1
|
Li J, Jiang Z, He J, Yang K, Chen J, Deng Q, Li X, Wu F, Xu S, Jiang Z. Effect of CHRDL1 on angiogenesis and metastasis of colorectal cancer cells via TGF-β/VEGF pathway. Mol Carcinog 2024; 63:1092-1105. [PMID: 38415870 DOI: 10.1002/mc.23711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/17/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Colorectal cancer (CRC) is a common digestive tract tumor with the third incidence and death in the world. There is still an urgent need for effective therapeutic targets and prognostic markers for CRC. Herein, we report a novel potential target and marker, Chordin like-1 (CHRDL1). The function of CHRDL1 has been reported in gastric cancer, breast cancer, and oral squamous cell carcinoma. However, the biological effect of CHRDL1 in CRC remains unrevealed. Transwell and tube formation experiments were used to determine the biological function of CHRDL1. Western blot and rescue experiments were used to determine the specific mechanisms of CHRDL1. Results showed CHRDL1 is significantly downregulated in CRC cell lines and tissues. In vitro, experiments confirmed that CHRDL1 can inhibit cell growth, migration, invasion, angiogenesis and reverse epithelial-mesenchymal transformation. In vivo, experiments proved that it can inhibit tumor growth and metastasis. Mechanistically, we newly find that CHRDL1 exerts biological functions through the transforming growth factor-beta (TGF-β)/vascular endothelial growth factor signaling axis in vitro and in vivo. Therefore, we concluded that CHRDL1 reduces the growth, migration, and angiogenesis of CRC cells by downregulating TGF-β signaling. Our new findings on CHRDL1 may provide a basis for clinical antiangiogenesis therapy and the prognosis of CRC.
Collapse
Affiliation(s)
- Junfeng Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongxiang Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin He
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Chen
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianxi Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqing Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuman Xu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Li H, Lei Y, Li G, Huang Y. Identification of tumor-suppressor genes in lung squamous cell carcinoma through integrated bioinformatics analyses. Oncol Res 2023; 32:187-197. [PMID: 38188687 PMCID: PMC10767242 DOI: 10.32604/or.2023.030656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/20/2023] [Indexed: 01/09/2024] Open
Abstract
Lung cancer is a prevalent malignancy, and fatalities of the disease exceed 400,000 cases worldwide. Lung squamous cell carcinoma (LUSC) has been recognized as the most common pathological form of lung cancer. The comprehensive understanding of molecular features related to LUSC progression has great significance in LUSC prognosis assessment and clinical management. In this study, we aim to identify a panel of signature genes closely associated with LUSC, which can provide novel insights into the progression of LUSC. Gene expression profiles were retrieved from public resources including gene expression omnibus (GEO) and the cancer genome atlas (TCGA) database. Differentially expressed genes (DEGs) between LUSC specimens and normal lung tissues were identified by bioinformatics analyses. A total of 66 DEGs were identified based on two cohorts of data. CytoHubba plugin of Cytoscape software was utilized for the further analyses of the top 10 candidate hub genes including OGN, ABI3BP, MAMDC2, FGF7, FAM107A, SPARCL1, DCN, COL14A1, and MFAP4 and CHRDL1, which showed significant downregulation in LUSC. Two LUSC cell lines were used to validate the functions of CHRDL1 and FAM107A through overexpression experiment. Together, our data revealed novel candidate tumor-suppressor genes in LUSC, suggesting previously unappreciated mechanisms in the progression of LUSC.
Collapse
Affiliation(s)
- Heng Li
- The 2nd Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, 650118, China
| | - Youming Lei
- Department of Geriatric Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Gaofeng Li
- The 2nd Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, 650118, China
| | - Yunchao Huang
- The 1st Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, 650118, China
| |
Collapse
|
3
|
Yu JW, Pang R, Liu B, Zhang L, Zhang JW. Bioinformatics identify the role of chordin-like 1 in thyroid cancer. Medicine (Baltimore) 2023; 102:e32778. [PMID: 36749222 PMCID: PMC9901988 DOI: 10.1097/md.0000000000032778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The abnormal expression of chordin-like 1 (CHRDL1) is identified in many cancers, while the effect of CHRDL1 in thyroid cancer (THCA) remains unclear. The University of California Santa Cruz, Gene Expression Profiling Interactive Analysis, University of Alabama at Birmingham Cancer, and Gene Expression Omnibus database (GSE33570, GSE33630, and GSE60542) were used for determining the mRNA and methylation expression of CHRDL1 in tumor and normal tissues. Human Protein Atlas was used for exploring the protein expression level of CHRDL1. The genes correlated to CHRDL1 were assessed by cBioPortal database. The prognostic value of CHRDL1 was evaluated through Kaplan-Meier method, cox regression, and nomogram analysis. Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and gene set enrichment analysis were used for predicting potential function of CHRDL1. The relationship between CHRDL1 and immune cell infiltration was determined by Pearson method. The downregulated mRNA and protein expressions of CHRDL1 were identified in THCA through the analysis of data from The Cancer Genome Atlas, Gene Expression Omnibus, and Human Protein Atlas database. The survival analysis showed that the CHRDL1 expression significantly affected disease-free interval (DFI) and progression-free interval, and CHRDL1 was an independent predictor of DFI. Besides, we found that C-C motif chemokine ligand 21 could significantly affect DFI time when it was co-expressed with CHRDL1. Additionally, the function of CHRDL1 was enriched in cell migration, apoptosis, and immune cell receptor. The downregulated expression of CHRDL1 was observed in THCA and caused poor prognosis. CHRDL1 may be involved in signal pathway related to cancer development and immune response, which suggested it could be a potential biomarker.
