1
|
Lau P, Shen M, Ma F, Chen Y, Zhang J, Su J, Chen X, Liu H. A Bayesian network meta-analysis of comparison of cancer therapeutic vaccines for melanoma. J Eur Acad Dermatol Venereol 2021; 35:1976-1986. [PMID: 34077578 PMCID: PMC8518424 DOI: 10.1111/jdv.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/30/2021] [Indexed: 12/01/2022]
Abstract
Several approaches to active immunotherapy for melanoma, including peptide-based vaccines (PVs), autologous tumour cell vaccines (TCVs), allogeneic TCVs and autologous dendritic cell vaccines (DCVs), have been investigated in clinical trials. However, comprehensive evidence comparing these interventions remains unavailable. The objective of this study was to expand previous work to compare and rank the immunotherapeutic strategies for melanoma in terms of overall survival and toxic effects with a Bayesian network meta-analysis. Methodologically, we performed a network meta-analysis of head-to-head randomized controlled trials comparing and ranking cancer vaccine approaches for patients with melanoma. PubMed, MEDLINE, Embase, the Cochrane Central Register of Controlled Trials, the WHO International Clinical Trials Registry Platform and ClinicalTrials.gov were searched up to 31 July 2020. We estimated summary hazard ratios for death and risk ratios for toxicity. The effects of the underlying prognostic variable on survival benefits were examined by meta-regression. We performed subgroup analysis for the outcomes based on metastatic categories. Overall, we identified 4776 citations, of which 15 head-to-head randomized controlled trials (3162 participants) were included in the analysis. In terms of efficacy, allogeneic tumour cell vaccines plus immunotherapy adjuvants, peptide-based vaccines plus immunotherapy adjuvants and standard therapy were more effective than peptide vaccines. The proportion of women was inversely associated with mortality risk. For safety, all treatments were inferior to allogeneic tumour cell vaccines except for allogeneic tumour cell vaccines plus chemotherapy. Peptide vaccines plus immunotherapy adjuvants led to an increased risk of adverse events compared to allogeneic tumour cell vaccines plus immunotherapy adjuvants. These results suggest that allogeneic TCV and autologous DCV are better than standard therapy. PV plus immune modulators are the most effective strategy among all comparable strategies but is associated with increased toxicity. Any combination regimens for cancer therapeutic vaccines need to be balanced between risk and benefit profiles.
Collapse
Affiliation(s)
- P. Lau
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaHunanChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaHunanChina
| | - M. Shen
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaHunanChina
| | - F. Ma
- Department of Health Management CenterXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Y. Chen
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - J. Zhang
- Department of DermatologyShenzhen People’s HospitalThe Second Clinical Medical CollegeThe First Affiliated HospitalJinan UniversitySouthern University of Science and TechnologyShenzhenGuangdongChina
| | - J. Su
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaHunanChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaHunanChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
- Research Center of Molecular MetabolomicsXiangya HospitalCentral South UniversityChangshaChina
| | - X. Chen
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaHunanChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
- Research Center of Molecular MetabolomicsXiangya HospitalCentral South UniversityChangshaChina
| | - H. Liu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaHunanChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaHunanChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
- Research Center of Molecular MetabolomicsXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
2
|
Dias JNR, André AS, Aguiar SI, Gil S, Tavares L, Aires-da-Silva F. Immunotherapeutic Strategies for Canine Lymphoma: Changing the Odds Against Non-Hodgkin Lymphoma. Front Vet Sci 2021; 8:621758. [PMID: 34513964 PMCID: PMC8427286 DOI: 10.3389/fvets.2021.621758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
The new era of immune-oncology has brought complexities and challenges that emphasize the need to identify new strategies and models to develop successful and cost-effective therapies. The inclusion of a canine model in the drug development of cancer immunotherapies is being widely recognized as a valid solution to overcome several hurdles associated with conventional preclinical models. Driven by the success of immunotherapies in the treatment of human non-Hodgkin lymphoma (NHL) and by the remarkable similarities of canine NHL to its human counterpart, canine NHL has been one of the main focus of comparative research. Under the present review, we summarize a general overview of the challenges and prospects of today's cancer immunotherapies and the role that comparative medicine might play in solving the limitations brought by this rapidly expanding field. The state of art of both human and canine NHL and the rationale behind the use of the canine model to bridge the translational gap between murine preclinical studies and human clinical trials are addressed. Finally, a review of currently available immunotherapies for canine NHL is described, highlighting the potential of these therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | - Frederico Aires-da-Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
