1
|
Massucco S, Fossa P, Fiorillo C, Faedo E, Gemelli C, Barresi R, Ripolone M, Patrone S, Gaudio A, Mandich P, Gotta F, Baratto S, Traverso M, Pisciotta L, Zaottini F, Camera M, Scarsi E, Grandis M. Case report: A single novel calpain 3 gene variant associated with mild myopathy. Front Genet 2024; 15:1437859. [PMID: 39703226 PMCID: PMC11655484 DOI: 10.3389/fgene.2024.1437859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Recessively inherited limb-girdle muscular dystrophy type 1, caused by mutations in the calpain 3 gene, is the most common limb-girdle muscular dystrophy worldwide. Recently, cases of autosomal dominant calpainopathy have been described. A man was referred to our neurological outpatient clinic at the age of 54 for persistent hyperCKemia (>1000 U/l) associated with muscle fatigue and myalgia. Clinical examination revealed mild proximal weakness in the lower limbs. His brother exhibited a moderate increase in serum creatine kinase levels (up to 2000 U/l) without other signs of myopathy. Their father experienced slowly progressive lower limb weakness after the age of 50. The calpain 3 variant c.1478G>A (p.Arg493Gln) in the heterozygous state was identified in both brothers. In silico modeling studies predict that this substitution may disrupt protein folding. This represents the first description of the heterozygous p.Arg493Gln calpain 3 variant as a potential cause of mild calpainopathy.
Collapse
Affiliation(s)
- Sara Massucco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Genova, Italy
| | - Chiara Fiorillo
- Paediatric Neurology and Neuromuscular Disorders Unit, University of Genoa and IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Elena Faedo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
| | | | | | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Patrone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
| | - Andrea Gaudio
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Fabio Gotta
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Monica Traverso
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Livia Pisciotta
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine (DiMI), School of Medical and Pharmaceutical Sciences, University of Genoa, Genova, Italy
| | | | - Mattia Camera
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
| | - Elena Scarsi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
| | - Marina Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
2
|
Valls A, Gutiérrez-Gutiérrez G, Martínez A, Ruiz-Roldán C, Camaño P, López de Munain A, Sáenz A. The CAPN3 p.Lys 254del variant is not always associated with dominant CAPN3-related muscular dystrophy. Muscle Nerve 2024; 69:472-476. [PMID: 38299438 DOI: 10.1002/mus.28045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION/AIMS Limb-girdle muscular dystrophy R1 (LGMDR1) calpain 3-related usually presents as a recessively transmitted weakness of proximal limb-girdle muscles due to pathogenic variants in the CAPN3 gene. Pathogenic variants in this gene have also been found in patients with an autosomal dominantly inherited transmission pattern (LGMDD4). The mechanism underlying this difference in transmission patterns has not yet been elucidated. Camptocormia, progressive limb weakness, myalgia, back pain, and increased CK levels are common clinical features associated with dominant forms. The p.Lys254del pathogenic variant was associated with camptocormia in two LGMDD4 families. This study aimed to present carriers found in recessively transmitted LGMDR1 families bearing the p.Lys254del variant that do not show muscle weakness. METHODS DNA sequencing was performed on exon 5 of CAPN3 in family members to establish the carrier status of the pathogenic variant. They were evaluated clinically and MRI was performed when available. RESULTS Two families presented with the p.Lys254del pathogenic variant in a homozygous or compound heterozygous state. Family members carrying only the pathogenic variant in the heterozygous state did not demonstrate the myopathic characteristics described in dominant patients. Camptocormia and other severe clinical symptoms were not observed. DISCUSSION We conclude that the p.Lys254del pathogenic variant per se cannot be solely responsible for camptocormia in dominant patients. Other undisclosed factors may regulate the phenotype associated with the dominant inheritance pattern in CAPN3 pathogenic variant carriers.
