1
|
Zerangian N, Erabi G, Poudineh M, Monajjem K, Diyanati M, Khanlari M, Khalaji A, Allafi D, Faridzadeh A, Amali A, Alizadeh N, Salimi Y, Ghane Ezabadi S, Abdi A, Hasanabadi Z, ShojaeiBaghini M, Deravi N. Venous thromboembolism in viral diseases: A comprehensive literature review. Health Sci Rep 2023; 6:e1085. [PMID: 36778773 PMCID: PMC9900357 DOI: 10.1002/hsr2.1085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/25/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Venous thromboembolism (VTE) is known to be a common respiratory and/or cardiovascular complication in hospitalized patients with viral infections. Numerous studies have proven human immunodeficiency virus infection to be a prothrombotic condition. An elevated VTE risk has been observed in critically ill H1N1 influenza patients. VTE risk is remarkably higher in patients infected with the Hepatitis C virus in contrast to uninfected subjects. The elevation of D-dimer levels supported the association between Chikungunya and the Zika virus and the rise of clinical VTE risk. Varicella-zoster virus is a risk factor for both cellulitis and the consequent invasive bacterial disease which may take part in thrombotic initiation. Eventually, hospitalized patients infected with the coronavirus disease of 2019 (COVID-19), the cause of the ongoing worldwide pandemic, could mainly suffer from an anomalous risk of coagulation activation with enhanced venous thrombosis events and poor quality clinical course. Although the risk of VTE in nonhospitalized COVID-19 patients is not known yet, there are a large number of guidelines and studies on thromboprophylaxis administration for COVID-19 cases. This study aims to take a detailed look at the effect of viral diseases on VTE, the epidemiology of VTE in viral diseases, and the diagnosis and treatment of VTE.
Collapse
Affiliation(s)
- Nasibeh Zerangian
- Health Education and Health Promotion, Department of Health Education and Health Promotion, School of HealthMashhad University of Medical SciencesMashhadIran
| | - Gisou Erabi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | | | - Kosar Monajjem
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Maryam Diyanati
- Student Research CommitteeRafsanjan University of Medical SciencesRafsanjanIran
| | - Maryam Khanlari
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | | | - Diba Allafi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of MedicineMashhad University of Medical SciencesMashhadIran
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Arian Amali
- Student Research Committee, Paramedical DepartmentIslamic Azad University, Mashhad BranchMashhadIran
| | - Nilufar Alizadeh
- Doctor of Medicine (MD), School of MedicineIran University of Medical SciencesTehranIran
| | - Yasaman Salimi
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Sajjad Ghane Ezabadi
- Student's Scientific Research Center, School of MedicineTehran University of Medical SciencesTehranIran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Hasanabadi
- Doctor of Medicine (MD), School of MedicineQazvin University of Medical ScienceQazvinIran
| | - Mahdie ShojaeiBaghini
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| | - Niloofar Deravi
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Zhang L, Wei Y, Wang D, Du J, Wang X, Li B, Jiang M, Zhang M, Chen N, Deng M, Song C, Chen D, Wu L, Xiao J, Liang H, Zhao H, Kong Y. Elevated Foxp3+ double-negative T cells are associated with disease progression during HIV infection. Front Immunol 2022; 13:947647. [PMID: 35967422 PMCID: PMC9365964 DOI: 10.3389/fimmu.2022.947647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
Persistent immune activation, which occurs during the whole course of HIV infection, plays a pivotal role in CD4+ T cells depletion and AIDS progression. Furthermore, immune activation is a key factor that leads to impaired immune reconstitution after long-term effective antiretroviral therapy (ART), and is even responsible for the increased risk of developing non-AIDS co-morbidities. Therefore, it’s imperative to identify an effective intervention targeting HIV-associated immune activation to improve disease management. Double negative T cells (DNT) were reported to provide immunosuppression during HIV infection, but the related mechanisms remained puzzled. Foxp3 endows Tregs with potent suppressive function to maintain immune homeostasis. However, whether DNT cells expressed Foxp3 and the accurate function of these cells urgently needed to be investigated. Here, we found that Foxp3+ DNT cells accumulated in untreated people living with HIV (PLWH) with CD4+ T cell count less than 200 cells/µl. Moreover, the frequency of Foxp3+ DNT cells was negatively correlated with CD4+ T cell count and CD4/CD8 ratio, and positively correlated with immune activation and systemic inflammation in PLWH. Of note, Foxp3+ DNT cells might exert suppressive regulation by increased expression of CD39, CD25, or vigorous proliferation (high levels of GITR and ki67) in ART-naive PLWH. Our study underlined the importance of Foxp3+ DNT cells in the HIV disease progression, and suggest that Foxp3+ DNT may be a potential target for clinical intervention for the control of immune activation during HIV infection.
Collapse
Affiliation(s)
- Leidan Zhang
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Wei
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinyue Wang
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bei Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meiqing Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Na Chen
- Peking University Ditan Teaching Hospital, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meiju Deng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liang Wu
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jiang Xiao
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongyuan Liang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Zhao
- Peking University Ditan Teaching Hospital, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| | - Yaxian Kong
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| |
Collapse
|
4
|
Ramos JM, Masiá M, Durán R, Gutiérrez F. Idiopathic ileocolitis with perforation associated with HIV infection: thalidomide treatment. Int J STD AIDS 2012; 23:830-2. [DOI: 10.1258/ijsa.2012.012062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Idiopathic cutaneous ulcers, oesophageal ulcers and severe ulcerative ileocolitis occurred in a human immunodeficiency virus (HIV)-infected patient early after the initiation of combination antiretroviral therapy. This massive inflammatory process led to acute colonic perforation on two occasions. The disease was refractory to standard therapy, but responded successfully to thalidomide. Here, we discuss the potential benefits of thalidomide in refractory inflammatory processes in HIV-infected patients.