| |
Collapse
|
3
|
Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov 2020; 19:635-652. [PMID: 32764681 DOI: 10.1038/s41573-020-0074-8] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Mobilizing antitumour immunity through vaccination potentially constitutes a powerful anticancer strategy but has not yet provided robust clinical benefits in large patient populations. Although major hurdles still exist, we believe that currently available strategies for vaccines that target dendritic cells or use them to present antitumour antigens could be integrated into existing clinical practice using prime-boost approaches. In the priming phase, these approaches capitalize on either standard treatment modalities to trigger in situ vaccination and release tumour antigens or vaccination with dendritic cells loaded with tumour lysates or patient-specific neoantigens. In a second boost phase, personalized synthetic vaccines specifically boost T cells that were triggered during the priming phase. This immunotherapy approach has been enabled by the substantial recent improvements in dendritic cell vaccines. In this Perspective, we discuss these improvements, highlight how the prime-boost approach can be translated into clinical practice and provide solutions for various anticipated hurdles.
Collapse
Affiliation(s)
- Alexandre Harari
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michele Graciotti
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Sönmez MG, Sönmez LÖ. New treatment modalities with vaccine therapy in renal cell carcinoma. Urol Ann 2019; 11:119-125. [PMID: 31040593 PMCID: PMC6476201 DOI: 10.4103/ua.ua_166_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of implementing vaccine therapy is to activate immune response against malignant cells by overcoming the tolerance triggered by the tumor. These treatments are effective using the immune response against cancer. Not every type of cancer is suitable for vaccine therapies. For a vaccine therapy to be implemented, cancer should be immunogenic and contain tissue-specific proteins, should have a slow progression, and treatments should be feasible. For that reason, studies regarding urological cancers are mostly focused on the kidneys and the prostate. Vaccine therapies used in renal cell carcinoma (RCC) can be categorized under the following titles: autologous tumor cells, dendritic cells, genetically modified tumor cells, and protein/peptide. Although there are old studies on the implementation of vaccine therapies in RCC, researches have only been intensified recently. In addition to their effective potential for lengthening general survival, decreasing tumor burden and cancer development in long term, vaccine treatments are especially effective in metastatic RCC patients. We think that vaccine treatments would be applied more in near future since RCC are immunogenic. In this compilation, we will discuss vaccine therapies used in RCC, which urologists are not so familiar with, in the light of the up-to-date literature.
Collapse
Affiliation(s)
- Mehmet Giray Sönmez
- Department of Urology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Leyla Öztürk Sönmez
- Department of Physiology, Selcuklu Medical School, Selcuk University, Konya, Turkey
| |
Collapse
|
5
|
Unverzagt S, Moldenhauer I, Nothacker M, Roßmeißl D, Hadjinicolaou AV, Peinemann F, Greco F, Seliger B. Immunotherapy for metastatic renal cell carcinoma. Cochrane Database Syst Rev 2017; 5:CD011673. [PMID: 28504837 PMCID: PMC6484451 DOI: 10.1002/14651858.cd011673.pub2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Since the mid-2000s, the field of metastatic renal cell carcinoma (mRCC) has experienced a paradigm shift from non-specific therapy with broad-acting cytokines to specific regimens, which directly target the cancer, the tumour microenvironment, or both.Current guidelines recommend targeted therapies with agents such as sunitinib, pazopanib or temsirolimus (for people with poor prognosis) as the standard of care for first-line treatment of people with mRCC and mention non-specific cytokines as an alternative option for selected patients.In November 2015, nivolumab, a checkpoint inhibitor directed against programmed death-1 (PD-1), was approved as the first specific immunotherapeutic agent as second-line