1
|
Development and validation of a UPLC-MS/MS method for quantification of doxofylline and its metabolites in human plasma. J Pharm Biomed Anal 2019; 174:220-225. [DOI: 10.1016/j.jpba.2019.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
|
2
|
Li CL, Jiang X, Lu LQ, Xiao WJ, Wu XF. Cobalt(II)-Catalyzed Alkoxycarbonylation of Aliphatic Amines via C-N Bond Activation. Org Lett 2019; 21:6919-6923. [PMID: 31411892 DOI: 10.1021/acs.orglett.9b02534] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first cobalt-catalyzed deaminative alkoxycarbonylation reaction was described for the conversion of readily available primary alkyl amines to synthetically versatile esters with moderate to high yields. This transformation shows good functional group compatibility and can serve as a powerful tool for the modification of alkyl amine-containing complex natural products and drug molecules.
Collapse
Affiliation(s)
- Chong-Liang Li
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People's Republic of China.,Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xuan Jiang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Liang-Qiu Lu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People's Republic of China.,Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
3
|
Couto GK, Segatto NV, Oliveira TL, Seixas FK, Schachtschneider KM, Collares T. The Melding of Drug Screening Platforms for Melanoma. Front Oncol 2019; 9:512. [PMID: 31293965 PMCID: PMC6601395 DOI: 10.3389/fonc.2019.00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022] Open
Abstract
The global incidence of cancer is rising rapidly and continues to be one of the leading causes of death in the world. Melanoma deserves special attention since it represents one of the fastest growing types of cancer, with advanced metastatic forms presenting high mortality rates due to the development of drug resistance. The aim of this review is to evaluate how the screening of drugs and compounds for melanoma has been performed over the last seven decades. Thus, we performed literature searches to identify melanoma drug screening methods commonly used by research groups during this timeframe. In vitro and in vivo tests are essential for the development of new drugs; however, incorporation of in silico analyses increases the possibility of finding more suitable candidates for subsequent tests. In silico techniques, such as molecular docking, represent an important and necessary first step in the screening process. However, these techniques have not been widely used by research groups to date. Our research has shown that the vast majority of research groups still perform in vitro and in vivo tests, with emphasis on the use of in vitro enzymatic tests on melanoma cell lines such as SKMEL and in vivo tests using the B16 mouse model. We believe that the union of these three approaches (in silico, in vitro, and in vivo) is essential for improving the discovery and development of new molecules with potential antimelanoma action. This workflow would provide greater confidence and safety for preclinical trials, which will translate to more successful clinical trials and improve the translatability of new melanoma treatments into clinical practice while minimizing the unnecessary use of laboratory animals under the principles of the 3R's.
Collapse
Affiliation(s)
- Gabriela Klein Couto
- Research Group in Molecular and Cellular Oncology, Postgraduate Program in Biochemistry and Bioprospecting, Cancer Biotechnology Laboratory, Center for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Natália Vieira Segatto
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Thaís Larré Oliveira
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Fabiana Kömmling Seixas
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Tiago Collares
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
4
|
Domvri K, Zarogoulidis K, Zogas N, Zarogoulidis P, Petanidis S, Porpodis K, Kioseoglou E, Hohenforst-Schmidt W. Potential synergistic effect of phosphodiesterase inhibitors with chemotherapy in lung cancer. J Cancer 2017; 8:3648-3656. [PMID: 29151951 PMCID: PMC5688917 DOI: 10.7150/jca.21783] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Purpose: Lung cancer remains the leading cause of cancer-related deaths worldwide and novel therapeutic approaches targeting crucial pathways are urgently needed to improve its treatment. Differentiation-based therapeutics (Methylxanthines) and phosphodiesterase inhibitors (type 4 and 5), have been implicated in cancer treatment. Our objectives were to capture any potential anti-tumor effect of these drug combinations with chemotherapeutic agents in vitro. Methods: Theophylline as Methylxanthines, Roflumilast as phosphodiesterase type 4 (PDE4) inhibitor and Sildenafil as phosphodiesterase type 5 (PDE5) inhibitor are the drugs that we combined with the chemotherapeutic agents (Docetaxel, Cisplatin and Carboplatin) in vitro. Lung cancer cell lines (NCI-H1048-Small cell lung cancer-SCLC, A549- Non-small cell lung cancer-NSCLC) were purchased from ATCC LGC Standards. At indicated time-point, following 24h and 48h incubation, cell viability and apoptosis were measured with Annexin V staining by flow cytometry. Statistical analysis was performed by GraphPad Prism. Results: In SCLC, following 48h incubation, platinum combinations of carboplatin with roflumilast and sildenafil (p<0.001) and carboplatin with theophylline and sildenafil showed increased apoptosis when compared to carboplatin alone. Concerning the combinations of cisplatin, when combined with roflumilast, theophylline and sildenafil appeared with increased apoptosis of that alone (p<0.001, 24h and 48h incubation). In NSCLC, the 24h incubation was not enough to induce satisfactory apoptosis, except for the combination of cisplatin with roflumilast and theophylline (p<0.05) when compared to cisplatin alone. However, following 48h incubation, carboplatin plus sildenafil, carboplatin plus sildenafil, theophylline and roflumilast showed more cytotoxicity when compared to carboplatin alone (p<0.001). Docetaxel combinations showed no statistically significant results. Conclusion: The synergistic effect of PDE inhibitors with platinum-based agents has been demonstrated in lung cancer. Our suggestion is that these combinations could be used as additive and maintenance treatment in combination to antineoplastic agents in lung cancer patients.