Collapse
Affiliation(s)
- Andrea Valls
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastian, Spain
- CIBERNED, CIBER, Spanish Ministry of Science & Innovation, Carlos III Health Institute, Madrid, Spain
| | - Gerardo Gutiérrez-Gutiérrez
- CIBERNED, CIBER, Spanish Ministry of Science & Innovation, Carlos III Health Institute, Madrid, Spain
- Department of Neurology, Hospital Universitario Infanta Sofía, Madrid, Spain
- Neuromuscular Diseases Unit, Universidad Europea de Madrid, Madrid, Spain
| | | | - Cristina Ruiz-Roldán
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastian, Spain
- CIBERNED, CIBER, Spanish Ministry of Science & Innovation, Carlos III Health Institute, Madrid, Spain
| | - Pilar Camaño
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastian, Spain
- CIBERNED, CIBER, Spanish Ministry of Science & Innovation, Carlos III Health Institute, Madrid, Spain
- Molecular Diagnostics Platform, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Adolfo López de Munain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastian, Spain
- CIBERNED, CIBER, Spanish Ministry of Science & Innovation, Carlos III Health Institute, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organisation, Osakidetza, San Sebastian, Spain
- Department of Neurosciences, University of the Basque Country UPV-EHU, San Sebastian, Spain
- Faculty of Medicine, University of Deusto, Bilbao, Spain
| | - Amets Sáenz
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastian, Spain
- CIBERNED, CIBER, Spanish Ministry of Science & Innovation, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
3
|
Audhya IF, Cheung A, Szabo SM, Flint E, Weihl CC, Gooch KL. Progression to Loss of Ambulation Among Patients with Autosomal Recessive Limb-girdle Muscular Dystrophy: A Systematic Review. J Neuromuscul Dis 2022; 9:477-492. [PMID: 35527561 PMCID: PMC9398075 DOI: 10.3233/jnd-210771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background The impact of age at autosomal recessive limb girdle muscular dystrophy (LGMDR) onset on progression to loss of ambulation (LOA) has not been well established, particularly by subtype. Objectives: To describe the characteristics of patients with adult-, late childhood-, and early childhood-onset LGMDR by subtype and characterize the frequency and timing of LOA. Methods: A systematic review was conducted in MEDLINE, Embase and the Cochrane library. Frequency and timing of LOA in patients with LGMDR1, LGMDR2/Miyoshi myopathy (MM), LGMDR3-6, LGMDR9, and LGMDR12 were synthesized from published data. Results: In 195 studies, 695 (43.4%) patients had adult-, 532 (33.2%) had late childhood-, and 376 (23.5%) had early childhood-onset of disease across subtypes among those with a reported age at onset (n = 1,603); distribution of age at onset varied between subtypes. Among patients with LOA (n = 228), adult-onset disease was uncommon in LGMDR3-6 (14%) and frequent in LGMDR2/MM (42%); LGMDR3-6 cases with LOA primarily had early childhood-onset (74%). Mean (standard deviation [SD]) time to LOA varied between subtypes and was shortest for patients with early childhood-onset LGMDR9 (12.0 [4.9] years, n = 19) and LGMDR3-6 (12.3 [10.7], n = 56) and longest for those with late childhood-onset LGMDR2/MM (21.4 [11.5], n = 36). Conclusions: This review illustrated that patients with early childhood-onset disease tend to have faster progression to LOA than those with late childhood- or adult-onset disease, particularly in LGMDR9. These findings provide a greater understanding of progression to LOA by LGMDR subtype, which may help inform clinical trial design and provide a basis for natural history studies.
Collapse
Affiliation(s)
| | | | | | - Emma Flint
- Broadstreet HEOR, Vancouver, BC, V6A 1A4 Canada
| | - Conrad C Weihl
- Washington University School of Medicine, St.Louis, MO, USA
| | | |
Collapse
|
4
|
Tobaly D, Laforêt P, Stojkovic T, Behin A, Petit FM, Barp A, Bello L, Carlier P, Carlier RY. Whole-body muscle MRI in McArdle disease. Neuromuscul Disord 2021; 32:5-14. [PMID: 34711478 DOI: 10.1016/j.nmd.2021.07.397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/14/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
This study describes muscle involvement on whole-body MRI (WB-MRI) scans at different stages of McArdle disease. WB-MRI was performed on fifteen genetically confirmed McArdle disease patients between ages 25 to 80. The degree of fatty substitution was scored for 60 muscles using Mercuri's classification. All patients reported an intolerance to exercise and episodes of rhabdomyolysis. A mild fixed muscle weakness was observed in 13/15 patients with neck flexor weakness in 7/15 cases, and proximal muscle weakness in 6/15 cases. A moderate scapular winging was observed in five patients. A careful review of the MRI scans, as well as hierarchical clustering of patients by Mercuri scores, pointed out recurrent muscle changes particularly in the subscapularis, anterior serratus, erector spinae and quadratus femoris muscles. WB-MRI imaging provides clinically relevant information and is a useful tool to orient toward the diagnosis of McArdle disease.