therapy in previously treated mRCC patients. OBJECTIVES To assess the effects of immunotherapies either alone or in combination with standard targeted therapies for the treatment of metastatic renal cell carcinoma and their efficacy to maximize patient benefit. SEARCH METHODS We searched the Cochrane Library, MEDLINE (Ovid), Embase (Ovid), ISI Web of Science and registers of ongoing clinical trials in November 2016 without language restrictions. We scanned reference lists and contacted experts in the field to obtain further information. SELECTION CRITERIA We included randomized controlled trials (RCTs) and quasi-RCTs with or without blinding involving people with mRCC. DATA COLLECTION AND ANALYSIS We collected and analyzed studies according to the published protocol. Summary statistics for the primary endpoints were risk ratios (RRs) and mean differences (MD) with their 95% confidence intervals (CIs). We rated the quality of evidence using GRADE methodology and summarized the quality and magnitude of relative and absolute effects for each primary outcome in our 'Summary of findings' tables. MAIN RESULTS We identified eight studies with 4732 eligible participants and an additional 13 ongoing studies. We categorized studies into comparisons, all against standard therapy accordingly as first-line (five comparisons) or second-line therapy (one comparison) for mRCC.Interferon (IFN)-α monotherapy probably increases one-year overall mortality compared to standard targeted therapies with temsirolimus or sunitinib (RR 1.30, 95% CI 1.13 to 1.51; 2 studies; 1166 participants; moderate-quality evidence), may lead to similar quality of life (QoL) (e.g. MD -5.58 points, 95% CI -7.25 to -3.91 for Functional Assessment of Cancer - General (FACT-G); 1 study; 730 participants; low-quality evidence) and may slightly increase the incidence of adverse events (AEs) grade 3 or greater (RR 1.17, 95% CI 1.03 to 1.32; 1 study; 408 participants; low-quality evidence).There is probably no difference between IFN-α plus temsirolimus and temsirolimus alone for one-year overall mortality (RR 1.13, 95% CI 0.95 to 1.34; 1 study; 419 participants; moderate-quality evidence), but the incidence of AEs of 3 or greater may be increased (RR 1.30, 95% CI 1.17 to 1.45; 1 study; 416 participants; low-quality evidence). There was no information on QoL.IFN-α alone may slightly increase one-year overall mortality compared to IFN-α plus bevacizumab (RR 1.17, 95% CI 1.00 to 1.36; 2 studies; 1381 participants; low-quality evidence). This effect is probably accompanied by a lower incidence of AEs of grade 3 or greater (RR 0.77, 95% CI 0.71 to 0.84; 2 studies; 1350 participants; moderate-quality evidence). QoL could not be evaluated due to insufficient data.Treatment with IFN-α plus bevacizumab or standard targeted therapy (sunitinib) may lead to similar one-year overall mortality (RR 0.37, 95% CI 0.13 to 1.08; 1 study; 83 participants; low-quality evidence) and AEs of grade 3 or greater (RR 1.18, 95% CI 0.85 to 1.62; 1 study; 82 participants; low-quality evidence). QoL could not be evaluated due to insufficient data.Treatment with vaccines (e.g. MVA-5T4 or IMA901) or standard therapy may lead to similar one-year overall mortality (RR 1.10, 95% CI 0.91 to 1.32; low-quality evidence) and AEs of grade 3 or greater (RR 1.16, 95% CI 0.97 to 1.39; 2 studies; 1065 participants; low-quality evidence). QoL could not be evaluated due to insufficient data.In previously treated patients, targeted immunotherapy (nivolumab) probably reduces one-year overall mortality compared to standard targeted therapy with everolimus (RR 0.70, 95% CI 0.56 to 0.87; 1 study; 821 participants; moderate-quality evidence), probably improves QoL (e.g. RR 1.51, 95% CI 1.28 to 1.78 for clinically relevant improvement of the FACT-Kidney Symptom Index Disease Related Symptoms (FKSI-DRS); 1 study, 704 participants; moderate-quality evidence) and probably reduces the incidence of AEs grade 3 or greater (RR 0.51, 95% CI 0.40 to 0.65; 1 study; 803 participants; moderate-quality evidence). AUTHORS' CONCLUSIONS Evidence of moderate quality demonstrates that IFN-α monotherapy increases mortality compared to standard targeted therapies alone, whereas there is no difference if IFN is combined with standard targeted therapies. Evidence of low quality demonstrates that QoL is worse with IFN alone and that severe AEs are increased with IFN alone or in combination. There is low-quality evidence that IFN-α alone increases mortality but moderate-quality evidence on decreased AEs compared to IFN-α plus bevacizumab. Low-quality evidence shows no difference for IFN-α plus bevacizumab compared to sunitinib with respect to mortality and severe AEs. Low-quality evidence demonstrates no difference of vaccine treatment compared to standard targeted therapies in mortality and AEs, whereas there is moderate-quality evidence that targeted immunotherapies reduce mortality and AEs and improve QoL.