Collapse
Affiliation(s)
- Jia-Wei Yu
- Department of Head and Neck Thyroid, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Rui Pang
- Department of Head and Neck Thyroid, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Bo Liu
- Department of Head and Neck Thyroid, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Liang Zhang
- Department of Head and Neck Thyroid, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jie-Wu Zhang
- Department of Head and Neck Thyroid, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
- * Correspondence: Jie-Wu Zhang, Department of Head and Neck Thyroid, Harbin Medical University Cancer Hospital, No.150, Baojian Road, Nangang District, Harbin 150041, Heilongjiang, China (e-mail: )
| |
Collapse
|
4
|
Lin Z, Lin X, Sun Y, Lei S, Cai G, Li Z. Melanoma molecular subtyping and scoring model construction based on ligand-receptor pairs. Front Genet 2023; 14:1098202. [PMID: 36777724 PMCID: PMC9909287 DOI: 10.3389/fgene.2023.1098202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Melanoma is a malignancy of melanocytes, responsible for a high percentage of skin cancer mortality. Ligand-Receptor pairs, a type of cellular communication, are essential for tumor genesis, growth, metastasis, and prognosis. Yet, the role of Ligand-Receptor pairs in melanoma has not been fully elucidated. Our research focused on the function of Ligand-Receptor pairs in melanoma prognosis. We screened 131 melanoma prognosis corresponded ligand-receptor pairs by analyzing the TCGA data of melanoma and the 2293 LR pairs retrieved from the connectomeDB2020 database. And further developed subtypes of melanoma according to the expression of these ligand-receptor pairs by Consensus Clustering. Then we using lasso cox regression and stepwise multivariate regression analysis established a ligand-receptor pairs-based scoring model for the evaluation of melanoma prognosis. Our study demonstrated that the ligand-receptor pairs are vital to the molecular heterogeneity of melanoma, and characterized three different melanoma ligand-receptor pairs subtypes. Among them, the C3 subtype showed a better prognosis, while the C1 subtype exhibited a low prognosis state. And our analysis then found out that this could be related to the differed activation and inhabitation of the cell cycle and immune-related pathways. Using lasso cox regression and stepwise multivariate regression analysis, we further identified 9 key ligand-receptor pairs and established a scoring model that effectively correlated with the prognosis, immune pathways, and therapy of melanoma, showing that the LR.score model was a trustworthy and independent biomarker for melanoma prognosis evaluation. In sum, we found that ligand-receptor pairs are significantly associated with the prognosis and therapy of melanoma. And our ligand-receptor-based scoring model showed potential for the evaluation of melanoma prognosis and immune therapy outcome prediction, which is crucial to the survival for the patients.
Collapse
Affiliation(s)
- Zexu Lin
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Department of Plastic and Cosmetic Surgery, First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Xin Lin
- Department of Plastic and Cosmetic Surgery, First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Shaorong Lei
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Gengming Cai
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Zhexuan Li
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,*Correspondence: Zhexuan Li,
| |
Collapse
|
5
|
Han Y, Xia L, Wang X, Xiong H, Zeng L, Wang Z, Zhang T, Xia K, Hu X, Su T. Study on the expression and function of chordin like 1 in oral squamous cell carcinoma. Oral Dis 2022. [PMID: 35510812 DOI: 10.1111/odi.14240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the role and related mechanism of chordin like 1 (CHRDL1) in oral squamous cell carcinoma (OSCC). METHODS The expressions of CHRDL1 were analyzed in both mRNA and protein levels by bioinformatics analysis, immunohistochemistry, and fluorescence in situ hybridization in OSCC. Survival analysis was used to determine the relationship between CHRDL1 and prognosis. In addition, enrichment analysis was used to suggest signal pathways involved in CHRDL1. Besides, the relationships between CHRDL1 and miRNAs, hypoxia, and immune infiltration were explored. RESULTS The mRNA level of CHRDL1 in OSCC was significantly lower than that in normal tissues, while the protein level was significantly higher than that in normal tissues. The high mRNA levels of CHRDL1 suggested a poor prognosis in patients with OSCC. The enrichment results showed that CHRDL1 might be involved in the Calcium signaling pathway, dilated cardiomyopathy, and focal adhesion. 7 immune cells were positively correlated with CHRDL1, while Tgd was negatively correlated with CHRDL1. In addition, we also found that hsa-miR-455-3p directly targeted CHRDL1 and reduced the mRNA levels of CHRDL1. CONCLUSION CHRDL1 plays a vital role in promoting cancer in OSCC and is downregulated at the mRNA levels by hsa-miR-455-3p.