Collapse
Affiliation(s)
- Kalliopi Domvri
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Zarogoulidis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Zogas
- Gene and Cell Therapy Center, Hematology Department-Bone Marrow Transplantation Unit, “G. Papanikolaou” General Hospital, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Savvas Petanidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efrosini Kioseoglou
- Gene and Cell Therapy Center, Hematology Department-Bone Marrow Transplantation Unit, “G. Papanikolaou” General Hospital, Thessaloniki, Greece
| | - Wolfgang Hohenforst-Schmidt
- Sana Clinic Group Franken, Department of Cardiology / Pulmonology / Intensive Care / Nephrology, ''Hof'' Clinics, University of Erlangen, Hof, Germany
| |
Collapse
|
5
|
Chang YL, Hsu YJ, Chen Y, Wang YW, Huang SM. Theophylline exhibits anti-cancer activity via suppressing SRSF3 in cervical and breast cancer cell lines. Oncotarget 2017; 8:101461-101474. [PMID: 29254178 PMCID: PMC5731888 DOI: 10.18632/oncotarget.21464] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022] Open
Abstract
Caffeine, theophylline, and theobromine are the most well-known members of methylxanthines. Caffeine-induced serine/arginine-rich splicing factor 2, SRSF2, and SRSF3 are required for the alternative splicing of a subset of cancer-associated genes. However, it remains to be investigated whether and how theophylline and theobromine as well as caffeine exert their antitumor effects through mediating the alternative splicing process. Here, we reveal that theophylline down-regulated SRSF3 expression and switched p53 from alpha into a beta isoform as caffeine did in HeLa and MCF-7 cells via the reverse-transcriptase polymerase chain reaction and Western blot analysis. Further functional studies show that theophylline induced cellular apoptosis, senescence, and decreased colony formation. Interestingly, theophylline had a suppressive effect on cellular proliferation, whereas caffeine enhanced cellular proliferation rates via the 5-bromo-2-deoxyuridine analysis. Theophylline and caffeine had no effect on MCF-10A cells, which is a normal breast cell line. Our results provide an insight that theophylline as well as caffeine could be repurposed as antitumor leading compounds via the downregulation of splicing factor SRSF3 and its target genes.
Collapse
Affiliation(s)
- Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Juei Hsu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ying Chen
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yi-Wen Wang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
6
|
|
7
|
Kapoor S. Theophylline and its direct anti-neoplastic effects. Respir Med 2016; 119:e1. [DOI: 10.1016/j.rmed.2013.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 01/27/2013] [Indexed: 10/26/2022]
|
8
|
Li JZ, Ke Y, Misra HP, Trush MA, Li YR, Zhu H, Jia Z. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent. Toxicol Appl Pharmacol 2014; 281:285-93. [PMID: 25448047 DOI: 10.1016/j.taap.2014.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/12/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022]
Abstract
UNLABELLED Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16-F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone, a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16-F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ~80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16-F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells.
Collapse
Affiliation(s)
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | | | - Michael A Trush
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Y Robert Li
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA; Virginia Tech-Wake Forest University SBES, Blacksburg, VA, USA; Department of Biology, University of North Carolina at Greensboro, NC, USA
| | - Hong Zhu
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA.
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, NC, USA.
| |
Collapse
|
9
|
Mylonaki E, Manika K, Zarogoulidis P, Domvri K, Voutsas V, Zarogoulidis K, Mourelatos D. In vivo synergistic cytogenetic effects of aminophylline on lymphocyte cultures from patients with lung cancer undergoing chemotherapy. Mutat Res 2012; 740:1-5. [PMID: 23116732 DOI: 10.1016/j.mrfmmm.2012.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/20/2012] [Accepted: 10/19/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND The anti-cancer and cytogenetic effects of aminophylline (AM) have been demonstrated in several clinical trials. The aim of the present study was to investigate the in vivo cytogenetic effects of AM in newly diagnosed patients with small cell (SCLC) and non-small cell lung cancer (NSCLC), receiving chemotherapy for the first time. METHODS Sister chromatid exchanges (SCEs) and proliferation rate index (PRI) were evaluated in peripheral blood lymphocyte cultures from six patients with SCLC and six patients with NSCLC after the in vitro addition of AM and after the in vivo administration of AM in patients receiving chemotherapy. RESULTS The in vitro addition of AM significantly increased SCEs only in SCLC patients (p<0.001). The in vivo administration of AM after chemotherapy increased SCEs in both cancer types (SCLC: p<0.001, NSCLC: p=0.003) and this increase was synergistic, the rates of SCEs in the presence of AM were higher than the expected SCE values if the increases above background for chemotherapy and AM were independent and additive (SCLC: p<0.001, NSCLC: p=0.008). Although in both groups of patients cell division delays were observed after the combined chemotherapy plus in vivo AM treatment, the correlation between the magnitude of the SCE response and the PRI depression was not statistically significant (p>0.05). CONCLUSIONS These observations suggest that AM enhances the results of concurrently administered chemotherapy by synergistically increasing its cytogenetic effects in patients with lung cancer.
Collapse
Affiliation(s)
- Effie Mylonaki
- Pulmonary Department, Aristotle University of Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|