1
|
Alharbi KS, Nadeem MS, Afzal O, Alzarea SI, Altamimi ASA, Almalki WH, Mubeen B, Iftikhar S, Shah L, Kazmi I. Gingerol, a Natural Antioxidant, Attenuates Hyperglycemia and Downstream Complications. Metabolites 2022; 12:metabo12121274. [PMID: 36557312 PMCID: PMC9782005 DOI: 10.3390/metabo12121274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperglycemia is seen in approximately 68 percent of patients admitted to a medical intensive care unit (ICU). In many acute circumstances, such as myocardial infarction, brain, injury and stroke, it is an independent predictor of mortality. Hyperglycemia is induced by a mix of genetic, environmental, and immunologic variables in people with type 1 diabetes. These factors cause pancreatic beta cell death and insulin insufficiency. Insulin resistance and irregular insulin production cause hyperglycemia in type 2 diabetes patients. Hyperglycemia activates a number of complicated interconnected metabolic processes. Hyperglycemia is a major contributor to the onset and progression of diabetes' secondary complications such as neuropathy, nephropathy, retinopathy, cataracts, periodontitis, and bone and joint issues. Studies on the health benefits of ginger and its constituent's impact on hyperglycemia and related disorders have been conducted and gingerol proved to be a potential pharmaceutically active constituent of ginger (Zingiber officinale) that has been shown to lower blood sugar levels, because it possesses antioxidant properties and it functions as an antioxidant in the complicated biochemical process that causes hyperglycemia to be activated. Gingerol not only helps in treating hyperglycemia but also shows effectivity against diseases related to it, such as cardiopathy, kidney failure, vision impairments, bone and joint problems, and teeth and gum infections. Moreover, fresh ginger has various gingerol analogues, with 6-gingerol being the most abundant. However, it is necessary to investigate the efficacy of its other analogues against hyperglycemia and associated disorders at various concentrations in order to determine the appropriate dose for treating these conditions.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.S.N.); (I.K.)
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of Punjab, Lahore 54000, Pakistan
| | - Luqman Shah
- Department of Biochemistry, Faculty of Science, Hazara University, Mansehra 21300, Pakistan
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.S.N.); (I.K.)
| |
Collapse
|
2
|
Poole AP, Finnis ME, Anstey J, Bellomo R, Bihari S, Birardar V, Doherty S, Eastwood G, Finfer S, French CJ, Heller S, Horowitz M, Kar P, Kruger PS, Maiden MJ, Mårtensson J, McArthur CJ, McGuinness SP, Secombe PJ, Tobin AE, Udy AA, Young PJ, Deane AM. The Effect of a Liberal Approach to Glucose Control in Critically Ill Patients with Type 2 Diabetes: A multicenter, parallel-group, open-label, randomized clinical trial. Am J Respir Crit Care Med 2022; 206:874-882. [PMID: 35608484 DOI: 10.1164/rccm.202202-0329oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale Blood glucose concentrations affect outcomes in critically ill patients but the optimal target blood glucose range in those with type 2 diabetes is unknown. Objective To evaluate the effects of a 'liberal' approach to targeted blood glucose range during intensive care unit (ICU) admission. Methods This mutlicenter, parallel-group, open-label, randomized clinical trial included 419 adult patients with type 2 diabetes expected to be in the ICU on at least three consecutive days. In the intervention group intravenous insulin was commenced at a blood glucose >252 mg/dL and titrated to a target range of 180 to 252 mg/dL. In the comparator group insulin was commenced at a blood glucose >180 mg/dL and titrated to a target range of 108 to 180 mg/dL. The primary outcome was incident hypoglycemia (<72 mg/dL). Secondary outcomes included glucose metrics and clinical outcomes. Main Results At least one episode of hypoglycemia occurred in 10 of 210 (5%) patients assigned the intervention and 38 of 209 (18%) patients assigned the comparator (incident rate ratio: 0.21 (95% CI, 0.09 to 0.49); P<0.001). Those assigned the intervention had greater blood glucose concentrations (daily mean, minimum, maximum), less glucose variability and less relative hypoglycaemia (P<0.001 for all comparisons). By day 90, 62 of 210 (29.5%) in the intervention and 52 of 209 (24.9%) in the comparator group had died (absolute difference 4.6 percentage points (95%CI, -3.9 to 13.2%); P=0.29). Conclusions A liberal approach to blood glucose targets reduced incident hypoglycemia but did not improve patient-centered outcomes. Clinical trial registration available at www.anzctr.org.au, ID: ACTRN12616001135404.
