1
|
Zai W, Chen W, Han Y, Wu Z, Fan J, Zhang X, Luan J, Tang S, Jin X, Fu X, Gao H, Ju D, Liu H. Targeting PARP and autophagy evoked synergistic lethality in hepatocellular carcinoma. Carcinogenesis 2020; 41:345-357. [PMID: 31175354 DOI: 10.1093/carcin/bgz104] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 05/07/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most lethal malignancies worldwide, has limited efficient therapeutic options. Here, we first demonstrated that simultaneously targeting poly (ADP-ribose) polymerase (PARP) and autophagy could evoke striking synergistic lethality in HCC cells. Specifically, we found that the PARP inhibitor Niraparib induced cytotoxicity accompanied by significant autophagy formation and autophagic flux in HCC cells. Further experiments showed that Niraparib induced suppression of the Akt/mTOR pathway and activation of the Erk1/2 cascade, two typical signaling pathways related to autophagy. In addition, the accumulation of reactive oxygen species was triggered, which was involved in Niraparib-induced autophagy. Blocking autophagy by chloroquine (CQ) in combination with Niraparib further enhanced cytotoxicity, induced apoptosis and inhibited colony formation in HCC cells. Synergistic inhibition was also observed in Huh7 xenografts in vivo. Mechanistically, we showed that autophagy inhibition abrogated Niraparib-induced cell-cycle arrest and checkpoint activation. Cotreatment with CQ and Niraparib promoted the formation of γ-H2AX foci while inhibiting the recruitment of the homologous recombination repair protein RAD51 to double-strand break sites. Thus, the present study developed a novel promising strategy for the management of HCC in the clinic and highlighted a potential approach to expand the application of PARP inhibitors.
Collapse
Affiliation(s)
- Wenjing Zai
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Wei Chen
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Yuxuan Han
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Zimei Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Jiajun Fan
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Xuyao Zhang
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Jingyun Luan
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Shijie Tang
- Department of Urology, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xin Jin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Xiang Fu
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Hongjian Gao
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Dianwen Ju
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Hongrui Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, P. R. China
| |
Collapse
|
2
|
Ji Y, Wang Q, Zhao Q, Zhao S, Li L, Sun G, Ye L. Autophagy suppression enhances DNA damage and cell death upon treatment with PARP inhibitor Niraparib in laryngeal squamous cell carcinoma. Appl Microbiol Biotechnol 2019; 103:9557-9568. [PMID: 31686145 DOI: 10.1007/s00253-019-10148-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/17/2022]
Abstract
Although poly (ADP-ribose) polymerase (PARP) inhibitors, as anti-tumor drugs targeting the DNA damage response (DDR), have been used for the therapy of various tumors, few researches reported their effect on laryngeal squamous cell carcinoma (LSCC). Here, we first discovered that the PARP-1/2 inhibitor Niraparib could simultaneously induce cell growth inhibition and autophagy in LSCC TU212 and TU686 cells. Niraparib decelerated cell cycle of LSCC by arresting G1 phase and preventing the cells from entering S phase. DNA lesions were also observed upon Niraparib treatment as evidenced by the accumulation of γH2AX and abatement of pRB expression. In addition, autophagy generation was confirmed by the observation of autophagosomes, LC3-positive autophagy-like vacuoles, and obvious conversion of LC3-I to LC3-II. Moreover, blocking autophagy enhanced Niraparib-induced growth inhibition and DNA lesions. Further studies suggested that autophagy suppression could obstruct the activation of checkpoint kinase 1 (Chk1) through elevating proteasomal activity and then impair the capacity of homologous recombination (HR), thereby improving the anti-LSCC efficiency of Niraparib. Collectively, these findings suggested that simultaneous targeting of Niraparib and autophagy might be a promising therapeutic schedule for LSCC in clinic.