Collapse
Affiliation(s)
- David Tobaly
- APHP, Service de Radiologie GH Université Paris-Saclay DMU Smart Imaging, Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, Garches 94400, France.
| | - Pascal Laforêt
- APHP, Service de Radiologie GH Université Paris-Saclay DMU Smart Imaging, Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, Garches 94400, France; AP-HP, Service de Neurologie, GH Université Paris-Saclay, DMU Neuro-Handicap, Hôpital Raymond-Poincaré, Garches, France; Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, France
| | | | - Anthony Behin
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, France
| | - Francois Michael Petit
- APHP, Laboratoire de Génétique Moléculaire, Université Paris Saclay, Hôpital Antoine Béclère, Clamart 92140, France
| | - Andrea Barp
- Neurosciences Department (DNS), University of Padova, Padova, Italy
| | - Luca Bello
- Neurosciences Department (DNS), University of Padova, Padova, Italy
| | - Pierre Carlier
- AIM & CEA NMR Laboratory, Institute of Myology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Robert-Yves Carlier
- APHP, Service de Radiologie GH Université Paris-Saclay DMU Smart Imaging, Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, Garches 94400, France; Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, France; UMR 1179, Université Versailles Saint Quentin en Yvelines, Paris Saclay, France
| |
Collapse
|
5
|
Late-onset camptocormia caused by a heterozygous in-frame CAPN3 deletion. Neuromuscul Disord 2021; 31:450-455. [PMID: 33741228 DOI: 10.1016/j.nmd.2021.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/09/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
Camptocormia is defined by a pathological involuntary flexion of the thoracic and lumbar spine that is fully reducible in the supine position. Although originally described as a manifestation of conversion disorder, it is more commonly caused by a wide range of neurological diseases, in particular movement and neuromuscular disorders. We describe here a rare case of late onset camptocormia caused by autosomal dominant calpainopathy due to a heterozygous in-frame deletion in CAPN3 leading to loss of a single lysin amino acid in the catalytic domain of calpain-3. Creatine kinase levels, electromyography, and thigh muscle MRI were normal. Muscle biopsy did not show lobulated fibers and calpain-3 protein expression was not decreased, but in vitro functional assays showed impaired proteolytic function of. Lys254del CAPN3. Autosomal dominant calpainopathy should be considered in the differential diagnosis of late onset camptocormia and unexplained paravertebral myopathies even in presence of normal creatine kinase levels, and in absence of lobulated fibers, of decreased calpain-3 protein expression, and of muscle limb involvement.