Collapse
Affiliation(s)
- Susanne Unverzagt
- Martin Luther University Halle‐WittenbergInstitute of Medical Epidemiology, Biostatistics and InformaticsMagdeburge Straße 8Halle/SaaleGermany06097
| | - Ines Moldenhauer
- Martin Luther University Halle‐WittenbergGartenstadtstrasse 22Halle/SaaleGermany06126
| | | | - Dorothea Roßmeißl
- Martin Luther University Halle‐WittenbergMedical FacultyHoher Weg 6Halle/SaaleGermany06120
| | - Andreas V Hadjinicolaou
- University of OxfordHuman Immunology Unit, Institute of Molecular Medicine, Radcliffe Department of
MedicineMerton College, Merton StreetOxfordUKOX1 4JD
| | - Frank Peinemann
- Children's Hospital, University of ColognePediatric Oncology and HematologyKerpener Str. 62CologneGermany50937
| | - Francesco Greco
- Martin Luther University Halle‐WittenbergDepartment of Urology and Renal TransplantationErnst‐Grube‐Strasse 40Halle/SaaleGermany06120
| | - Barbara Seliger
- Martin Luther University Halle‐WittenbergInstitute of Medical ImmunologyHalle/SaaleGermany
| |
Collapse
|
6
|
Eggermont LJ, Paulis LE, Tel J, Figdor CG. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol 2014; 32:456-65. [PMID: 24998519 PMCID: PMC4154451 DOI: 10.1016/j.tibtech.2014.06.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 01/07/2023]
Abstract
Active anti-cancer immune responses depend on efficient presentation of tumor antigens and co-stimulatory signals by antigen-presenting cells (APCs). Therapy with autologous natural APCs is costly and time-consuming and results in variable outcomes in clinical trials. Therefore, development of artificial APCs (aAPCs) has attracted significant interest as an alternative. We discuss the characteristics of various types of acellular aAPCs, and their clinical potential in cancer immunotherapy. The size, shape, and ligand mobility of aAPCs and their presentation of different immunological signals can all have significant effects on cytotoxic T cell activation. Novel optimized aAPCs, combining carefully tuned properties, may lead to efficient immunomodulation and improved clinical responses in cancer immunotherapy.
Collapse
Affiliation(s)
- Loek J Eggermont
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Leonie E Paulis
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jurjen Tel
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Jha G, Miller JS, Curtsinger JM, Zhang Y, Mescher MF, Dudek AZ. Randomized phase II study of IL-2 with or without an allogeneic large multivalent immunogen vaccine for the treatment of stage IV melanoma. Am J Clin Oncol 2014; 37:261-5. [PMID: 23241505 PMCID: PMC5547569 DOI: 10.1097/coc.0b013e318277d5c8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To evaluate the activity of interleukin-2 (IL-2) in combination with allogeneic large multivalent immunogen (LMI) vaccine, prepared by immobilizing SK23-CD80 melanoma cell line plasma membrane on 5-μm-diameter silica beads, in patients with melanoma. METHODS Twenty-one patients with metastatic melanoma were randomly assigned to an IL-2 alone control group or an IL-2 plus LMI vaccine treatment group. The primary objective was to evaluate the progression-free survival (PFS) of each group. Secondary clinical objectives included median overall survival (OS) and 1- and 2-year rates of OS. RESULTS Treatment was very well tolerated. Median PFS was no different between the treatment arm (2.20 mo) and control arm (1.95 mo). Median OS was also similar for the treatment arm (11.89 mo) and control arm (9.97 mo). CONCLUSIONS This study failed to demonstrate that allogeneic LMI vaccine and low-dose IL-2 improved survival in patients with melanoma as compared with low-dose IL-2 alone.