Collapse
Affiliation(s)
- Alexis P Poole
- The University of Adelaide Discipline of Acute Care Medicine, 242032, Adelaide, South Australia, Australia.,Intensive Care Unit, Royal Adelaide Hospital, Adelaide, Adelaide, Australia.,Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Mark E Finnis
- Royal Adelaide Hospital, Department of Critical Care Services, Adelaide, South Australia, Australia.,University of Adelaide, Discipline of Acute Care Medicine, Adelaide, South Australia, Australia
| | - James Anstey
- Saint Vincent's Hospital Melbourne, 60078, Department of Intensive Care, Fitzroy, Victoria, Australia
| | | | - Shailesh Bihari
- Flinders Medical Centre and Flinders University, Department of Intensive Care Medicine, Bedford park, South Australia, Australia
| | - Vishwanath Birardar
- The University of Adelaide Discipline of Acute Care Medicine, 242032, Adelaide, South Australia, Australia.,Lyell McEwin Hospital, 3187, Intensive Care Unit, Elizabeth Vale, South Australia, Australia
| | - Sarah Doherty
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Glenn Eastwood
- Austin hospital, Intensive care unit, Heidelgerg, Victoria, Australia
| | - Simon Finfer
- University of Sydney, Intensive Care, St. Leonards, New South Wales, Australia
| | - Craig J French
- Western Health, Victoria, Intensive Care Unit, Melbourne, Victoria, Australia
| | - Simon Heller
- Clinical Diabetes, Endocrinology and Metabolism, University of Sheffield, Sheffield, United Kingdom of Great Britain and Northern Ireland
| | - Michael Horowitz
- The University of Adelaide Adelaide Medical School, 110466, Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia
| | - Palash Kar
- The University of Adelaide Discipline of Acute Care Medicine, 242032, Adelaide, South Australia, Australia.,Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Peter S Kruger
- Princess Alexandra Hospital, Intensive Care Unit, Brisbane, Queensland, Australia.,University of Queensland, Critical Care, Endocrinology and Metabolism Research Unit, Brisbane, Queensland, Australia
| | - Matthew J Maiden
- Royal Adelaide Hospital, Intensive Care Unit, Adelaide, South Australia, Australia.,University of Adelaide, Discipline of Acute Care Medicine, Adelaide, South Australia, Australia
| | - Johan Mårtensson
- Karolinska Institutet Department of Physiology and Pharmacology, 111126, Stockholm, Sweden.,Karolinska University Hospital, 59562, Perioperative Medicine and Intensive Care, Stockholm, Sweden
| | | | - Shay P McGuinness
- Auckland District Health Board, Cardiothoracic and Vascular ICU, Aucklanad, New Zealand
| | - Paul J Secombe
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.,Department of Intensive Care, Alice Springs Hospital, Alice Springs, Australia
| | - Antony E Tobin
- The University of Melbourne, Melbourne Medical School, Department of Critical Care, Melbourne, Victoria, Australia.,Department of Intensive Care, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Andrew A Udy
- Monash University, School of Public Health and Preventive Medicine, Melbourne, Victoria, Australia
| | - Paul J Young
- Wellington Hospital, Intensive Care Unit, Wellington, New Zealand.,Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Adam M Deane
- The University of Melbourne, 2281, Centre for Integrated Critical Care , Melbourne, Victoria, Australia.,Royal Melbourne Hospital, 90134, Intensive Care Unit, Melbourne, Victoria, Australia.,Royal Melbourne Hospital, 90134, Department of Medicine, Melbourne, Victoria, Australia;
| | | |
Collapse
|
3
|
Ma H, Yu G, Wang Z, Zhou P, Lv W. Association between dysglycemia and mortality by diabetes status and risk factors of dysglycemia in critically ill patients: a retrospective study. Acta Diabetol 2022; 59:461-470. [PMID: 34761326 PMCID: PMC8917030 DOI: 10.1007/s00592-021-01818-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
AIMS Dysglycemia, including the three domains hyperglycemia, hypoglycemia, and increased glycemic variability (GV), is associated with high mortality among critically ill patients. However, this association differs by diabetes status, and reports in this regard are limited. This study aimed to evaluate the associations between the three dysglycemia domains and mortality in critically ill patients by diabetes status and determined the contributing factors for dysglycemia. METHODS This retrospective study included 958 critically ill patients (admitted to the ICU) with or without DM. Dysglycemia was defined as abnormality of any of the three dimensions. We evaluated the effects of the three domains of glucose control on mortality using binary logistic regression and then adjusted for confounders. The associations between dysglycemia and other variables were investigated using cumulative logistic regression analysis. RESULT GV independently and similarly affected mortality in both groups after adjustment for confounders (DM: odds ratio [OR], 1.05; 95% confidence interval [CI]: 1.03-1.08; p <0.001; non-DM: OR, 1.07; 95% CI, 1.03-1.11; p = 0.002). Hypoglycemia was strongly associated with ICU mortality among patients without DM (3.12; 1.76-5.53; p <0.001) and less so among those with DM (1.18; 0.49-2.83; p = 0.72). Hyperglycemia was non-significantly associated with mortality in both groups. However, the effects of dysglycemia seemed cumulative. The factors contributing to dysglycemia included disease severity, insulin treatment, glucocorticoid use, serum albumin level, total parenteral nutrition, duration of diabetes, elevated procalcitonin level, and need for mechanical ventilation and renal replacement therapy. CONCLUSION The association between the three dimensions of dysglycemia and mortality varied by diabetes status. Dysglycemia in critical patients is associated with excess mortality; however, glucose management in patients should be specific to the patient's need considering the diabetes status and broader dimensions. The identified factors for dysglycemia could be used for risk assessment in glucose management requirement in critically ill patients, which may improve clinical outcomes.