Collapse
Affiliation(s)
- Ying Han
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Lu Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Xiaomeng Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Haofeng Xiong
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, 410008, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, 410008, China
| | - Liujun Zeng
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, 410008, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, 410008, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, 410008, China
| | - Zijia Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, 410008, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, 410008, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, 410008, China
| | - Tianyi Zhang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, 410008, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, 410008, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, 410008, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Xin Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, 410008, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, 410008, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, 410008, China
| | - Tong Su
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, 410008, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, 410008, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
6
|
Wu Q, Zheng Z, Zhang J, Piao Z, Xin M, Xiang X, Wu A, Zhao T, Huang S, Qiao Y, Zhou J, Xu S, Cheng H, Wu L, Ouyang K. Chordin-Like 1 Regulates Epithelial-to-Mesenchymal Transition and Metastasis via the MAPK Signaling Pathway in Oral Squamous Cell Carcinoma. Front Oncol 2022; 12:862751. [PMID: 35494000 PMCID: PMC9046701 DOI: 10.3389/fonc.2022.862751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAccumulating evidence suggests that dysregulation of Chordin-like 1 (CHRDL1) is associated with malignant biological behaviors in multiple cancers. However, the exact function and molecular mechanism of CHRDL1 in oral squamous cell carcinoma (OSCC) remain unclear.MethodsThe expression levels of CHRDL1 in OSCC tissues and CAL27 cells were determined by RT-qPCR. Immunohistochemical staining was applied to detect CHRDL1 protein expression in sample tissues from OSCC patients. Gain of function and knockdown by lentivirus were further used to examine the effects of CHRDL1 on cell proliferation, migration, invasion, and adhesion in OSCC. Tail vein injection of CAL27 cells with dysregulated CHRDL1 expression was further used to examine the effect of CHRDL1 on lung colonization. RNA sequencing was performed to explore the molecular mechanisms of CHRDL1 that underlie the progression of OSCC.ResultsCHRDL1 was significantly downregulated in OSCC tissues and CAL27 cells compared to controls. CHRDL1 knockdown enhanced migration, invasion, adhesion, and EMT, but not proliferation, in CAL27 cells. Overexpression of CHRDL1 had the opposite effects. Moreover, CHRDL1 was proven to inhibit tumor metastasis in vivo. Mechanistically, MAPK signaling pathway components, including ERK1/2, p38, and JNK, were found to regulate the malignant biological behaviors of CAL27 cells.ConclusionsOur results suggest that CHRDL1 has an inhibitory effect on OSCC metastasis via the MAPK signaling pathway, which provides a new possible potential therapeutic target against OSCC.
Collapse
Affiliation(s)
- Qiuyu Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Junwei Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Zhengguo Piao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Mengyu Xin
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xi Xiang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Antong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Tianyu Zhao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Songkai Huang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yu Qiao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Jiayu Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Haoyu Cheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- *Correspondence: Kexiong Ouyang, ; Lihong Wu,
| | - Kexiong Ouyang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- *Correspondence: Kexiong Ouyang, ; Lihong Wu,
| |
Collapse
|
7
|
Ponomarenko MP, Chadaeva IV, Ponomarenko PM, Bogomolov AG, Oshchepkov DY, Sharypova EB, Suslov VV, Osadchuk AV, Osadchuk LV, Matushkin YG. A bioinformatic search for correspondence between differentially expressed genes of domestic versus wild animals and orthologous human genes altering reproductive potential. Vavilovskii Zhurnal Genet Selektsii 2022; 26:96-108. [PMID: 35342855 PMCID: PMC8894618 DOI: 10.18699/vjgb-22-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
One of the greatest achievements of genetics in the 20th century is D.K. Belyaev’s discovery of destabilizing selection during the domestication of animals and that this selection affects only gene expression regulation (not gene structure) and inf luences systems of neuroendocrine control of ontogenesis in a stressful environment. Among the experimental data generalized by Belyaev’s discovery, there are also f indings about accelerated extinc tion of testes’ hormonal function and disrupted seasonality of reproduction of domesticated foxes in comparison
with their wild congeners. To date, Belyaev’s discovery has already been repeatedly conf irmed, for example, by independent
observations during deer domestication, during the use of rats as laboratory animals, after the reintroduction
of endangered species such as Przewalski’s horse, and during the creation of a Siberian reserve population
of the Siberian grouse when it had reached an endangered status in natural habitats. A genome-wide comparison
among humans, several domestic animals, and some of their wild congeners has given rise to the concept of self-domestication
syndrome, which includes autism spectrum disorders. In our previous study, we created a bioinformatic
model of human self-domestication syndrome using differentially expressed genes (DEGs; of domestic animals
versus their wild congeners) orthologous to the human genes (mainly, nervous-system genes) whose changes in
expression affect reproductive potential, i. e., growth of the number of humans in the absence of restrictions caused
by limiting factors. Here, we applied this model to 68 human genes whose changes in expression alter the reproductive
health of women and men and to 3080 DEGs of domestic versus wild animals. As a result, in domestic animals,
we identif ied 16 and 4 DEGs, the expression changes of which are codirected with changes in the expression of the
human orthologous genes decreasing and increasing human reproductive potential, respectively. The wild animals
had 9 and 11 such DEGs, respectively. This difference between domestic and wild animals was signif icant according
to Pearson’s χ2 test (p < 0.05) and Fisher’s exact test (p < 0.05). We discuss the results from the standpoint of restoration
of endangered animal species whose natural habitats are subject to an anthropogenic impact.