Collapse
Affiliation(s)
- Gautam Jha
- Division of Hematology, Oncology and Transplantation
| | | | - Julie M. Curtsinger
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota
| | - Yan Zhang
- University of Minnesota Comprehensive Cancer Center, Minneapolis, MN
| | - Mathew F. Mescher
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota
| | | |
Collapse
|
8
|
|
9
|
Litterman AJ, Dudek AZ, Largaespada DA. Alkylating chemotherapy may exert a uniquely deleterious effect upon neo-antigen-targeting anticancer vaccination. Oncoimmunology 2013; 2:e26294. [PMID: 24251080 PMCID: PMC3827073 DOI: 10.4161/onci.26294] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/15/2022] Open
Abstract
Alkylating chemotherapy exerts both antineoplastic and immunostimulatory effects. However, in addition to depleting regulatory T cells (Treg), alkylating agents also mediate a long lasting antiproliferative effect on responder lymphocytes. Our recent findings indicate that this antiproliferative effect profoundly impairs vaccination-induced immune responses, especially in the case of vaccines that target specific tumor-associated neo-antigens that do not require Treg depletion.
Collapse
Affiliation(s)
- Adam J Litterman
- Masonic Cancer Center; University of Minnesota; Minneapolis; MN USA ; Brain Tumor Program; University of Minnesota; Minneapolis, MN USA ; Department of Pediatrics; University of Minnesota; Minneapolis, MN USA
| | | | | |
Collapse
|
10
|
Litterman AJ, Zellmer DM, Grinnen KL, Hunt MA, Dudek AZ, Salazar AM, Ohlfest JR. Profound impairment of adaptive immune responses by alkylating chemotherapy. THE JOURNAL OF IMMUNOLOGY 2013; 190:6259-68. [PMID: 23686484 DOI: 10.4049/jimmunol.1203539] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Overall, cancer vaccines have had a record of failure as an adjuvant therapy for malignancies that are treated with alkylating chemotherapy, and the contribution of standard treatment to that failure remains unclear. Vaccines aim to harness the proliferative potential of the immune system by expanding a small number of tumor-specific lymphocytes into a large number of antitumor effectors. Clinical trials are often conducted after treatment with alkylating chemotherapy, given either as standard therapy or for immunomodulatory effect. There is mounting evidence for synergy between chemotherapy and adoptive immunotherapy or vaccination against self-Ags; however, the impact of chemotherapy on lymphocytes primed against tumor neoantigens remains poorly defined. We report that clinically relevant dosages of standard alkylating chemotherapies, such as temozolomide and cyclophosphamide, significantly inhibit the proliferative abilities of lymphocytes in mice. This proliferative impairment was long-lasting and led to quantitative and qualitative defects in B and T cell responses to neoantigen vaccines. High-affinity responder lymphocytes receiving the strongest proliferative signals from vaccines experienced the greatest DNA damage responses, skewing the response toward lower-affinity responders with inferior functional characteristics. Together, these defects lead to inferior efficacy and overall survival in murine tumor models treated by neoantigen vaccines. These results suggest that clinical protocols for cancer vaccines should be designed to avoid exposing responder lymphocytes to alkylating chemotherapy.
