1
|
Hossain MI, Asha AT, Hossain MA, Mahmud S, Chowdhury K, Mohiuddin RB, Nahar N, Sarker S, Napis S, Hossain MS, Mohiuddin A. Investigating the role of hypothetical protein (AAB33144.1) in HIV-1 virus pathogenicity: A comparative study with FDA-Approved inhibitor compounds through In silico analysis and molecular docking. Heliyon 2024; 10:e23183. [PMID: 38163140 PMCID: PMC10755284 DOI: 10.1016/j.heliyon.2023.e23183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Aim and objective Due to the a lot of unexplored proteins in HIV-1, this research aimed to explore the functional roles of a hypothetical protein (AAB33144.1) that might play a key role in HIV-1 pathogenicity. Methods The homologous protein was identified along with building and validating the 3D structure by searching several bioinformatics tools. Results Retroviral aspartyl protease and retropepsin like functional domains and motifs, folding pattern (cupredoxins), and subcellular localization in cytoplasmic membrane were determined as biological activity. Besides, the functional annotation revealed that the chosen hypothetical protein possessed protease-like activity. To validate our generated protein 3D structure, molecular docking was performed with five compounds where nelfinavir showed (-8.2 kcal/mol) best binding affinity against HXB2 viral protease (PDB ID: 7SJX) and main protease (PDB ID: 4EYR) protein. Conclusions This study suggests that the annotated hypothetical protein related to protease action, which may be useful in viral genetics and drug discovery.
Collapse
Affiliation(s)
- Md. Imran Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Anika Tabassum Asha
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Kamal Chowdhury
- Biology Department, Claflin University, 400 Magnolia St, Orangeburg, SC 29115, USA
| | - Ramisa Binti Mohiuddin
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Nazneen Nahar
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Saborni Sarker
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Suhaimi Napis
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor D.E., Malaysia
| | - Md Sanower Hossain
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan 26300, Malaysia
| | - A.K.M. Mohiuddin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| |
Collapse
|
2
|
Wijting IEA, Lungu C, Rijnders BJA, van der Ende ME, Pham HT, Mesplede T, Pas SD, Voermans JJC, Schuurman R, van de Vijver DAMC, Boers PHM, Gruters RA, Boucher CAB, van Kampen JJA. Reply to Darcis and Berkhout. J Infect Dis 2018; 218:2020-2021. [PMID: 30085047 DOI: 10.1093/infdis/jiy475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ingeborg E A Wijting
- Department of Internal Medicine-Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Cynthia Lungu
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine-Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | | | - Hanh T Pham
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Québec, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Thibault Mesplede
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Québec, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Suzan D Pas
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Rob Schuurman
- Virology, Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | | | | | - Rob A Gruters
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
3
|
Selection of Drug-Resistant Feline Immunodeficiency Virus (FIV) Encoding FIV/HIV Chimeric Protease in the Presence of HIV-Specific Protease Inhibitors. J Virol 2013; 87:8524-34. [DOI: 10.1128/jvi.01240-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
An infectious chimeric feline immunodeficiency virus (FIV)/HIV strain carrying six HIV-like protease (PR) mutations (I37V/N55M/V59I/I98S/Q99V/P100N) was subjected to selection in culture against the PR inhibitor lopinavir (LPV), darunavir (DRV), or TL-3. LPV selection resulted in the sequential emergence of V99A (strain S-1X), I59V (strain S-2X), and I108V (strain S-3X) mutations, followed by V37I (strain S-4X). Mutant PRs were analyzed
in vitro
, and an isogenic virus producing each mutant PR was analyzed in culture for LPV sensitivity, yielding results consistent with the original selection. The 50% inhibitory concentrations (IC
50
s) for S-1X, S-2X, S-3X, and S-4X were 95, 643, 627, and 1,543 nM, respectively. The primary resistance mutations, V99
82
A, I59
50
V, and V37
32
I, are consistent with the resistance pattern developed by HIV-1 under similar selection conditions. While resistance to LPV emerged readily, similar PR mutations causing resistance to either DRV or TL-3 failed to emerge after passage for more than a year. However, a G37D mutation in the nucleocapsid (NC) was observed in both selections and an isogenic G37D mutant replicated in the presence of 100 nM DRV or TL-3, whereas parental chimeric FIV could not. An additional mutation, L92V, near the PR active site in the folded structure recently emerged during TL-3 selection. The L92V mutant PR exhibited an IC
50
of 50 nM, compared to 35 nM for 6s-98S PR, and processed the NC-p2 junction more efficiently, consistent with increased viral fitness. These findings emphasize the role of mutations outside the active site of PR in increasing viral resistance to active-site inhibitors and suggest additional targets for inhibitor development.