Collapse
Affiliation(s)
- M. P. Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - I. V. Chadaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - P. M. Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - A. G. Bogomolov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - D. Yu. Oshchepkov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. B. Sharypova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - V. V. Suslov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - A. V. Osadchuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - L. V. Osadchuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - Yu. G. Matushkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
8
|
A Lipid Metabolism-Based Seven-Gene Signature Correlates with the Clinical Outcome of Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9913206. [PMID: 35186082 PMCID: PMC8856807 DOI: 10.1155/2022/9913206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
Background. Herein, we tried to develop a prognostic prediction model for patients with LUAD based on the expression profiles of lipid metabolism-related genes (LMRGs). Methods. Molecular subtypes were identified by non-negative matrix factorization (NMF) clustering. The overall survival (OS) predictive gene signature was developed and validated internally and externally based on online data sets. Time-dependent receiver operating characteristic (ROC) curve, Kaplan–Meier curve, nomogram, restricted mean survival time (EMST), and decision curve analysis (DCA) were used to assess the performance of the gene signature. Results. We identified three molecular subtypes in LUAD with distinct characteristics on immune cells infiltration and clinical outcomes. Moreover, we confirmed a seven-gene signature as an independent prognostic factor for patients with LUAD. Calibration and DCA analysis plots indicated the excellent predictive performance of the prognostic nomogram constructed based on the gene signature. In addition, the nomogram showed higher robustness and clinical usability compared with four previously reported prognostic gene signatures. Conclusions. Findings in the present study shed new light on the characteristics of lipid metabolism within LUAD, and the established seven-gene signature can be utilized as a new prognostic marker for predicting survival in patients with LUAD.
Collapse
|
9
|
Deng B, Chen X, Xu L, Zheng L, Zhu X, Shi J, Yang L, Wang D, Jiang D. Chordin-like 1 is a novel prognostic biomarker and correlative with immune cell infiltration in lung adenocarcinoma. Aging (Albany NY) 2022; 14:389-409. [PMID: 35021154 PMCID: PMC8791215 DOI: 10.18632/aging.203814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
Chordin-like 1 (CHRDL1), an inhibitor of bone morphogenetic proteins(BMPs), has been recently reported to participate in the progression of numerous tumors, however, its role in lung adenocarcinoma (LUAD) remains unclear. Our study aimed to demonstrate relationship between CHRDL1 and LUAD based on data from The Cancer Genome Atlas (TCGA). Among them, CHRDL1 expression revealed promising power for distinguishing LUAD tissues form normal sample. Low CHRDL1 was correlated with poor clinicopathologic features, including high T stage (OR=0.45, P<0.001), high N stage (OR=0.57, P<0.003), bad treatment effect (OR=0.64, P=0.047), positive tumor status (OR=0.63, P=0.018), and TP53 mutation (OR=0.49, P<0.001). The survival curve illustrated that low CHRDL1 was significantly correlative with a poor overall survival (HR=0.60, P<0.001). At multivariate Cox regression analysis, CHRDL1 remained independently correlative with overall survival. GSEA identified that the CHRDL1 expression was related to cell cycle and immunoregulation. Immune infiltration analysis suggested that CHRDL1 was significantly correlative with 7 kinds of immune cells. Immunohistochemical validation showed that CHRDL1 was abnormally elevated and negatively correlated with Th2 cells in LUAD tissues. In conclusion, CHRDL1 might become a novel prognostic biomarker and therapy target in LUAD. Moreover, CHRDL1 may improve the effectiveness of immunotherapy by regulating immune infiltration.
Collapse
Affiliation(s)
- Bing Deng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaorui Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingfang Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zheng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian Zhu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junwei Shi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dian Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Depeng Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Li JW, Zhou J, Shi ZT, Li N, Zhou SC, Chang C. Sonographic Features of Triple-Negative Breast Carcinomas Are Correlated With mRNA-lncRNA Signatures and Risk of Tumor Recurrence. Front Oncol 2021; 10:587422. [PMID: 33542899 PMCID: PMC7851073 DOI: 10.3389/fonc.2020.587422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background To determine a correlation between mRNA and lncRNA signatures, sonographic features, and risk of recurrence in triple-negative breast cancers (TNBC). Methods We retrospectively reviewed the data from 114 TNBC patients having undergone transcriptome analysis. The risk of tumor recurrence was determined based on the correlation between transcriptome profiles and recurrence-free survival. Ultrasound (US) features were described according to the Breast Imaging Reporting and Data System. Multivariate logistic regression analysis determined the correlation between US features and risk of recurrence. The predictive value of sonographic features in determining tumor recurrence was analyzed using receiver operating characteristic curves. Results Three mRNAs (CHRDL1, FCGR1A, and RSAD2) and two lncRNAs (HIF1A-AS2 and AK124454) were correlated with recurrence-free survival in patients with TNBC. Among the three mRNAs, two were upregulated (FCGR1A and RSAD2) and one was downregulated (CHRDL1) in TNBCs. LncRNAs HIF1A-AS2 and AK124454 were upregulated in TNBCs. Based on these signatures, an integrated mRNA–lncRNA model was established using Cox regression analysis to determine the risk of tumor recurrence. Benign-like sonographic features, such as regular shape, circumscribed margin, posterior acoustic enhancement, and no calcifications, were associated with HIF1A-AS2 expression and high risk of tumor recurrence (P<0.05). Malignant-like features, such as irregular shape, uncircumscribed margin, no posterior acoustic enhancement, and calcifications, were correlated with CHRDL1 expression and low risk of tumor recurrence (P<0.05). Conclusions Sonographic features and mRNA–lncRNA signatures in TNBCs represent the risk of tumor recurrence. Taken together, US may be a promising technique in determining the prognosis of patients with TNBC.