Collapse
Affiliation(s)
- Haoming Ma
- School of Nursing, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Guo Yu
- School of Nursing, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Ziwen Wang
- School of Nursing, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Peiru Zhou
- Health Management Centre, The First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Tianhe District, Guangzhou City, Guangdong Province, China.
| | - Weitao Lv
- Division of Critical Care, The First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Tianhe District, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
5
|
Mamtani M, Athavale AM, Abraham M, Vernik J, Amarah AR, Ruiz JP, Joshi AJ, Itteera M, Zhukovski SD, Madaiah RP, White BC, Hart P, Kulkarni H. Association of hyperglycaemia with hospital mortality in nondiabetic COVID-19 patients: A cohort study. DIABETES & METABOLISM 2021; 47:101254. [PMID: 33781926 PMCID: PMC7994287 DOI: 10.1016/j.diabet.2021.101254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023]
Abstract
Objective Diabetes is a known risk factor for mortality in Coronavirus disease 2019 (COVID-19) patients. Our objective was to identify prevalence of hyperglycaemia in COVID-19 patients with and without prior diabetes and quantify its association with COVID-19 disease course. Research design and methods This observational cohort study included all consecutive COVID-19 patients admitted to John H Stroger Jr. Hospital, Chicago, IL from March 15, 2020 to May 3, 2020 and followed till May 15, 2020. The primary outcome was hospital mortality, and the studied predictor was hyperglycaemia [any blood glucose ≥7.78 mmol/L (140 mg/dL) during hospitalization]. Results Of the 403 COVID-19 patients studied, 51 (12.7%) died; 335 (83.1%) were discharged while 17 (4%) were still in hospital. Hyperglycaemia occurred in 228 (56.6%) patients; 83 of these hyperglycaemic patients (36.4%) had no prior history of diabetes. Compared to the reference group no-diabetes/no-hyperglycaemia patients the no-diabetes/hyperglycaemia patients showed higher mortality [1.8% versus 20.5%, adjusted odds ratio 21.94 (95% confidence interval 4.04–119.0), P < 0.001]; improved prediction of death (P = 0.01) and faster progression to death (P < 0.01). Hyperglycaemia within the first 24 and 48 h was also significantly associated with mortality (odds ratio 2.15 and 3.31, respectively). Conclusions Hyperglycaemia without prior diabetes was common (20.6% of hospitalized COVID-19 patients) and was associated with an increased risk of and faster progression to death. Development of hyperglycaemia in COVID-19 patients who do not have diabetes is an early indicator of progressive disease.
Collapse
Affiliation(s)
- M Mamtani
- M&H Research, LLC, San Antonio, Texas, USA
| | - A M Athavale
- Division of Nephrology, Department of Medicine, Cook County Health, Chicago, Illinois, USA
| | - M Abraham
- Division of Nephrology, Department of Medicine, Cook County Health, Chicago, Illinois, USA
| | - J Vernik
- Division of Nephrology, Department of Medicine, Cook County Health, Chicago, Illinois, USA
| | - A R Amarah
- Division of Nephrology, Department of Medicine, Cook County Health, Chicago, Illinois, USA
| | - J P Ruiz
- Division of Nephrology, Department of Medicine, Cook County Health, Chicago, Illinois, USA
| | - A J Joshi
- Division of Nephrology, Department of Medicine, Cook County Health, Chicago, Illinois, USA
| | - M Itteera
- Division of Nephrology, Department of Medicine, Cook County Health, Chicago, Illinois, USA
| | | | - R P Madaiah
- Cerner Corporation, Kansas City, Missouri, USA
| | - B C White
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - P Hart
- Division of Nephrology, Department of Medicine, Cook County Health, Chicago, Illinois, USA
| | - H Kulkarni
- M&H Research, LLC, San Antonio, Texas, USA.
| |
Collapse
|