
Kow CS, Ramachandram DS, Hasan SS. Clinical outcomes of hypertensive patients with COVID-19 receiving calcium channel blockers: a systematic review and meta-analysis. Hypertens Res 2022; 45:360-363. [PMID: 34754084 PMCID: PMC8576454 DOI: 10.1038/s41440-021-00786-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022]
Abstract
We aimed to perform a systematic review and meta-analysis to determine the overall effect of the preadmission/prediagnosis use of calcium channel blockers (CCBs) on the clinical outcomes in hypertensive patients with COVID-19. A systematic literature search with no language restriction was conducted in electronic databases in July 2021 to identify eligible studies. A random-effects model was used to estimate the pooled summary measure for outcomes of interest with the preadmission/prediagnosis use of CCBs relative to the nonuse of CCBs at 95% confidence intervals (CIs). The meta-analysis revealed a significant reduction in the odds of all-cause mortality with the preadmission/prediagnosis use of CCBs relative to the nonuse of CCBs (pooled OR = 0.65; 95% CI 0.49-0.86) and a significant reduction in the odds of severe illness with preadmission/prediagnosis use of CCBs relative to the nonuse of CCBs (pooled OR = 0.61; 95% CI 0.44-0.84), and is associated with adequate evidence to reject the model hypothesis of 'no significant difference' at the current sample size. The potential protective effects offered by CCBs in hypertensive patients with COVID-19 merit large-scale prospective investigations.
Collapse
Affiliation(s)
- Chia Siang Kow
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia.
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | | | - Syed Shahzad Hasan
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
| |
Collapse
|
6
|
Kow CS, Ramachandram DS, Hasan SS. Use of Calcium Channel Blockers and the Risk of All-cause Mortality and Severe Illness in Patients With COVID-19: A Systematic Review and Meta-analysis. J Cardiovasc Pharmacol 2022; 79:199-205. [PMID: 35485583 DOI: 10.1097/fjc.0000000000001144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/12/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Owing to the reported safety concerns, we aimed to perform a systematic review and meta-analysis to determine the effect of preadmission/prediagnosis use of calcium channel blockers (CCBs) on the clinical outcomes in patients with COVID-19. A systematic literature search with no language restriction was conducted in electronic databases in July 2021 to identify eligible studies. The outcomes of interest were all-cause mortality and severe illness. A random-effects model was used to estimate the pooled summary measure for outcomes of interest with the preadmission/prediagnosis use of CCBs relative to nonuse CCBs, at 95% confidence intervals (CIs). The meta-analyses revealed no significant difference in the odds of all-cause mortality [pooled odds ratio (OR) = 0.82; 95% CI 0.68-1.00; n = 58,355] and in the odds of severe illness (pooled OR = 0.83; 95% CI 0.61-1.15; n = 46,091) respectively, with preadmission/prediagnosis use of CCBs relative to nonuse of CCBs. Nevertheless, subgroup analysis of studies originated from East Asia reported a significant reduction in the odds of all-cause mortality (pooled OR = 0.50; 95% CI 0.37-0.68) and the odds of severe illness (pooled OR = 0.51; 95% CI 0.33-0.78). There may not be safety concerns with the use of CCBs in patients with COVID-19, but their potential protective effects in the East Asian patients merit further investigations.