Collapse
Affiliation(s)
- Jia-Wei Li
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Zhou
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhao-Ting Shi
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Li
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Chong Zhou
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cai Chang
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Ng KTP, Yeung OWH, Liu J, Li CX, Liu H, Liu XB, Qi X, Ma YY, Lam YF, Lau MY, Qiu WQ, Shiu HC, Lai MK, Lo CM, Man K. Clinical significance and functional role of transmembrane protein 47 (TMEM47) in chemoresistance of hepatocellular carcinoma. Int J Oncol 2020; 57:956-966. [PMID: 32945373 PMCID: PMC7473756 DOI: 10.3892/ijo.2020.5104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Chemoresistance is the main cause of chemotherapy failure in patients with hepatocellular carcinoma (HCC). The gene encoding transmembrane protein 47 (TMEM47) was previously identified to be significantly upregulated in HCC cell lines with acquired chemoresistance. The aim of the present study was to characterize the clinical significance and function of TMEM47 in HCC chemoresistance. The results demonstrated that the TMEM47 expression levels in the tumors of patients not responding to cisplatin-based transarterial chemoembolization (TACE) treatment was significantly higher compared with those in patients who responded to TACE treatment. Moreover, analyses from clinical samples and HCC cell lines indicated that TMEM47 expression may be upregulated in HCC in response to cisplatin treatment. Furthermore, the TMEM47 mRNA expression levels were positively correlated with the degree of cisplatin resistance of HCC cells. Overexpression of TMEM47 in HCC cells significantly promoted cisplatin resistance. The present study also demonstrated that targeted inhibition of TMEM47 could significantly reduce cisplatin resistance of cisplatin-resistant HCC cells via enhancing caspase-mediated apoptosis. In addition, targeted inhibition of TMEM47 enhanced the sensitivity of cisplatin-resistant cells to cisplatin via suppressing cisplatin-induced activation of the genes involved in drug efflux and metabolism. The present study also validated that TMEM47 expression was significantly correlated with multi-drug resistance-associated protein 1 in patients with HCC who received TACE treatment. In conclusion, the findings of the present study demonstrated that TMEM47 may be a useful biomarker for predicting the response to chemotherapy and a potential therapeutic target for overcoming HCC chemoresistance.
Collapse
Affiliation(s)
- Kevin Tak-Pan Ng
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Oscar Wai-Ho Yeung
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Jiang Liu
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Chang Xian Li
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Hui Liu
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Xiao Bing Liu
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Xiang Qi
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Yuen Yuen Ma
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Yin Fan Lam
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Matthew Yh Lau
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Wen Qi Qiu
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Hoi Chung Shiu
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Man Kit Lai
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Kwan Man
- Department of Surgery, The University of Hong Kong Shenzhen Hospital and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| |
Collapse
|
12
|
Gajos-Michniewicz A, Czyz M. WNT Signaling in Melanoma. Int J Mol Sci 2020; 21:E4852. [PMID: 32659938 PMCID: PMC7402324 DOI: 10.3390/ijms21144852] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
WNT-signaling controls important cellular processes throughout embryonic development and adult life, so any deregulation of this signaling can result in a wide range of pathologies, including cancer. WNT-signaling is classified into two categories: β-catenin-dependent signaling (canonical pathway) and β-catenin-independent signaling (non-canonical pathway), the latter can be further divided into WNT/planar cell polarity (PCP) and calcium pathways. WNT ligands are considered as unique directional growth factors that contribute to both cell proliferation and polarity. Origin of cancer can be diverse and therefore tissue-specific differences can be found in WNT-signaling between cancers, including specific mutations contributing to cancer development. This review focuses on the role of the WNT-signaling pathway in melanoma. The current view on the role of WNT-signaling in cancer immunity as well as a short summary of WNT pathway-related drugs under investigation are also provided.
Collapse
Affiliation(s)
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92–215 Lodz, Poland;
| |
Collapse
|
13
|
The miR-532-3p/Chrdl1 axis regulates the proliferation and migration of amniotic fluid-derived mesenchymal stromal cells. Biochem Biophys Res Commun 2020; 527:187-193. [PMID: 32446365 DOI: 10.1016/j.bbrc.2020.04.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/19/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Amniotic fluid-derived mesenchymal stromal cells (AFMSCs) are promising stem cells for regeneration medicine. However, AFMSCs isolated at different stages of pregnancy have different biological characteristics, and the therapeutic effects can differ in vivo and in vitro. The mechanisms underlying these differences have not been defined. METHODS Bioinformatics analysis of the AFMSC transcriptome identified Chrdl1 as one of the differentially expressed genes. We evaluated the effects of Chrdl1 overexpression or knockdown on the proliferation and migration of AFMSCs. Target prediction was performed using miRanda software to identify the upstream microRNA of Chrdl1. The interaction between Chrdl1 mRNA and its upstream microRNA was evaluated using a dual-luciferase reporter gene assay. RESULTS Chrdl1 was expressed at lower levels in AFMSCs derived from the early stages of pregnancy. It could suppress AFMSC proliferation and migration. miR-532-3p promoted AFMSC proliferation and migration by targeting the 3' UTR of Chrdl1 and downregulating its expression.