Collapse
Affiliation(s)
- Adam J Litterman
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Yoshimura K, Uemura H. Role of vaccine therapy for renal cell carcinoma in the era of targeted therapy. Int J Urol 2013; 20:744-55. [PMID: 23521119 DOI: 10.1111/iju.12147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/21/2013] [Indexed: 12/28/2022]
Abstract
Renal cell carcinoma is the most common malignant tumor originating from the kidney. Compared with other solid tumors, it does not respond to traditional management modalities, such as chemotherapy and radiotherapy. However, it is well known that renal cell carcinoma represents one of the most immune-responsive cancers and several immunotherapeutic strategies have been investigated in the management of renal cell carcinoma with variable degrees of success. The development of immunotherapy with α-interferon or high-dose interleukin-2 is the best established treatment, and is associated with durable disease control. Although the lack of defined antigens in renal cell carcinoma has hindered more specific vaccine development, research regarding vaccination therapy has been of special interest for the treatment of renal cell carcinoma for more than 30 years. At present, there are three types of cell-based vaccines in renal cell carcinoma treatment: autologous tumor-cell vaccines, genetically modified tumor vaccines and dendritic cell-based vaccines. A further type is peptide-based vaccination with tumor-associated antigens as possible targets, such as carbonic anhydrase IX, survivin and telomerase that are overexpressed in renal cell carcinoma. In the present article, we review data from completed clinical trials of vaccine therapy, and discuss future trials to assess the current knowledge and future role of vaccine therapy for renal cell carcinoma in the era of recently developed targeted therapy.
Collapse
Affiliation(s)
- Kazuhiro Yoshimura
- Department of Urology, Faculty of Medicine, Kinki University, Osaka, Japan.
| | | |
Collapse
|
12
|
Kroeze SG, Daenen LG, Nijkamp MW, Roodhart JM, de Gast GC, Bosch JR, Jans JJ. Radio Frequency Ablation Combined with Interleukin-2 Induces an Antitumor Immune Response to Renal Cell Carcinoma in a Murine Model. J Urol 2012; 188:607-14. [DOI: 10.1016/j.juro.2012.03.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Indexed: 11/28/2022]
Affiliation(s)
| | - Laura G.M. Daenen
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten W. Nijkamp
- Department of Surgical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeanine M.L. Roodhart
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijsbert C. de Gast
- Department of Medical Oncology and Immunotherapy, Dutch Cancer Institute, Amsterdam, The Netherlands
| | - J.L.H. Ruud Bosch
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Judith J.M. Jans
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Abstract
Although several cytokines have shown antitumor activity in renal cell carcinoma (RCC), the most consistent results have been reported with interleukin-2 (IL-2) and interferon (IFN). Recent insights into how the immune response to a tumor is regulated hold the promise of allowing patients to obtain a durable response to immunotherapy, perhaps without the significant toxicity associated with conventional approaches. This review describes how improvements in patient selection, combination therapy, and investigational agents might expand and better define the role of immunotherapy in metastatic RCC.
Collapse
|
14
|
Brookman-May S, Burger M, Wieland WF, Rössler W, May M, Denzinger S. Vaccination therapy in renal cell carcinoma: current position and future options in metastatic and localized disease. Expert Rev Vaccines 2011; 10:837-52. [PMID: 21692704 DOI: 10.1586/erv.11.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As renal cell carcinoma represents one of the most immune-responsive cancers, immunotherapy exhibits a suitable treatment basis. Beside nonspecific stimulation via cytokines, passive specific and active immunotherapy are also appropriate options to recognize and destroy tumor cells. For more than 30 years, research regarding vaccination therapy has been of special interest for the treatment of renal cell carcinoma. However, apart from occasional promising results in Phase I and II trials, vaccination therapy is still considered experimental in this tumor entity, especially owing to missing results from Phase III trials demonstrating clinical efficacy. In the present article, we review data from completed clinical trials of vaccination therapy and also discuss scheduled future trials, in order to assess the current position and possible future fields of application of vaccination therapy in renal cell carcinoma in the era of recently developed targeted therapies.
Collapse
Affiliation(s)
- Sabine Brookman-May
- University of Regensburg, Department of Urology, Caritas St. Josef Medical Center, Landshuter Strasse 65, 93053 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Immunotherapy for renal cell carcinoma. Clin Dev Immunol 2011; 2010:284581. [PMID: 21253521 PMCID: PMC3022170 DOI: 10.1155/2010/284581] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/29/2010] [Indexed: 11/30/2022]
Abstract
Immunotherapy plays a significant role in the management of renal cell carcinoma (RCC) patients with metastatic disease because RCC is highly resistant to both chemotherapy and radiation therapy. Many reports illustrate various approaches to the treatment of RCC, such as cytokine-, antigen- or dendritic cell- (DC-) based immunotherapy, and the safety and effectiveness of immunotherapy have been highlighted by multiple clinical trials. Although antitumor immune responses and clinically significant outcomes have been achieved in these trials, the response rate is still low, and very few patients show long-term clinical improvement. Recently, the importance of immune regulation by antigen-presenting cells (APC) and regulatory T cells (Treg cells) has also been discussed. The authors outline the principles of cell-mediated tumor immunotherapy and discuss clinical trials of immunotherapy for RCC.