Collapse
|
4
|
van Maarseveen NM, Andersson D, Lepšík M, Fun A, Schipper PJ, de Jong D, Boucher CAB, Nijhuis M. Modulation of HIV-1 Gag NC/p1 cleavage efficiency affects protease inhibitor resistance and viral replicative capacity. Retrovirology 2012; 9:29. [PMID: 22462820 PMCID: PMC3349524 DOI: 10.1186/1742-4690-9-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 04/01/2012] [Indexed: 11/23/2022] Open
Abstract
Background Mutations in the substrate of HIV-1 protease, especially changes in the NC/p1 cleavage site, can directly contribute to protease inhibitor (PI) resistance and also compensate for defects in viral replicative capacity (RC) due to a drug resistant protease. These NC/p1 changes are known to enhance processing of the Gag protein. To investigate the capacity of HIV-1 to modulate Gag cleavage and its consequences for PI resistance and RC, we performed a detailed enzymatic and virological analysis using a set of PI resistant NC/p1 variants (HXB2431V, HXB2436E+437T, HXB2437T and HXB2437V). Results Here, we demonstrate that single NC/p1 mutants, which displayed only a slight increase in PI resistance did not show an obvious change in RC. In contrast, the double NC/p1 mutant, which displayed a clear increase in processing efficiency and PI resistance, demonstrated a clear reduction in RC. Cleavage analysis showed that a tridecameric NC/p1 peptide representing the double NC/p1 mutant was cleaved in two specific ways instead of one. The observed decrease in RC for the double NC/p1 mutant (HXB2436E+437T) could (partially) be restored by either reversion of the 436E change or by acquisition of additional changes in the NC/p1 cleavage site at codon 435 or 438 as was revealed during in vitro evolution experiments. These changes not only restored RC but also reduced PI resistance levels. Furthermore these changes normalized Gag processing efficiency and obstructed the novel secondary cleavage site observed for the double NC/p1 mutant. Conclusions The results of this study clearly demonstrate that HIV-1 can modulate Gag processing and thereby PI resistance. Distinct increases in Gag cleavage and PI resistance result in a reduced RC that can only be restored by amino acid changes in NC/p1 which reduce Gag processing to an optimal rate.
Collapse
Affiliation(s)
- Noortje M van Maarseveen
- Dept. of Medical Microbiology, Virology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Long-term treatment outcomes of ritonavir-boosted lopinavir monotherapy among HIV-infected patients who experienced NRTI and NNRTI failure. AIDS Res Ther 2012; 9:8. [PMID: 22409789 PMCID: PMC3317876 DOI: 10.1186/1742-6405-9-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/13/2012] [Indexed: 01/05/2023] Open
Abstract
Background We continue the previously described prospective cohort study of ritonovir-boosted lopinavir (LPV/r) monotherapy for second-line therapy in HIV-infected patients with prior failure and extensive resistance to nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs), with the objective being to determine the three-year treatment responses. Findings There were 40 patients with a mean ± SD age of 37 ± 8 years. Median (IQR) baseline CD4 was 123 (37-245) cells/mm3 and median (IQR) HIV-1 RNA was 55,800 (9,670-100,000) copies/mL. All patients received twice daily LPV/r 400/100 mg and recycled lamivudine 150 mg. By intend-to-treat analysis at 144 weeks, 26 (65%) and 22 (56%) patients achieved HIV-1 RNA at < 400 and < 50 copies/mL, respectively. In as-treated analysis, the corresponding rates were 26 of 28 (93%) and 22 of 28 (78%), respectively. Low-level viral rebound (HIV-1 RNA 50-400 copies/mL) was found in 6 (15%), 6 (15%), and 4 (10%) patients at week 48, 96 and week 144, respectively. Medians CD4 at week 48, 96, and 144 were 351, 481, and 584 cells/mm3 and significantly changed from baseline (all, P < 0.05). There were increments of mean triglycerides at 48 weeks and 144 weeks from baseline (P < 0.05). No major protease resistance-associated mutations emerged after virologic failure. Conclusion LPV/r monotherapy with recycled lamivudine can maintain long-term virologic suppression in a relatively small proportion of patients failing NNRTI-based regimen and having limit option for active NRTI. More antiretroviral classes are needed be accessible in resource-limited countries.