Collapse
|
14
|
Cai W, Ding X, Li J, Li Z. Methylation analysis highlights novel prognostic criteria in human-metastasized melanoma. J Cell Biochem 2019; 120:11990-12001. [PMID: 30861178 DOI: 10.1002/jcb.28484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Melanoma accounts for 90% of the deaths associated with cutaneous neoplasms, and the 5-year survival rate of patients with the advanced stage is about 20%. Many mechanisms are involved in melanoma progression, but dynamic epigenetic changes are likely to be critical contributors, especially for DNA methylation. However, we know little about the methylation events involved in melanoma lymph node metastasis (LNM), a deficit that is of particular concern because it has a growing incidence and mortality. To identify DNA methylated-associated changes involved in the formation of metastatic melanoma, we explored the different methylated genes (DMGs) between primary and LNM melanoma by Illumina Human Methylation 450 K BeadArray GSE44661. By integrating DNA methylation and messenger RNA expression data from The Cancer Genome Atlas database, we identified these DNA methylation biomarkers. Pathway analysis highlighted these DMGs, which were closely related to the carcinogenesis of melanoma, such as cell cycle regulation and RNA transcription process. Furthermore, according to the univariate and multivariate Cox regression analysis, we constructed a four-DMG prognostic signature model, which could precisely predict the outcome of melanoma in a more exact way. In summary, this four-DMG based risk score model successfully predicts the survival of melanoma. It is independent of other clinical characteristics and is good for prognosis prediction.
Collapse
Affiliation(s)
- Weiyang Cai
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoxia Ding
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Egger ME, Xiao D, Hao H, Kimbrough CW, Pan J, Rai SN, Cambon AC, Waigel SJ, Zacharias W, McMasters KM. Unique Genes in Tumor-Positive Sentinel Lymph Nodes Associated with Nonsentinel Lymph Node Metastases in Melanoma. Ann Surg Oncol 2018; 25:1296-1303. [PMID: 29497912 DOI: 10.1245/s10434-018-6377-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Current risk assessment tools to estimate the risk of nonsentinel lymph node metastases after completion lymphadenectomy for a positive sentinel lymph node (SLN) biopsy in cutaneous melanoma are based on clinical and pathologic factors. We identified a novel genetic signature that can predict non-SLN metastases in patients with cutaneous melanoma staged with a SLN biopsy. METHODS RNA was collected for tumor-positive SLNs in patients staged by SLN biopsy for cutaneous melanoma. All patients with a tumor-positive SLN biopsy underwent completion lymphadenectomy. A 1:10 case:control series of positive and negative non-SLN patients was analyzed by microarray and quantitative RT-PCR. Candidate differentially expressed genes were validated in a 1:3 case:control separate cohort of positive and negative non-SLN patients. RESULTS The 1:10 case:control discovery set consisted of 7 positive non-SLN cases matched to 70 negative non-SLN controls. The cases and controls were similar with regards to important clinicopathologic factors, such as gender, primary tumor site, age, ulceration, and thickness. Microarray and RT-PCR identified six potential differentially expressed genes for validation. In the 40-patient separate validation set, 10 positive non-SLN patients were matched to 30 negative non-SLN controls based on gender, ulceration, age, and thickness. Five of the six genes were differentially expressed. The five gene panel identified patients at low (7.1%) and high risk (66.7%) for non-SLN metastases. CONCLUSIONS A novel, non-SLN gene score based on differential expressed genes in a tumor-positive SLN can identify patients at high and low risk for non-SLN metastases.
Collapse
Affiliation(s)
- Michael E Egger
- Hiram C. Polk Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Deyi Xiao
- Hiram C. Polk Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Hongying Hao
- Hiram C. Polk Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Charles W Kimbrough
- Hiram C. Polk Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Jianmin Pan
- Biostatistics Shared Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Shesh N Rai
- Biostatistics Shared Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Alexander C Cambon
- Biostatistics Shared Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Sabine J Waigel
- University of Louisville Genomics Facility, Louisville, KY, USA
| | - Wolfgang Zacharias
- University of Louisville Genomics Facility, Louisville, KY, USA.,Departments of Medicine and Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Kelly M McMasters
- Hiram C. Polk Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
16
|
Weng S, Stoner SA, Zhang DE. Sex chromosome loss and the pseudoautosomal region genes in hematological malignancies. Oncotarget 2018; 7:72356-72372. [PMID: 27655702 PMCID: PMC5342167 DOI: 10.18632/oncotarget.12050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/07/2016] [Indexed: 11/25/2022] Open
Abstract
Cytogenetic aberrations, such as chromosomal translocations, aneuploidy, and amplifications, are frequently detected in hematological malignancies. For many of the common autosomal aberrations, the mechanisms underlying their roles in cancer development have been well-characterized. On the contrary, although loss of a sex chromosome is observed in a broad range of hematological malignancies, how it cooperates in disease development is less understood. Nevertheless, it has been postulated that tumor suppressor genes reside on the sex chromosomes. Although the X and Y sex chromosomes are highly divergent, the pseudoautosomal regions are homologous between both chromosomes. Here, we review what is currently known about the pseudoautosomal region genes in the hematological system. Additionally, we discuss implications for haploinsufficiency of critical pseudoautosomal region sex chromosome genes, driven by sex chromosome loss, in promoting hematological malignancies. Because mechanistic studies on disease development rely heavily on murine models, we also discuss the challenges and caveats of existing models, and propose alternatives for examining the involvement of pseudoautosomal region genes and loss of a sex chromosome in vivo. With the widespread detection of loss of a sex chromosome in different hematological malignances, the elucidation of the role of pseudoautosomal region genes in the development and progression of these diseases would be invaluable to the field.