Collapse
|
6
|
Vissing J, Dahlqvist JR, Roudaut C, Poupiot J, Richard I, Duno M, Krag T. A single c.1715G>C calpain 3 gene variant causes dominant calpainopathy with loss of calpain 3 expression and activity. Hum Mutat 2020; 41:1507-1513. [DOI: 10.1002/humu.24066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/21/2023]
Affiliation(s)
- John Vissing
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Julia R. Dahlqvist
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Carinne Roudaut
- INTEGRARE, Genethon, Inserm Université d'Évry, Université Paris‐Saclay Evry France
| | - Jerome Poupiot
- INTEGRARE, Genethon, Inserm Université d'Évry, Université Paris‐Saclay Evry France
| | - Isabelle Richard
- INTEGRARE, Genethon, Inserm Université d'Évry, Université Paris‐Saclay Evry France
| | - Morten Duno
- Department of Clinical Genetics, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Thomas Krag
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet University of Copenhagen Copenhagen Denmark
| |
Collapse
|
7
|
Cerino M, Campana-Salort E, Salvi A, Cintas P, Renard D, Juntas Morales R, Tard C, Leturcq F, Stojkovic T, Bonello-Palot N, Gorokhova S, Mortreux J, Maues De Paula A, Lévy N, Pouget J, Cossée M, Bartoli M, Krahn M, Attarian S. Novel CAPN3 variant associated with an autosomal dominant calpainopathy. Neuropathol Appl Neurobiol 2020; 46:564-578. [PMID: 32342993 DOI: 10.1111/nan.12624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/09/2020] [Indexed: 12/15/2022]
Abstract
AIMS The most common autosomal recessive limb girdle muscular dystrophy is associated with the CAPN3 gene. The exclusively recessive inheritance of this disorder has been recently challenged by the description of the recurrent variants, c.643_663del21 [p.(Ser215_Gly221del)] and c.598_612del15 [p.(Phe200_Leu204del)], associated with autosomal dominant inheritance. Our objective was to confirm the existence of autosomal dominant calpainopathies. METHODS Through our activity as one of the reference centres for genetic diagnosis of calpainopathies in France and the resulting collaborations through the French National Network for Rare Neuromuscular Diseases (FILNEMUS), we identified four families harbouring the same CAPN3 heterozygous variant with supposedly autosomal dominant inheritance. RESULTS We identified a novel dominantly inherited CAPN3 variant, c.1333G>A [p.(Gly445Arg)] in 14 affected patients from four unrelated families. The complementary phenotypic, functional and genetic findings correlate with an autosomal dominant inheritance in these families, emphasizing the existence of this novel transmission mode for calpainopathies. The mild phenotype associated with these autosomal dominant cases widens the phenotypic spectrum of calpainopathies and should therefore be considered in clinical practice. CONCLUSIONS We confirm the existence of autosomal dominant calpainopathies as an entity beyond the cases related to the in-frame deletions c.643_663del21 and c.598_612del15, with the identification of a novel dominantly inherited and well-documented CAPN3 missense variant, c.1333G>A [p.(Gly445Arg)]. In addition to the consequences for genetic counselling, the confirmation of an autosomal dominant transmission mode for calpainopathies underlines the importance of re-assessing other myopathies for which the inheritance is considered as strictly autosomal recessive.
Collapse
Affiliation(s)
- M Cerino
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France.,APHM, Laboratoire de Biochimie, Hôpital de la Conception, Marseille, France
| | - E Campana-Salort
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, centre de référence des maladies neuromusculaires et de la SLA, CHU La Timone, Marseille, France
| | - A Salvi
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France
| | - P Cintas
- Centre de référence de pathologie neuromusculaires, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - D Renard
- Service de Neurologie, CHU de Nîmes, Univ. Montpellier, Nîmes, France
| | - R Juntas Morales
- Laboratoire de Génétique de Maladies Rares, Université de Montpellier, Montpellier, France.,Service de Neurologie, CHU de Montpellier, Montpellier, France
| | - C Tard
- U1172, Service de Neurologie, CHU de Lille, Lille, France.,Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - F Leturcq
- APHP, Laboratoire de génétique et biologie moléculaires, HUPC Cochin, Paris, France
| | - T Stojkovic
- APHP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Hôpital Pitié-Salpêtrière, Paris, France
| | - N Bonello-Palot
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France
| | - S Gorokhova
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France
| | - J Mortreux
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France
| | - A Maues De Paula
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Service d'anatomie pathologique et de neuropathologie, CHU La Timone, Marseille, France
| | - N Lévy
