1
|
Love CG, Coombs L, Van Laar R. RNA-seq validation of microRNA expression signatures for precision melanoma diagnosis and prognostic stratification. BMC Med Genomics 2024; 17:256. [PMID: 39456086 PMCID: PMC11515382 DOI: 10.1186/s12920-024-02028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND New diagnostic tools are needed to improve the diagnosis and risk stratification of cutaneous melanoma. Disease-specific microRNA signatures have been previously described via NanoString profiling of solid biopsy tissue and plasma. This study validated these signatures via next-generation sequencing technology and compared their performance against clinical metrics and other published melanoma signatures. METHODS RNA from 64 plasma and 60 FFPE biopsy samples from individuals with invasive melanoma or related benign/control phenotypes was extracted and enriched for microRNA. RNA sequencing was performed to compute MEL38/MEL12 signature scores. The results were evaluated with published NanoString and RNA sequencing datasets, comprising 548 solid tissue samples and 217 plasma samples, to predict disease status and patient outcome. RESULTS The MEL38 diagnostic signature classifies patients into discrete diagnostic groups via RNA sequencing in either solid tissue or plasma (P < 0.001). In solid tissue, the prognostic MEL12 signature stratifies patients into low-, intermediate- and high-risk groups, independent of clinical covariates. The hazard ratios for 10-year overall survival, based on observed survival intervals, were 2.2 (MEL12 high-risk vs low-risk, P < 0.001) and 1.8 (intermediate-risk vs low-risk, P < 0.001), outperforming other published prognostic models. MEL12 also exhibited prognostic significance in the plasma of 42 patients with invasive disease. CONCLUSIONS The MEL38 and MEL12 signatures can be assessed in either solid tissue or plasma using RNA-seq and are strong predictors of disease state and patient outcome. Compared with other genomic methods, MEL12 was shown to be the strongest predictor of poor prognosis. MicroRNA expression profiling offers objective, accurate genomic information about a patient's likelihood of invasive melanoma and prognosis.
Collapse
Affiliation(s)
| | - Lauren Coombs
- Australian Clinical Laboratories, Clayton, VIC, Australia
| | - Ryan Van Laar
- Geneseq Biosciences, Melbourne, VIC, Australia
- Australian Clinical Laboratories, Clayton, VIC, Australia
| |
Collapse
|
2
|
Van Laar R, Latif B, King S, Love C, Taubenheim N, Kalansooriya E, Wang W, Saad M, Winship I, Azzi A, Lilleyman A, Landgren T. Validation of a microRNA liquid biopsy assay for diagnosis and risk stratification of invasive cutaneous melanoma. Br J Dermatol 2023; 189:292-301. [PMID: 37144735 DOI: 10.1093/bjd/ljad137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Noninvasive molecular biomarkers are needed to improve the early, accurate and precise diagnosis of invasive cutaneous melanoma. OBJECTIVES To independently validate a previously identified circulating microRNA signature of melanoma (MEL38), and, secondly, to develop a complementary microRNA signature, optimized for prognostication. PATIENTS AND METHODS MicroRNA expression profiling was performed on plasma samples from a multicentre observational case-control study, involving patients with primary or metastatic melanoma, melanoma in situ, nonmelanoma skin cancer, or benign naevi. MicroRNA profiles from patients with length of survival, treatment and sentinel lymph node biopsy (SLNB) data were used to develop the prognostic signature. The primary outcome of interest for MEL38 was its association with melanoma status, including area under the curve, binary diagnostic sensitivity and specificity, and incidence-adjusted positive and negative predictive values. The prognostic signature was assessed using rates of survival per risk group and relationship to conventional predictors of outcome. RESULTS Circulating microRNA profiles of 372 patients with invasive melanoma and 210 control individuals were generated. The average age of all participants was 59 years; 49% were male. A MEL38 score > 5.5 indicated the presence of invasive melanoma. Overall, 551/582 (95%) of patients were correctly diagnosed, with 93% sensitivity and 98% specificity. MEL38 score ranged from 0 to 10 with an area under the curve of 0.98 (95% confidence interval 0.97-0.99, P < 0.001). A novel prognostic 12-microRNA signature (MEL12) developed from 232 patients identified low-, standard- or high-risk groups, with 94%, 78% and 58% rates of 10-year melanoma-specific survival, respectively (log-rank P < 0.001). MEL12 prognostic risk groups were significantly associated with clinical staging (χ2, P < 0.001) and SLNB status (P = 0.027). Patients who were classified as high risk by MEL12 were approximately three times more likely to have melanoma detected in their sentinel lymph nodes compared to low-risk patients. CONCLUSIONS The circulating MEL38 signature may assist in diagnosing patients with invasive melanoma vs. other conditions associated with a lower - or negligible - risk of mortality. A complementary and prognostic MEL12 signature is predictive of SLNB status, clinical stage and probability of survival. Plasma microRNA profiling may help to optimize existing diagnostic pathways as well as enable personalized, risk-informed melanoma treatment decisions.