Collapse
Affiliation(s)
- Yunxiang Ji
- Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Qian Zhao
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shuwei Zhao
- Department of Otolaryngology, Changzheng Hospital, The Second Military Medical University, Shanghai, 200003, China
| | - Li Li
- Department of Otolaryngology, Changzheng Hospital, The Second Military Medical University, Shanghai, 200003, China.
| | - Guangbin Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Li Ye
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
3
|
Dolan DWP, Zupanic A, Nelson G, Hall P, Miwa S, Kirkwood TBL, Shanley DP. Integrated Stochastic Model of DNA Damage Repair by Non-homologous End Joining and p53/p21-Mediated Early Senescence Signalling. PLoS Comput Biol 2015; 11:e1004246. [PMID: 26020242 PMCID: PMC4447392 DOI: 10.1371/journal.pcbi.1004246] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/17/2015] [Indexed: 02/02/2023] Open
Abstract
Unrepaired or inaccurately repaired DNA damage can lead to a range of cell fates, such as apoptosis, cellular senescence or cancer, depending on the efficiency and accuracy of DNA damage repair and on the downstream DNA damage signalling. DNA damage repair and signalling have been studied and modelled in detail separately, but it is not yet clear how they integrate with one another to control cell fate. In this study, we have created an integrated stochastic model of DNA damage repair by non-homologous end joining and of gamma irradiation-induced cellular senescence in human cells that are not apoptosis-prone. The integrated model successfully explains the changes that occur in the dynamics of DNA damage repair after irradiation. Simulations of p53/p21 dynamics after irradiation agree well with previously published experimental studies, further validating the model. Additionally, the model predicts, and we offer some experimental support, that low-dose fractionated irradiation of cells leads to temporal patterns in p53/p21 that lead to significant cellular senescence. The integrated model is valuable for studying the processes of DNA damage induced cell fate and predicting the effectiveness of DNA damage related medical interventions at the cellular level.
Collapse
Affiliation(s)
- David W P Dolan
- School of Biological and Biomedical Biosciences, Durham University, Durham, United Kingdom; Centre for Integrative Systems Biology of Ageing and Nutrition, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anze Zupanic
- Centre for Integrative Systems Biology of Ageing and Nutrition, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom; Eawag-Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Glyn Nelson
- Centre for Integrative Systems Biology of Ageing and Nutrition, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Philip Hall
- Centre for Integrative Systems Biology of Ageing and Nutrition, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Satomi Miwa
- Centre for Integrative Systems Biology of Ageing and Nutrition, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas B L Kirkwood
- Centre for Integrative Systems Biology of Ageing and Nutrition, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daryl P Shanley
- Centre for Integrative Systems Biology of Ageing and Nutrition, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Yao H, Ji M, Zhu Z, Zhou J, Cao R, Chen X, Xu B. Discovery of 1-substituted benzyl-quinazoline-2,4(1H,3H)-dione derivatives as novel poly(ADP-ribose)polymerase-1 inhibitors. Bioorg Med Chem 2015; 23:681-93. [PMID: 25614115 DOI: 10.1016/j.bmc.2014.12.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/31/2014] [Accepted: 12/31/2014] [Indexed: 11/26/2022]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP-1) has emerged as a promising anticancer drug target due to its key role in the DNA repair process. In this work, a novel series of 1-benzyl-quinazoline-2,4(1H,3H)-dione derivatives were designed and synthesized as human PARP-1 inhibitors, structure-activity relationships were conducted and led to a number of potent PARP-1 inhibitors having IC50 values of single or double digit nanomolar level. Compound 7j was a potent PARP-1 and PARP-2 inhibitor and it could selectively kill the breast cancer cells MX-1 and MDA-MB-468 with mutated BRCA1/2 and PTEN, respectively, in comparison with homologous recombination proficient cell types such as breast cancer cells MDA-MB-231. In addition, compound 7j displayed the strongest potentiation effect on temozolomide in MX-1 cells (PF50=3.77) in this series of PARP-1 inhibitors.
Collapse
Affiliation(s)
- Haiping Yao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhixiang Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jie Zhou
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ran Cao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Bailing Xu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|