Collapse
|
16
|
Henson MS, Curtsinger JM, Larson VS, Klausner JS, Modiano JF, Mescher MF, Miller JS. Immunotherapy with autologous tumour antigen-coated microbeads (large multivalent immunogen), IL-2 and GM-CSF in dogs with spontaneous B-cell lymphoma. Vet Comp Oncol 2010; 9:95-105. [DOI: 10.1111/j.1476-5829.2010.00234.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Higgins JP, Bernstein MB, Hodge JW. Enhancing immune responses to tumor-associated antigens. Cancer Biol Ther 2009; 8:1440-9. [PMID: 19556848 DOI: 10.4161/cbt.8.15.9133] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The goal of vaccine-based cancer immunotherapy is to induce a tumor-specific immune response that ultimately reduces tumor burden. However, the immune system is often tolerant to antigens presented by the tumor, as the cancer originates from within a patient and is therefore recognized as self. This article reviews selected clinical strategies for overcoming this immune tolerance, and approaches to enhance generation of immunity to tumor-associated antigens by activating innate immunity, potentiating adaptive immunity, reducing immunosuppression, and enhancing tumor immunogenicity. Success in the field of cancer vaccines has yet to be fully realized, but intelligent choice of immunomodulators, tumor antigens and patient populations will likely lead to clinically relevant uses for cancer vaccines.
Collapse
Affiliation(s)
- Jack P Higgins
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
18
|
Vaccine Therapy in Patients with Renal Cell Carcinoma. Eur Urol 2009; 55:1333-42. [DOI: 10.1016/j.eururo.2009.01.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 01/22/2009] [Indexed: 11/20/2022]
|
19
|
Fraser K. 67th annual meeting of the American Academy of Dermatology: San Francisco, California, USA, 6-10 March 2009. Am J Clin Dermatol 2009; 10:205-10. [PMID: 19354337 DOI: 10.2165/00128071-200910030-00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Capitini CM, Fry TJ, Mackall CL. Cytokines as Adjuvants for Vaccine and Cellular Therapies for Cancer. AMERICAN JOURNAL OF IMMUNOLOGY 2009; 5:65-83. [PMID: 20182648 PMCID: PMC2826803 DOI: 10.3844/ajisp.2009.65.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PROBLEM STATEMENT: The development of a potent vaccine that can help treat tumors resistant to conventional cytotoxic therapies remains elusive. While part of the problem may be that trials have focused on patients with bulky residual disease, the desire to maximize responses to the vaccine remains. APPROACH: The gamma(c) family of cytokines offer a unique opportunity to support the expansion and effector potential of vaccine-responding T-cells, as well as stimulate other effectors, such as natural killer (NK) cells, to become activated. RESULTS: Combining vaccines with cytokines seems logical but can bring unwanted toxicity, as has been observed with interleukin (IL)-2. In addition, the nonspecific activation or expansion of unwanted cell subsets, such as regulatory T-cells, can contribute to global immunosuppression and limit vaccine responses. The development of IL-7 and IL-21 for the clinic offers the promise of enhancing anti-tumor responses but with far less systemic toxicity and no expansion of regulatory T cells. Preclinical studies demonstrate that IL-15 could also improve T-cell, and especially NK-cell, responses as well. CONCLUSIONS/RECOMMENDATIONS: Future work should expand the use of vaccines with IL-7, IL-21 and hopefully IL-15 in high-risk patients, and consider treatment while in a state of minimal residual disease to maximize benefit. Identifying tumors that can signal through gamma(c) cytokines will also be essential so that induction of relapse will be avoided.
Collapse
Affiliation(s)
- Christian M. Capitini
- Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Terry J. Fry
- Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
- Center for Cancer and Blood Disorders, Children’s National Medical Center, Washington, DC 20010
| | - Crystal L. Mackall
- Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|