1
|
D'Aguanno S, Mallone F, Marenco M, Del Bufalo D, Moramarco A. Hypoxia-dependent drivers of melanoma progression. J Exp Clin Cancer Res 2021; 40:159. [PMID: 33964953 PMCID: PMC8106186 DOI: 10.1186/s13046-021-01926-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia, a condition of low oxygen availability, is a hallmark of tumour microenvironment and promotes cancer progression and resistance to therapy. Many studies reported the essential role of hypoxia in regulating invasiveness, angiogenesis, vasculogenic mimicry and response to therapy in melanoma. Melanoma is an aggressive cancer originating from melanocytes located in the skin (cutaneous melanoma), in the uveal tract of the eye (uveal melanoma) or in mucosal membranes (mucosal melanoma). These three subtypes of melanoma represent distinct neoplasms in terms of biology, epidemiology, aetiology, molecular profile and clinical features.In this review, the latest progress in hypoxia-regulated pathways involved in the development and progression of all melanoma subtypes were discussed. We also summarized current knowledge on preclinical studies with drugs targeting Hypoxia-Inducible Factor-1, angiogenesis or vasculogenic mimicry. Finally, we described available evidence on clinical studies investigating the use of Hypoxia-Inducible Factor-1 inhibitors or antiangiogenic drugs, alone or in combination with other strategies, in metastatic and adjuvant settings of cutaneous, uveal and mucosal melanoma.Hypoxia-Inducible Factor-independent pathways have been also reported to regulate melanoma progression, but this issue is beyond the scope of this review.As evident from the numerous studies discussed in this review, the increasing knowledge of hypoxia-regulated pathways in melanoma progression and the promising results obtained from novel antiangiogenic therapies, could offer new perspectives in clinical practice in order to improve survival outcomes of melanoma patients.
Collapse
Affiliation(s)
- Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiana Mallone
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Marenco
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | | |
Collapse
|
2
|
Jo DH, Kim JH, Kim JH. Targeting tyrosine kinases for treatment of ocular tumors. Arch Pharm Res 2018; 42:305-318. [PMID: 30470974 DOI: 10.1007/s12272-018-1094-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023]
Abstract
Uveal melanoma is the most common intraocular primary malignant tumor in adults, and retinoblastoma is the one in children. Current mainstay treatment options include chemotherapy using conventional drugs and enucleation, the total removal of the eyeball. Targeted therapies based on profound understanding of molecular mechanisms of ocular tumors may increase the possibility of preserving the eyeball and the vision. Tyrosine kinases, which modulate signaling pathways regarding various cellular functions including proliferation, differentiation, and attachment, are one of the attractive targets for targeted therapies against uveal melanoma and retinoblastoma. In this review, the roles of both types of tyrosine kinases, receptor tyrosine kinases and non-receptor tyrosine kinases, were summarized in relation with ocular tumors. Although the conventional treatment options for uveal melanoma and retinoblastoma are radiotherapy and chemotherapy, respectively, specific tyrosine kinase inhibitors will enhance our armamentarium against them by controlling cancer-associated signaling pathways related to tyrosine kinases. This review can be a stepping stone for widening treatment options and realizing targeted therapies against uveal melanoma and retinoblastoma.
Collapse
Affiliation(s)
- Dong Hyun Jo
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Hyoung Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea. .,Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, 08826, Republic of Korea. .,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Chen KS, Fustino NJ, Shukla AA, Stroup EK, Budhipramono A, Ateek C, Stuart SH, Yamaguchi K, Kapur P, Frazier AL, Lum L, Looijenga LHJ, Laetsch TW, Rakheja D, Amatruda JF. EGF Receptor and mTORC1 Are Novel Therapeutic Targets in Nonseminomatous Germ Cell Tumors. Mol Cancer Ther 2018; 17:1079-1089. [PMID: 29483210 DOI: 10.1158/1535-7163.mct-17-0137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/13/2017] [Accepted: 02/14/2018] [Indexed: 11/16/2022]
Abstract
Germ cell tumors (GCT) are malignant tumors that arise from pluripotent embryonic germ cells and occur in children and young adults. GCTs are treated with cisplatin-based regimens which, while overall effective, fail to cure all patients and cause significant adverse late effects. The seminoma and nonseminoma forms of GCT exhibit distinct differentiation states, clinical behavior, and response to treatment; however, the molecular mechanisms of GCT differentiation are not fully understood. We tested whether the activity of the mTORC1 and MAPK pathways were differentially active in the two classes of GCT. Here we show that nonseminomatous germ cell tumors (NSGCT, including embryonal carcinoma, yolk sac tumor, and choriocarcinoma) from both children and adults display activation of the mTORC1 pathway, while seminomas do not. In seminomas, high levels of REDD1 may negatively regulate mTORC1 activity. In NSGCTs, on the other hand, EGF and FGF2 ligands can stimulate mTORC1 and MAPK signaling, and members of the EGF and FGF receptor families are more highly expressed. Finally, proliferation of NSGCT cells in vitro and in vivo is significantly inhibited by combined treatment with the clinically available agents erlotinib and rapamycin, which target EGFR and mTORC1 signaling, respectively. These results provide an understanding of the signaling network that drives GCT growth and a rationale for therapeutic targeting of GCTs with agents that antagonize the EGFR and mTORC1 pathways. Mol Cancer Ther; 17(5); 1079-89. ©2018 AACR.