Collapse
Affiliation(s)
- Ryan Van Laar
- Geneseq Biosciences, Melbourne, Victoria, Australia
- Australian Clinical Laboratories, Clayton, Victoria, Australia
| | - Babak Latif
- Australian Clinical Laboratories, Clayton, Victoria, Australia
| | - Sam King
- Australian Clinical Laboratories, Clayton, Victoria, Australia
| | | | | | | | - Wandi Wang
- Australian Clinical Laboratories, Clayton, Victoria, Australia
| | - Mirette Saad
- Australian Clinical Laboratories, Clayton, Victoria, Australia
| | - Ingrid Winship
- Geneseq Biosciences, Melbourne, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Anthony Azzi
- Newcastle Skin Check, New South Wales, Australia
- School of Medicine, University of Queensland, Queensland, Australia
| | | | - Tony Landgren
- Australian Clinical Laboratories, Clayton, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Sahranavardfard P, Madjd Z, Emami Razavi AN, Ghanadan AR, Firouzi J, Khosravani P, Ghavami S, Ebrahimie E, Ebrahimi M. An Integrative Analysis of The Micro-RNAs Contributing in Stemness, Metastasis and B-Raf Pathways in Malignant Melanoma and Melanoma Stem Cell. CELL JOURNAL 2021; 23:261-272. [PMID: 34308569 PMCID: PMC8286452 DOI: 10.22074/cellj.2021.7311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/14/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Epithelial-mesenchymal transition (EMT) and the stemness potency in association with BRAF mutation are in dispensable to the progression of melanoma. Recently, microRNAs (miRNAs) have been introduced as the regulator of a multitude of oncogenic functions in most of tumors. Therefore identifying and interpreting the expression patterns of these miRNAs is essential. The present study sought to find common miRNAs regulating all three important pathways in melanoma development. MATERIALS AND METHODS In this experimental study, 18 miRNAs that importantly contribute to EMT and have a role in regulating self-renewal and the BRAF pathway were selected based on current literature and cross-analysis with available databases. Subsequently, their expression patterns were evaluated in 20 melanoma patients, normal tissues, serum from patients and control subjects, and melanospheres. Pattern discovery and integrative regulatory network analysis were used to find the most important miRNAs in melanoma progression. RESULTS Among 18 selected miRNAs, miR-205, -141, -203, -15b, and -9 were differentially expressed in tumor samples than normal tissues. Among them, miR-205, -15b, and -9 significantly expressed in serum samples and healthy donors. Attribute Weighting and decision trees (DT) analysis presented evidence that the combination of miR-205, -203, -9, and -15b can regulate self-renewal and EMT process, by affecting CDH1, CCND1, and VEGF expression. CONCLUSION We suggested here that miR-205, -15b, -203, -9 pattern as the key miRNAs linked to melanoma status, the pluripotency, proliferation, and motility of malignant cells. However, further investigations are required to find the mechanisms underlying the combinatory effects of the above mentioned miRNAs.
Collapse
Affiliation(s)
- Parisa Sahranavardfard
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Madjd
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Nader Emami Razavi
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Ghanadan
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
- Department of Dermatopathology, Razi Skin Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Firouzi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Pardis Khosravani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Manitoba, Canada.
- Biology of Breathing, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada
| | - Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia.
- Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Laar RV, King S, McCoy R, Saad M, Fereday S, Winship I, Uzzell C, Landgren A. Translation of a circulating miRNA signature of melanoma into a solid tissue assay to improve diagnostic accuracy and precision. Biomark Med 2021; 15:1111-1122. [PMID: 34184547 DOI: 10.2217/bmm-2021-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Successful treatment of cutaneous melanoma depends on early and accurate diagnosis of clinically suspicious melanocytic skin lesions. Multiple international studies have described the challenge of providing accurate and reproducible histopathological assessments of melanocytic lesions, highlighting the need for new diagnostic tools including disease-specific biomarkers. Previously, a 38-miRNA signature (MEL38) was identified in melanoma patient plasma and validated as a novel biomarker. In this study, MEL38 expression in solid tissue biopsies representing the benign nevi to metastatic melanoma spectrum is examined. Patients & methods: Nanostring digital gene expression assessment of the MEL38 signature was performed on 308 formalin-fixed paraffin-embedded biopsies of nevi, melanoma in situ and invasive melanoma. Genomic data were interrogated using hierarchical clustering, univariate and multivariate statistical approaches. Classification scores computed from the MEL38 signature were analyzed for their association with demographic data and histopathology results, including MPATH-DX class, AJCC disease stage and tissue subtype. Results: The MEL38 score can stratify higher-risk melanomas (MPATH-Dx class V or more advanced) from lower-risk skin lesions (class I-IV) with an area under the curve of 0.97 (p < 0.001). The genomic score ranges from 0 to 10 and is positively correlated with melanoma progression, with an intraclass correlation coefficient of 0.85 with stage 0-IV disease. Using an optimized classification threshold of ≥2.7 accurately identifies higher-risk melanomas with 89% sensitivity and 94% specificity. Multivariate analysis showed the score to be a significant predictor of malignancy, independent of technical and clinical covariates. Application of the MEL38 signature to Spitz nevi reveals an intrasubtype profile, with elements in common to both nevi and melanoma. Conclusion: Melanoma-specific circulating miRNAs maintain their association with malignancy when measured in the hypothesized tissue of origin. The MEL38 signature is an accurate and reproducible metric of melanoma status, based on changes in miRNA expression that occur as the disease develops and spreads. Inclusion of the MEL38 score into routine practice would provide physicians with previously unavailable, personalized genomic information about their patient's skin lesions. Combining molecular biomarker data with conventional histopathology data may improve diagnostic accuracy, healthcare resource utilization and patient outcomes.