Collapse
Affiliation(s)
- Stephanie Weng
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Stoner
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,Department of Pathology and Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Jiang YZ, Liu YR, Xu XE, Jin X, Hu X, Yu KD, Shao ZM. Transcriptome Analysis of Triple-Negative Breast Cancer Reveals an Integrated mRNA-lncRNA Signature with Predictive and Prognostic Value. Cancer Res 2016; 76:2105-14. [PMID: 26921339 DOI: 10.1158/0008-5472.can-15-3284] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/26/2016] [Indexed: 11/16/2022]
Abstract
While recognized as a generally aggressive disease, triple-negative breast cancer (TNBC) is highly diverse in different patients with variable outcomes. In this prospective observational study, we aimed to develop an RNA signature of TNBC patients to improve risk stratification and optimize the choice of adjuvant therapy. Transcriptome microarrays for 33 paired TNBC and adjacent normal breast tissue revealed tumor-specific mRNAs and long noncoding RNAs (lncRNA) that were associated with recurrence-free survival. Using the Cox regression model, we developed an integrated mRNA-lncRNA signature based on the mRNA species for FCGR1A, RSAD2, CHRDL1, and the lncRNA species for HIF1A-AS2 and AK124454 The prognostic and predictive accuracy of this signature was evaluated in a training set of 137 TNBC patients and then validated in a second independent set of 138 TNBC patients. In addition, we enrolled 82 TNBC patients who underwent taxane-based neoadjuvant chemotherapy (NCT) to further verify the predictive value of the signature. In both the training and validation sets, the integrated signature had better prognostic value than clinicopathologic parameters. We also confirmed the interaction between the administration of taxane-based NCT and different risk groups. In the NCT cohort, patients in the low-risk group were more likely to achieve pathologic complete remission after taxane-based NCT (P = 0.014). Functionally, we showed that HIF1A-AS2 and AK124454 promoted cell proliferation and invasion in TNBC cells and contributed there to paclitaxel resistance. Overall, our results established an integrated mRNA-lncRNA signature as a reliable tool to predict tumor recurrence and the benefit of taxane chemotherapy in TNBC, warranting further investigation in larger populations to help frame individualized treatments for TNBC patients. Cancer Res; 76(8); 2105-14. ©2016 AACR.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Rong Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-En Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
MicroRNA networks regulated by all-trans retinoic acid and Lapatinib control the growth, survival and motility of breast cancer cells. Oncotarget 2016; 6:13176-200. [PMID: 25961594 PMCID: PMC4537007 DOI: 10.18632/oncotarget.3759] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/04/2015] [Indexed: 12/31/2022] Open
Abstract
SKBR3-cells, characterized by ERBB2/RARA co-amplification, represent a subgroup of HER2+ breast-cancers sensitive to all-trans retinoic acid (ATRA) and Lapatinib. In this model, the two agents alone or in combination modulate the expression of 174 microRNAs (miRs). These miRs and predicted target-transcripts are organized in four interconnected modules (Module-1 to -4). Module-1 and Module-3 consist of ATRA/Lapatinib up-regulated and potentially anti-oncogenic miRs, while Module-2 contains ATRA/Lapatinib down-regulated and potentially pro-oncogenic miRs. Consistent with this, the expression levels of Module-1/-3 and Module-2 miRs are higher and lower, respectively, in normal mammary tissues relative to ductal-carcinoma-in-situ, invasive-ductal-carcinoma and metastases. This indicates associations between tumor-progression and the expression profiles of Module-1 to -3 miRs. Similar associations are observed with tumor proliferation-scores, staging, size and overall-survival using TCGA (The Cancer Genome Atlas) data. Forced expression of Module-1 miRs, (miR-29a-3p; miR-874-3p) inhibit SKBR3-cell growth and Module-3 miRs (miR-575; miR-1225-5p) reduce growth and motility. Module-2 miRs (miR-125a; miR-193; miR-210) increase SKBR3 cell growth, survival and motility. Some of these effects are of general significance, being replicated in other breast cancer cell lines representing the heterogeneity of this disease. Finally, our study demonstrates that HIPK2-kinase and the PLCXD1-phospholipase-C are novel targets of miR-193a-5p/miR-210-3p and miR-575/miR-1225-5p, respectively.
Collapse
|
19
|
Rengaraj D, Kwon WS, Pang MG. Bioinformatics Annotation of Human Y Chromosome-Encoded Protein Pathways and Interactions. J Proteome Res 2015; 14:3503-18. [PMID: 26279084 DOI: 10.1021/acs.jproteome.5b00491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We performed a comprehensive analysis of human Y chromosome-encoded proteins, their pathways, and their interactions using bioinformatics tools. From the NCBI annotation release 107 of human genome, we retrieved a total of 66 proteins encoded on Y chromosome. Most of the retrieved proteins were also matched with the proteins listed in the core databases of the Human Proteome Project including neXtProt, PeptideAtlas, and the Human Protein Atlas. When we examined the pathways of human Y-encoded proteins through KEGG database and Pathway Studio software, many of proteins fall into the categories related to cell signaling pathways. Using the STRING program, we found a total of 49 human Y-encoded proteins showing strong/medium interaction with each other. While using the Pathway studio software, we found that a total of 16 proteins interact with other chromosome-encoded proteins. In particular, the SRY protein interacted with 17 proteins encoded on other chromosomes. Additionally, we aligned the sequences of human Y-encoded proteins with the sequences of chimpanzee and mouse Y-encoded proteins using the NCBI BLAST program. This analysis resulted in a significant number of orthologous proteins between human, chimpanzee, and mouse. Collectively, our findings provide the scientific community with additional information on the human Y chromosome-encoded proteins.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-Do 456-756, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-Do 456-756, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-Do 456-756, Republic of Korea
| |
Collapse
|
20
|
Specific Biomarkers: Detection of Cancer Biomarkers Through High-Throughput Transcriptomics Data. Cognit Comput 2015. [DOI: 10.1007/s12559-015-9336-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Blumenberg M. Skinomics: past, present and future for diagnostic microarray studies in dermatology. Expert Rev Mol Diagn 2014; 13:885-94. [PMID: 24151852 DOI: 10.1586/14737159.2013.846827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Easily accessible, skin was among the first targets analyzed using 'omics' and dermatology embraced the approaches very early. Microarrays have been used to define disease markers, identify transcriptional changes and even trace the course of treatment. Melanoma and psoriasis have been explored using microarrays. Particularly noteworthy is the multinational mapping of psoriasis susceptibility loci. The transcriptional changes in psoriasis have been identified using hundreds of biopsies. Epidermal keratinocytes have been studied because they respond to UV light, infections, inflammatory and immunomodulating cytokines, toxins and so on. Epidermal differentiation genes are being characterized and are expressed in human epidermal stem cells. Exciting discoveries defining human skin microbiomes have opened a new field of research with great medical potential. Specific to dermatology, the non-invasive skin sampling for microarray studies, using tape stripping, has been developed; it promises to advance dermatology toward 'omics' techniques directly applicable to the personalized medicine of the future.