Collapse
Affiliation(s)
- J M Ramos
- Infectious Diseases Unit, Hospital General Universitario de Elche, Camí de la Almazara 11, 03203 Elche
- Department of Clinical Medicine, School of Medicine, Universidad Miguel Hernández, Crta. Nacional 332, s/n, 03550 Sant Joan D'Alacant
| | - M Masiá
- Infectious Diseases Unit, Hospital General Universitario de Elche, Camí de la Almazara 11, 03203 Elche
- Department of Clinical Medicine, School of Medicine, Universidad Miguel Hernández, Crta. Nacional 332, s/n, 03550 Sant Joan D'Alacant
| | - R Durán
- Pathology Service, Hospital General Universitario de Elche, Camí de la Almazara 11, 03203 Elche, Spain
| | - F Gutiérrez
- Infectious Diseases Unit, Hospital General Universitario de Elche, Camí de la Almazara 11, 03203 Elche
- Department of Clinical Medicine, School of Medicine, Universidad Miguel Hernández, Crta. Nacional 332, s/n, 03550 Sant Joan D'Alacant
| |
Collapse
|
6
|
d'Ettorre G, Paiardini M, Ceccarelli G, Silvestri G, Vullo V. HIV-associated immune activation: from bench to bedside. AIDS Res Hum Retroviruses 2011; 27:355-64. [PMID: 21309730 DOI: 10.1089/aid.2010.0342] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV infection is associated with a state of chronic, generalized immune activation that has been shown in many studies to be a key predictor of progression to AIDS. Consistent with this model, nonpathogenic SIV infections of natural hosts, such as the sooty mangabeys, are characterized by low levels of immune activation during the chronic phase of infection. The molecular, cellular, and pathophysiological mechanisms underlying the HIV-associated immune activation are complex and still poorly understood. There is, however, growing consensus that both viral and host factors contribute to this phenotype, with emphasis on the role played by the mucosal immune dysfunction (and consequent microbial translocation) as well as the pattern of in vivo-infected CD4(+) T cells. The observation that antiretroviral therapy (ART)-induced suppression of HIV replication does not fully resolve immune activation provided the rationale for a number of exploratory studies of potential immune modulatory treatments to be used in HIV-infected individuals in addition to standard ART. This review provides an update on the causes and consequences of the HIV-associated immune activation, and a summary of the immune modulatory approaches that are currently under clinical investigation.
Collapse
Affiliation(s)
- Gabriella d'Ettorre
- Department of Hygiene, Public Health and Infectious Diseases, “Sapienza” University of Rome, Rome, Italy
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Giancarlo Ceccarelli
- Department of Hygiene, Public Health and Infectious Diseases, “Sapienza” University of Rome, Rome, Italy
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Vincenzo Vullo
- Department of Hygiene, Public Health and Infectious Diseases, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
7
|
Epple HJ, Allers K, Tröger H, Kühl A, Erben U, Fromm M, Zeitz M, Loddenkemper C, Schulzke JD, Schneider T. Acute HIV infection induces mucosal infiltration with CD4+ and CD8+ T cells, epithelial apoptosis, and a mucosal barrier defect. Gastroenterology 2010; 139:1289-300. [PMID: 20600014 DOI: 10.1053/j.gastro.2010.06.065] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 06/10/2010] [Accepted: 06/23/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS A barrier defect of the intestinal mucosa is thought to affect the progression of human immunodeficiency virus (HIV) infection. It is not clear whether the mucosal barrier impairment already is present in acute infection and what mechanisms cause this defect. We analyzed T-cell subsets, epithelial apoptosis, and barrier function of the duodenal mucosa in patients with acute HIV infection. METHODS Mucosal T-cell subsets, epithelial apoptosis, and barrier function were assessed by immunohistochemistry, immunofluorescence, flow cytometry, and impedance spectroscopy in duodenal samples from 8 patients with early acute infection, 8 patients with chronic infection, and 9 HIV-negative individuals (controls). One patient was analyzed serially, before and during acute infection. RESULTS Compared with controls, densities of mucosal CD8+ and, surprisingly, of mucosal CD4+ T cells too, increased in patients with acute infection. Most mucosal CD4+ T cells had an activated effector memory phenotype (CD45RA-CD45RO+CD62L-CD40L+CD38+) and did not proliferate. Perforin-expressing mucosal CD8+ T cells also were increased in acutely infected patients; their frequency correlated with epithelial apoptosis. The epithelial barrier was impaired significantly in patients with acute HIV infection. The patient analyzed serially developed increased densities of mucosal CD4+ and CD8+ T cells, increased apoptosis of epithelial cells, and mucosal barrier impairment during acute infection. CONCLUSIONS Before depleting CD4+ T cells, acute HIV infection induces infiltration of the mucosa with activated effector memory CD4+ and CD8+ T cells. The HIV-induced barrier defect of the intestinal mucosa is evident already in acute infection; it might arise from increased epithelial apoptosis, induced by perforin-positive mucosal cytotoxic T cells.
Collapse
Affiliation(s)
- Hans-Jörg Epple
- Medical Clinic I, Gastroenterology, Rheumatology, Infectiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|