Collapse
Affiliation(s)
- Ryan Van Laar
- Geneseq Biosciences, 555 St Kilda Road, Melbourne, Victoria, 3004, Australia
| | - Samuel King
- Australian Clinical Labs, 1868 Dandenong Road, Clayton, Victoria, 3168, Australia
| | - Richard McCoy
- Australian Clinical Labs, 1868 Dandenong Road, Clayton, Victoria, 3168, Australia
| | - Mirette Saad
- Australian Clinical Labs, 1868 Dandenong Road, Clayton, Victoria, 3168, Australia
| | - Sian Fereday
- Geneseq Biosciences, 555 St Kilda Road, Melbourne, Victoria, 3004, Australia
| | - Ingrid Winship
- Geneseq Biosciences, 555 St Kilda Road, Melbourne, Victoria, 3004, Australia
| | - Catherine Uzzell
- Australian Clinical Labs, 1868 Dandenong Road, Clayton, Victoria, 3168, Australia
| | - Anthony Landgren
- Australian Clinical Labs, 1868 Dandenong Road, Clayton, Victoria, 3168, Australia
| |
Collapse
|
5
|
Carpi S, Polini B, Fogli S, Podestà A, Ylösmäki E, Cerullo V, Romanini A, Nieri P. Circulating microRNAs as biomarkers for early diagnosis of cutaneous melanoma. Expert Rev Mol Diagn 2019; 20:19-30. [PMID: 31747311 DOI: 10.1080/14737159.2020.1696194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cutaneous melanoma is the deadliest form of skin cancer, with a dramatic increase in the incidence rate worldwide over the past decade. Early detection has been shown to improve the outcome of melanoma patients. The identification of noninvasive biomarkers able to identify melanoma at an early stage remains an unmet clinical need. Circulating miRNAs (c-miRNAs), small non-coding RNAs, appear as potential ideal candidate biomarkers due to their stability in biological fluids and easy detectability. Moreover, c-miRNAs are reported to be heavily deregulated in cancer patients.Areas covered: This review examines evidence of the specific c-miRNAs or panels of c-miRNAs reported to be useful in discriminating melanoma from benign cutaneous lesions.Expert opinion: Although the interesting reported by published studies, the non-homogeneity of detection and normalization methods prevents the individuation of single c-miRNA or panel of c-miRNAs that are specific for early detection of cutaneous melanoma. In the future, prospective wide and well-designed clinical trials will be needed to validate the diagnostic potential of some of the c-miRNA candidates in clinical practice.
Collapse
Affiliation(s)
- Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Stefano Fogli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Adriano Podestà
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - Erkko Ylösmäki
- Drug Research program and IVTLab, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research program and IVTLab, University of Helsinki, Helsinki, Finland
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Van Laar R, Lincoln M, Fereday S. Characterisation and validation of Mel38; A multi-tissue microRNA signature of cutaneous melanoma. PLoS One 2019; 14:e0211504. [PMID: 30721246 PMCID: PMC6363168 DOI: 10.1371/journal.pone.0211504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/15/2019] [Indexed: 12/28/2022] Open
Abstract
Background Histopathologic examination of melanocytic neoplasms can be challenging and subjective, with no specific circulating or tissue-based biomarkers currently available. Recently, a circulating 38-microRNA profile of melanoma (Mel38) was described. In this study, Mel38 expression and its impact on downstream mRNA regulation in solid tissue is examined. Methods Mel38 was applied to archival, clinically-annotated, solid-tissue genomic datasets representing benign naevi, primary and metastatic melanoma. Statistical analysis of the signature in relation to disease status, patient outcome and molecular pathways was performed. Results Mel38 is able to stratify genomic data from solid tissue biopsies on the basis of disease status and differences in melanoma-specific survival. Experimentally-verified messenger-RNA targets of Mel38 also exhibit prognostic expression patterns and represent key molecular pathways and events in melanoma development and progression. Conclusion The Mel38 microRNA profile may have diagnostic and prognostic utility in solid tissue as well as being a robust circulating biomarker of melanoma.
Collapse
|