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France
| | - J Pouget
- APHM, centre de référence des maladies neuromusculaires et de la SLA, CHU La Timone, Marseille, France
| | - M Cossée
- Laboratoire de Génétique de Maladies Rares, Université de Montpellier, Montpellier, France.,Laboratoire de Génétique moléculaire, CHRU Montpellier, Montpellier, France
| | - M Bartoli
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France
| | - M Krahn
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France
| | - S Attarian
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, centre de référence des maladies neuromusculaires et de la SLA, CHU La Timone, Marseille, France
| |
Collapse
|
8
|
Ali F, Matsumoto JY, Hassan A. Camptocormia: Etiology, diagnosis, and treatment response. Neurol Clin Pract 2018; 8:240-248. [PMID: 30105164 DOI: 10.1212/cpj.0000000000000453] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/14/2018] [Indexed: 01/10/2023]
Abstract
Background We sought to determine the etiologies, diagnostic testing, and management of a retrospective cohort of patients with camptocormia evaluated at a single center. Methods We reviewed medical records of all adult patients evaluated at Mayo Clinic Rochester with a diagnosis of camptocormia from 2000 to 2014. Demographic and clinical data were abstracted and analyzed. Results There were 276 patients (58.0% male), with mean age at presentation of 68.6 (±12.7) years. An etiology was identified in 98.2%. The most common etiologies were idiopathic Parkinson disease (22.5%), idiopathic axial myopathy (14.1%), and degenerative joint disease without fixed deformity (13.0%). We also identified several rare causes of camptocormia. Investigations included spine imaging, needle and surface EMG, and muscle biopsy. Most patients received physical therapy and orthotic support with limited benefit. Limited improvement of camptocormia was seen where a treatable etiology was identified. Conclusions An etiology can be identified in almost all cases of camptocormia. Most cases are due to 3 common disorders: Parkinson disease, axial myopathy, and degenerative joint disease. A diagnostic and treatment algorithm is proposed.
Collapse
Affiliation(s)
- Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN
| | | | - Anhar Hassan
- Department of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
9
|
Sáenz A, López de Munain A. Dominant LGMD2A: alternative diagnosis or hidden digenism? Brain 2016; 140:e7. [PMID: 27818383 DOI: 10.1093/brain/aww281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Amets Sáenz
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Adolfo López de Munain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastian, Spain .,CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV-EHU, San Sebastian, Spain.,Department of Neurology. University Donostia Hospital, San Sebastian, Spain
| |
Collapse
|
10
|
Margraf N, Wrede A, Deuschl G, Schulz-Schaeffer W. Pathophysiological Concepts and Treatment of Camptocormia. JOURNAL OF PARKINSON'S DISEASE 2016; 6:485-501. [PMID: 27314757 PMCID: PMC5008234 DOI: 10.3233/jpd-160836] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 12/12/2022]
Abstract
Camptocormia is a disabling pathological, non-fixed, forward bending of the trunk. The clinical definition using only the bending angle is insufficient; it should include the subjectively perceived inability to stand upright, occurrence of back pain, typical individual complaints, and need for walking aids and compensatory signs (e.g. back-swept wing sign). Due to the heterogeneous etiologies of camptocormia a broad diagnostic approach is necessary. Camptocormia is most frequently encountered in movement disorders (PD and dystonia) and muscles diseases (myositis and myopathy, mainly facio-scapulo-humeral muscular dystrophy (FSHD)). The main diagnostic aim is to discover the etiology by looking for signs of the underlying disease in the neurological examination, EMG, muscle MRI and possibly biopsy. PD and probably myositic camptocormia can be divided into an acute and a chronic stage according to the duration of camptocormia and the findings in the short time inversion recovery (STIR) and T1 sequences of paravertebral muscle MRI. There is no established treatment of camptocormia resulting from any etiology. Case series suggest that deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) is effective in the acute but not the chronic stage of PD camptocormia. In chronic stages with degenerated muscles, treatment options are limited to orthoses, walking aids, physiotherapy and pain therapy. In acute myositic camptocormia an escalation strategy with different immunosuppressive drugs is recommended. In dystonic camptocormia, as in dystonia in general, case reports have shown botulinum toxin and DBS of the globus pallidus internus (GPi-DBS) to be effective. Camptocormia in connection with primary myopathies should be treated according to the underlying illness.