Collapse
Affiliation(s)
- Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Margaret Gill Center for Cancer and Blood Disorders, Children's Health Medical Center, Dallas, Texas
| | - Nicholas J Fustino
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Margaret Gill Center for Cancer and Blood Disorders, Children's Health Medical Center, Dallas, Texas
| | - Abhay A Shukla
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Emily K Stroup
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Albert Budhipramono
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christina Ateek
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sarai H Stuart
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kiyoshi Yamaguchi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas.,Division of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - A Lindsay Frazier
- Department of Pediatric Oncology, Children's Hospital Dana-Farber Cancer Care, Boston, Massachusetts
| | - Lawrence Lum
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Theodore W Laetsch
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Margaret Gill Center for Cancer and Blood Disorders, Children's Health Medical Center, Dallas, Texas
| | - Dinesh Rakheja
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James F Amatruda
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas. .,Margaret Gill Center for Cancer and Blood Disorders, Children's Health Medical Center, Dallas, Texas.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
4
|
Die Geschichte der Ophthalmoonkologie an der Univ.-Augenklinik Graz. SPEKTRUM DER AUGENHEILKUNDE 2017. [DOI: 10.1007/s00717-017-0369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Zusammenfassung
Einleitung
Der Beginn der organerhaltenden Therapie an der Univ.-Augenklinik datiert auf das Jahr 1985 mit der Einführung der Ruthenium 106 Applikatoren (Lommatzsch, Vormun) zurück.
Der Autor skizziert in zeitlicher Abfolge die Einführung und gemeinsame Entwicklung verschiedener Arten von organerhaltender Therapien und endet mit neuen Therapieansätzen des Retinoblastoms und des metastasierenden Aderhautmelanoms.
Methodik
Die Vorstände der Univ.-Augenklinik beginnend mit Hofmann (1964–1987) unterstützten den Paradigmenwechsel von einem radikalchirurgischen Konzept (Enukleation) bei intraokularen Tumoren zu einem organerhaltenden Konzept trotz Fehlens von großen Studien mit hoher Evidenz. Zuweisende FachärztInnen waren zu Recht im Zweifel über die Sinnhaftigkeit dieser neuen Therapiekonzepte, unterstützen jedoch mit ihren PatientInnen Zuweisungen den neuen Arbeitsschwerpunkt bzw. den organerhaltenden Therapieansatz bis zum heutigen Tag.
Ergebnisse
Aderhautmelanom: 1985 wurde die organerhaltende Therapie mittels Ruthenium 106 Applikatoren in Graz für kleine und mittelgroße Aderhautmelanome mit aequatorialler und anteriorer Lokalisation eingeführt, ab 1992 war die Gamma Knife Radiochirurgie alternativ zur Protonen- und Photonentherapie an der Univ. Klinik für Neurochirurgie in Graz verfügbar und wurde mit Beiträgen anderer Tumorzentren für die Behandlung von großen Aderhautmelanomen oder solchen mit posteriorer Lokalisation entwickelt.
Die transpupillare Thermotherapie (TTT) wurde 1995 in Leiden von Osterhuis und Journée-de Korver für die Behandlung von flachen posterior lokalisierten Melanomen im Tiermodell entwickelt. Die Therapie geriet auf Grund einer erhöhten Rate von Rezidiven in einzelnen Tumorzentren in Mißkredit und Vergessenheit, sollte jedoch auf Grund guter eigener Erfahrungen und der Einführung der TTT bei der Behandlung von Retinoblastomen in Hinblick auf Technik und Indikationen neuerlich evaluiert werden.