Collapse
Affiliation(s)
- Miroslav Blumenberg
- The R.O. Perelman Department of Dermatology, Department of Biochemistry and Molecular Pharmacology, the NYU Cancer Institute, NYU Langone Medical Center, NYU School of Medicine, 455 First Avenue, P.H.B. Room 874, New York NY 10016, USA
| |
Collapse
|
22
|
Berdiel-Acer M, Cuadras D, Díaz-Maroto NG, Sanjuan X, Serrano T, Berenguer A, Moreno V, Gonçalves-Ribeiro S, Salazar R, Villanueva A, Molleví DG. A monotonic and prognostic genomic signature from fibroblasts for colorectal cancer initiation, progression, and metastasis. Mol Cancer Res 2014; 12:1254-66. [PMID: 24829396 DOI: 10.1158/1541-7786.mcr-14-0121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
UNLABELLED The differential gene expression patterns between normal colonic fibroblasts (NCF), carcinoma-associated fibroblasts from primary tumors (CAF-PT), and CAFs from hepatic metastasis (CAF-LM) are hypothesized to be useful for predicting relapse in primary tumors. A transcriptomic profile of NCF (n = 9), CAF-PT (n = 14), and CAF-LM (n = 11) was derived. Prediction Analysis of Microarrays (PAM) was used to obtain molecular details for each fibroblast class, and differentially expressed transcripts were used to classify patients according to recurrence status. A number of transcripts (n = 277) were common to all three types of fibroblasts and whose expression level was sequentially deregulated according to the transition: NCF→CAF-PT→CAF-LM. Importantly, the gene signature was able to accurately classify patients with primary tumors according to their prognosis. This capacity was exploited to obtain a refined 19-gene classifier that predicted recurrence with high accuracy in two independent datasets of patients with colorectal cancer and correlates with fibroblast migratory potential. The prognostic power of this genomic signature is strong evidence of the link between the tumor-stroma microenvironment and cancer progression. Furthermore, the 19-gene classifier was able to identify low-risk patients very accurately, which is of particular importance for stage II patients, who would benefit from the omission of chemotherapy, especially T4N0 patients, who are clinically classified as being at high risk. IMPLICATIONS A defined stromal gene expression signature predicts relapse in patients with colorectal cancer.
Collapse
Affiliation(s)
- Mireia Berdiel-Acer
- Translational Research Laboratory, Department of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Catalonia, Spain
| | | | | | - Xavier Sanjuan
- Pathology Department, Hospital Universitari de Bellvitge-IDIBELL, IDIBELL, Barcelona; and
| | - Teresa Serrano
- Pathology Department, Hospital Universitari de Bellvitge-IDIBELL, IDIBELL, Barcelona; and
| | | | | | | | - Ramon Salazar
- Medical Oncology Department, Institut Català d'Oncologia-ICO
| | | | | |
Collapse
|
23
|
Genetics and epigenetics of cutaneous malignant melanoma: a concert out of tune. Biochim Biophys Acta Rev Cancer 2012; 1826:89-102. [PMID: 22503822 DOI: 10.1016/j.bbcan.2012.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 01/05/2023]
Abstract
Cutaneous malignant melanoma (CMM) is the most life-threatening neoplasm of the skin and is considered a major health problem as both incidence and mortality rates continue to rise. Once CMM has metastasized it becomes therapy-resistant and is an inevitably deadly disease. Understanding the molecular mechanisms that are involved in the initiation and progression of CMM is crucial for overcoming the commonly observed drug resistance as well as developing novel targeted treatment strategies. This molecular knowledge may further lead to the identification of clinically relevant biomarkers for early CMM detection, risk stratification, or prediction of response to therapy, altogether improving the clinical management of this disease. In this review we summarize the currently identified genetic and epigenetic alterations in CMM development. Although the genetic components underlying CMM are clearly emerging, a complete picture of the epigenetic alterations on DNA (DNA methylation), RNA (non-coding RNAs), and protein level (histone modifications, Polycomb group proteins, and chromatin remodeling) and the combinatorial interactions between these events is lacking. More detailed knowledge, however, is accumulating for genetic and epigenetic interactions in the aberrant regulation of the INK4b-ARF-INK4a and microphthalmia-associated transcription factor (MITF) loci. Importantly, we point out that it is this interplay of genetics and epigenetics that effectively leads to distorted gene expression patterns in CMM.
Collapse
|