Collapse
Affiliation(s)
- N.G. Margraf
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - A. Wrede
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - G. Deuschl
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | | |
Collapse
|
11
|
Vissing J, Barresi R, Witting N, Van Ghelue M, Gammelgaard L, Bindoff LA, Straub V, Lochmüller H, Hudson J, Wahl CM, Arnardottir S, Dahlbom K, Jonsrud C, Duno M. A heterozygous 21-bp deletion inCAPN3causes dominantly inherited limb girdle muscular dystrophy. Brain 2016; 139:2154-63. [DOI: 10.1093/brain/aww133] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/30/2016] [Indexed: 01/20/2023] Open
|
12
|
Witting N, Andersen LK, Vissing J. Axial myopathy: an overlooked feature of muscle diseases. Brain 2015; 139:13-22. [DOI: 10.1093/brain/awv332] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022] Open
|
13
|
Lozowska D, Ringel SP, Winder TL, Liu J, Liewluck T. Anticholinesterase Therapy Worsening Head Drop and Limb Weakness Due to a Novel DOK7 Mutation. J Clin Neuromuscul Dis 2015; 17:72-77. [PMID: 26583494 DOI: 10.1097/cnd.0000000000000095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dok-7 myasthenia is an autosomal recessive congenital myasthenic syndrome due to DOK7 mutations. Anticholinesterase therapy is ineffective and may worsen the weakness in patients with Dok-7 myasthenia or few other forms of congenital myasthenic syndromes. We describe a 31-year-old man previously diagnosed with seronegative myasthenia gravis. Repetitive stimulation of the right spinal accessory nerve showed 51% decrement. Needle electromyography revealed myopathic changes in clinically affected muscles. Muscle biopsy was normal. The patient was referred to us for worsening weakness after taking pyridostigmine. We searched for DOK7 mutations and identified compound heterozygous mutations of a common c.1124_1127dupTGCC mutation and a novel splice site mutation, c.772+2_+4delinsCCGGGCAGGCGGGCA. Discontinuation of pyridostigmine improved weakness. He further regained strength with oral albuterol therapy and decrement was reduced to 25%. Worsening of symptoms with anticholinesterase therapy in patients with "seronegative myasthenia gravis" should prompt clinicians to consider a possibility of congenital myasthenic syndromes to avoid unnecessary use of immunosuppressive therapy. Patients with Dok-7 myasthenia respond well to oral albuterol treatment.
Collapse
Affiliation(s)
- Dominika Lozowska
- *Department of Neurology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; †Prevention Genetics, Marshfield, WI; and ‡Invitae Corporation, San Francisco, CA
| | | | | | | | | |
Collapse
|
14
|
Ghosh PS, Milone M. Camptocormia as presenting manifestation of a spectrum of myopathic disorders. Muscle Nerve 2015; 52:1008-12. [DOI: 10.1002/mus.24689] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/29/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Partha S. Ghosh
- Department of Neurology; Boston Children's Hospital; Boston Massachusetts USA
- Department of Neurology; Mayo Clinic; 200 First Street SW Rochester Minnesota 55905 USA
| | - Margherita Milone
- Department of Neurology; Mayo Clinic; 200 First Street SW Rochester Minnesota 55905 USA
| |
Collapse
|
15
|
Liewluck T, Milone M, Mauermann ML, Castro-Couch M, Cerhan JH, Murthy NS. A novel VCP
mutation underlies scapuloperoneal muscular dystrophy and dropped head syndrome featuring lobulated fibers. Muscle Nerve 2014; 50:295-9. [DOI: 10.1002/mus.24290] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Teerin Liewluck
- Department of Neurology; University of Colorado School of Medicine, Anschutz Medical Campus; 12631 East 17th Avenue Aurora Colorado USA
| | - Margherita Milone
- Department of Neurology; Mayo Clinic College of Medicine; Rochester Minnesota USA
| | | | - Melissa Castro-Couch
- Department of Psychiatry and Psychology; Mayo Clinic College of Medicine; Rochester Minnesota USA
| | - Jane H. Cerhan
- Department of Psychiatry and Psychology; Mayo Clinic College of Medicine; Rochester Minnesota USA
| | - Naveen S. Murthy
- Division of Musculoskeletal Radiology; Department of Radiology; Mayo Clinic College of Medicine; Rochester Minnesota USA
| |
Collapse
|