Endoresektion: Aderhautmelanome werden nach Vorbestrahlung wegen des großen Tumorvolumens bzw. einer persistierenden Amotio mittels Vitrektomie Techniken reserziert, als Bestrahlungstechnik wurde in Graz und in Essen das Gamma Knife verwendet.
Biopsien werden seit einigen Jahren für genetische und mikrobiologische Untersuchungen durchgeführt, neue mikrobiologische Erkenntnisse werden zur Entwicklung neuer systemischer Therapiekonzepte führen.
Retinoblastom: Im Gegensatz zum Aderhautmelanom erwies sich die adjuvante Chemotherapie beim Retinoblastom als hoch wirksam v. a. in der Volumsreduktion der Tumoren.
Die Brachytherapie mit Ruthenium 106 Schalen, die 3‑fach Kryotherapie bzw. die Lasertherapie werden bereits seit Jahrzehnten an der Univ.-Augenklinik als organerhaltende Lokaltherapien durchgeführt, seit kurzem komplettiert die TTT (mit oder ohne simultane Chemotherapie) das Spektrum der fokalen Therapien. Neue Therapiekonzepte wie die intrabulbäre Chemotherapie (bereits in Anwendung) sowie die intraarterielle Chemotherapie (steht kurz vor der Implementierung) sind bereits in Routine.
Seit 2003 werden erstmals Retinoblastome in einer Therapie Optimierungsstudie RBA2003 (die das Department für Hämato‑/Onkologie der Univ. Kinderklinik Graz zusammen mit der Univ.-Augenklinik entwickelt hat) in Graz behandelt. Das Univ. Klinikum Graz etabliert sich als Referenzzentrum für Retinoblastome und Pseudoretinoblastome in Österreich und dem umgebenden Ausland und erhielt Anfragen und PatientInnen Zuweisungen aus den Alpe Adria Ländern sowie Schweiz, Bulgarien, Tschechien, Rumänien, Ukraine und Rußland. Wedrich, derzeitiger Vorstand der Univ.-Augenklinik Graz, förderte die Entwicklung des Retinoblastom Kompetenz Zentrums in personeller, instrumenteller und logistischer Hinsicht.
2015 entwickelte das Klinikum Essen ein auf das Protokoll RBA2003 aufbauendes, erweitertes internationales Protokoll, nach dem nun PatientInnen aus Essen und Graz gemeinsam behandelt, evaluiert und nachkontrolliert werden. Dieses wiederum wird in einem EU-Antrag, initiert von Chandada (Buenos Aires, Barcelona) für eine einheitliche Behandlung des Retinoblastoms in Europa berücksichtigt.
2005 engagierte sich die Arbeitsgruppe erstmals in Mosambique, Afrika folgend einer Bitte der NGO, Licht für die Welt, die Rahmenbedingungen für die Etablierung eines Retinoblastomzentrums zu prüfen.
2008 wurde am LKH Univ. Klinikum Graz ein Forschungsfeld Onkologie etabliert, in weiterer Folge das Comprehensive Cancer Center (CCC) der MUG gegründet, in das die Ophthalmoonkologie thematisch eingegliedert ist.
Schlussfolgerung
Das vor 32 Jahren am LKH Univ.-Klinikum Graz etablierte Konzept der organerhaltenden Therapie erfuhr 13 Jahre später die Bestätigung durch die bislang größte multizentrische Studie (COMS Studie) in den USA, wonach kein Unterschied in Hinblick auf Überleben zwischen Enukleation und bulbuserhaltender Therapie mit Jod 125 Schalen bei kleinen und mittelgroßen Aderhautmelanomen gefunden wurde. Die seit über 30 Jahren unveränderte (z. T. sehr schlechte) Prognose kann möglicherweise in absehbarer Zeit durch neue Medika verbessert werden. Basis für diese erfreulichen Entwicklungen sind neue bahnbrechende Erkenntnisse aus der zytogenetischen und molekularbiologischen Forschung.