Collapse
Affiliation(s)
- Chia Siang Kow
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | | | - Syed Shahzad Hasan
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom ; and
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
| |
Collapse
|
7
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 08/26/2024] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
8
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
9
|
Berlansky S, Sallinger M, Grabmayr H, Humer C, Bernhard A, Fahrner M, Frischauf I. Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies. Cells 2022; 11:253. [PMID: 35053369 PMCID: PMC8773957 DOI: 10.3390/cells11020253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). This respiratory illness was declared a pandemic by the world health organization (WHO) in March 2020, just a few weeks after being described for the first time. Since then, global research effort has considerably increased humanity's knowledge about both viruses and disease. It has also spawned several vaccines that have proven to be key tools in attenuating the spread of the pandemic and severity of COVID-19. However, with vaccine-related skepticism being on the rise, as well as breakthrough infections in the vaccinated population and the threat of a complete immune escape variant, alternative strategies in the fight against SARS-CoV-2 are urgently required. Calcium signals have long been known to play an essential role in infection with diverse viruses and thus constitute a promising avenue for further research on therapeutic strategies. In this review, we introduce the pivotal role of calcium signaling in viral infection cascades. Based on this, we discuss prospective calcium-related treatment targets and strategies for the cure of COVID-19 that exploit viral dependence on calcium signals.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| |
Collapse
|
10
|
Augustine R, S A, Nayeem A, Salam SA, Augustine P, Dan P, Maureira P, Mraiche F, Gentile C, Hansbro PM, McClements L, Hasan A. Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin-angiotensin-aldosterone system (RAAS) dysregulation. Chem Biol Interact 2022; 351:109738. [PMID: 34740598 PMCID: PMC8563522 DOI: 10.1016/j.cbi.2021.109738] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 01/28/2023]
Abstract
The rapid spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19), has had a dramatic negative impact on public health and economies worldwide. Recent studies on COVID-19 complications and mortality rates suggest that there is a higher prevalence in cardiovascular diseases (CVD) patients. Past investigations on the associations between pre-existing CVDs and susceptibility to coronavirus infections including SARS-CoV and the Middle East Respiratory Syndrome coronavirus (MERS-CoV), have demonstrated similar results. However, the underlying mechanisms are poorly understood. This has impeded adequate risk stratification and treatment strategies for CVD patients with SARS-CoV-2 infections. Generally, dysregulation of the expression of angiotensin-converting enzyme (ACE) and the counter regulator, angiotensin-converting enzyme 2 (ACE2) is a hallmark of cardiovascular risk and CVD. ACE2 is the main host receptor for SARS-CoV-2. Although further studies are required, dysfunction of ACE2 after virus binding and dysregulation of the renin-angiotensin-aldosterone system (RAAS) signaling may worsen the outcomes of people affected by COVID-19 and with preexisting CVD. Here, we review the current knowledge and outline the gaps related to the relationship between CVD and COVID-19 with a focus on the RAAS. Improved understanding of the mechanisms regulating viral entry and the role of RAAS may direct future research with the potential to improve the prevention and management of COVID-19.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| | - Abhilash S
- Department of Microbiology, Majlis Arts and Science College, Puramannur, Malappuram, Kerala, 676552, India
| | - Ajisha Nayeem
- Department of Biotechnology, St. Mary's College, Thrissur, 680020, Kerala, India
| | - Shaheen Abdul Salam
- Department of Biosciences, MES College Marampally, Aluva, Ernakulam, 683107, Kerala, India
| | - Priya Augustine
- Department of Zoology, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, 641029, India
| | - Pan Dan
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, France; Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Pablo Maureira
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, France
| | - Fatima Mraiche
- College of Pharmacy, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, Australia; School of Medicine, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
11
|
Williamson M, Moustaid-Moussa N, Gollahon L. The Molecular Effects of Dietary Acid Load on Metabolic Disease (The Cellular PasaDoble: The Fast-Paced Dance of pH Regulation). FRONTIERS IN MOLECULAR MEDICINE 2021; 1:777088. [PMID: 39087082 PMCID: PMC11285710 DOI: 10.3389/fmmed.2021.777088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 08/02/2024]
Abstract
Metabolic diseases are becoming more common and more severe in populations adhering to western lifestyle. Since metabolic conditions are highly diet and lifestyle dependent, it is suggested that certain diets are the cause for a wide range of metabolic dysfunctions. Oxidative stress, excess calcium excretion, inflammation, and metabolic acidosis are common features in the origins of most metabolic disease. These primary manifestations of "metabolic syndrome" can lead to insulin resistance, diabetes, obesity, and hypertension. Further complications of the conditions involve kidney disease, cardiovascular disease, osteoporosis, and cancers. Dietary analysis shows that a modern "Western-style" diet may facilitate a disruption in pH homeostasis and drive disease progression through high consumption of exogenous acids. Because so many physiological and cellular functions rely on acid-base reactions and pH equilibrium, prolonged exposure of the body to more acids than can effectively be buffered, by chronic adherence to poor diet, may result in metabolic stress followed by disease. This review addresses relevant molecular pathways in mammalian cells discovered to be sensitive to acid - base equilibria, their cellular effects, and how they can cascade into an organism-level manifestation of Metabolic Syndromes. We will also discuss potential ways to help mitigate this digestive disruption of pH and metabolic homeostasis through dietary change.
Collapse
Affiliation(s)
- Morgan Williamson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaid-Moussa
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|