Collapse
|
5
|
Sabbatino F, Wang Y, Wang X, Flaherty KT, Yu L, Pepin D, Scognamiglio G, Pepe S, Kirkwood JM, Cooper ZA, Frederick DT, Wargo JA, Ferrone S, Ferrone CR. PDGFRα up-regulation mediated by sonic hedgehog pathway activation leads to BRAF inhibitor resistance in melanoma cells with BRAF mutation. Oncotarget 2015; 5:1926-41. [PMID: 24732172 PMCID: PMC4039118 DOI: 10.18632/oncotarget.1878] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Control of BRAF(V600E) metastatic melanoma by BRAF inhibitor (BRAF-I) is limited by intrinsic and acquired resistance. Growth factor receptor up-regulation is among the mechanisms underlying BRAF-I resistance of melanoma cells. Here we demonstrate for the first time that PDGFRα up-regulation causes BRAF-I resistance. PDGFRα inhibition by PDGFRα-specific short hairpin (sh)RNA and by PDGFRα inhibitors restores and increases melanoma cells' sensitivity to BRAF-I in vitro and in vivo. This effect reflects the inhibition of ERK and AKT activation which is associated with BRAF-I resistance of melanoma cells. PDGFRα up-regulation is mediated by Sonic Hedgehog Homolog (Shh) pathway activation which is induced by BRAF-I treatment. Similarly to PDGFRα inhibition, Shh inhibition by LDE225 restores and increases melanoma cells' sensitivity to BRAF-I. These effects are mediated by PDGFRα down-regulation and by ERK and AKT inhibition. The clinical relevance of these data is indicated by the association of PDGFRα up-regulation in melanoma matched biopsies of BRAF-I +/- MEK inhibitor treated patients with shorter time to disease progression and less tumor regression. These findings suggest that monitoring patients for early PDGFRα up-regulation will facilitate the identification of those who may benefit from the treatment with BRAF-I in combination with clinically approved PDGFRα or Shh inhibitors.
Collapse
Affiliation(s)
- Francesco Sabbatino
- Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fan Y, Du W, He B, Fu F, Yuan L, Wu H, Dai W, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin. Biomaterials 2013; 34:2277-88. [DOI: 10.1016/j.biomaterials.2012.12.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/15/2012] [Indexed: 12/19/2022]
|
7
|
Triozzi PL, Aldrich W, Singh A. Effects of interleukin-1 receptor antagonist on tumor stroma in experimental uveal melanoma. Invest Ophthalmol Vis Sci 2011; 52:5529-35. [PMID: 21519029 DOI: 10.1167/iovs.10-6331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE In contrast to many malignancies showing evidence that interleukin-1 (IL-1) promotes progression through effects on tumor vascularity and myeloid suppressor cell populations, in uveal melanoma there is evidence that IL-1 can inhibit progression. METHODS The effects of the IL-1 receptor antagonist IL-1ra against the aggressive/invasive MUM2B and the nonaggressive/noninvasive OCM1 uveal melanoma models were examined in vitro and in vivo in mouse xenografts. Vascularity and myeloid suppressor cell populations and their regulators were assessed. RESULTS In vitro, IL-1, and IL-1ra did not affect the proliferation of the uveal melanoma cells or their production of IL-1, IL-6, transforming growth factor (TGF) β, or VEGF. In vivo, IL-1ra treatment resulted in substantial growth inhibition of MUM2B tumors; less inhibition was observed against OCM1 tumors. Periodic acid-Schiff loops and CD11b⁺ macrophages within the tumor stroma decreased in vivo; CD31⁺ blood vessels were not altered. IL-1ra treatment in vivo did not affect tumor-derived IL-1, IL-6, TGF-β, or VEGF. In contrast, host IL-1β, IL-6, and tumor necrosis factor decreased. Host VEGF was not altered. Intratumoral IL-12(p40) and CXCL10, markers of host M1 polarization, increased, and intratumoral arginase and CD206, markers of myeloid-derived suppressor cells (MDSC) and M2 macrophage polarization, decreased. IL-1ra treatment in vivo also reduced splenic CD11b⁺Gr1⁺ MDSC. CONCLUSIONS IL-1 may play a role in promoting uveal melanoma progression. Inhibiting IL-1 with IL-1ra inhibits tumor growth in vivo but not in vitro. Tumor stroma is modified, myeloid suppressor cells are reduced, and M1 macrophage polarization is increased in vivo.
Collapse
Affiliation(s)
- Pierre L Triozzi
- Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|
8
|
Wackernagel W, Schneider M, Mayer C, Langmann G, Singh AD. Genetik des Aderhautmelanoms. SPEKTRUM DER AUGENHEILKUNDE 2009. [DOI: 10.1007/s00717-009-0360-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|