Collapse
|
6
|
Fun A, van Maarseveen NM, Pokorná J, Maas RE, Schipper PJ, Konvalinka J, Nijhuis M. HIV-1 protease inhibitor mutations affect the development of HIV-1 resistance to the maturation inhibitor bevirimat. Retrovirology 2011; 8:70. [PMID: 21864346 PMCID: PMC3184055 DOI: 10.1186/1742-4690-8-70] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/24/2011] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself. Direct cross-resistance between protease and maturation inhibitors may seem unlikely, but the co-evolution of protease and its substrate, Gag, during protease inhibitor therapy, could potentially affect future maturation inhibitor therapy. Previous studies showed that there might also be an effect of protease inhibitor resistance mutations on the development of maturation inhibitor resistance, but the exact mechanism remains unclear. We used wild-type and protease inhibitor resistant viruses to determine the impact of protease inhibitor resistance mutations on the development of maturation inhibitor resistance. RESULTS Our resistance selection studies demonstrated that the resistance profiles for the maturation inhibitor bevirimat are more diverse for viruses with a mutated protease compared to viruses with a wild-type protease. Viral replication did not appear to be a major factor during emergence of bevirimat resistance. In all in vitro selections, one of four mutations was selected: Gag V362I, A364V, S368N or V370A. The impact of these mutations on maturation inhibitor resistance and viral replication was analyzed in different protease backgrounds. The data suggest that the protease background affects development of HIV-1 resistance to bevirimat and the replication profiles of bevirimat-selected HIV-1. The protease-dependent bevirimat resistance and replication levels can be explained by differences in CA/p2 cleavage processing by the different proteases. CONCLUSIONS These findings highlight the complicated interactions between the viral protease and its substrate. By providing a better understanding of these interactions, we aim to help guide the development of second generation maturation inhibitors.
Collapse
Affiliation(s)
- Axel Fun
- Department of Virology, Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
OBJECTIVE Bevirimat is the first drug of a new class of antivirals that hamper the maturation of HIV. The objective of this study was to evaluate the sequence variability of the gag region targeted by bevirimat in HIV subtype-B isolates. METHODS Of 484 HIV subtype-B isolates, the gag region comprising amino acids 357-382 was sequenced. Of the patients included, 270 were treatment naive and 214 were treatment experienced. In the latter group, 48 HIV isolates harboured mutations associated with reverse transcriptase inhibitor resistance only, and 166 HIV isolates carried mutations associated with protease inhibitor resistance. RESULTS In the treatment-naive patient population, approximately 30% harboured an HIV isolate with at least one mutation associated with a reduced susceptibility to bevirimat (H358Y, L363M, Q369H, V370A/M/del and T371del). In HIV isolates with protease inhibitor resistance, the prevalence of bevirimat resistance mutations increased to 45%. Accumulation of mutations at four positions in the bevirimat target region, S368C, Q369H, V370A and S373P, was significantly observed. Mutations associated with bevirimat resistance were detected more frequently in HIV isolates with three or more protease inhibitor resistance mutations than in those with less than three protease inhibitor mutations. CONCLUSION Reduced bevirimat activity can be expected in one-third of treatment-naive HIV subtype-B isolates and significantly more in protease inhibitor-resistant HIV. These data indicate that screening for bevirimat resistance mutations before administration of the drug is essential.
Collapse
|
8
|
Manosuthi W, Kiertiburanakul S, Amornnimit W, Prasithsirikul W, Thongyen S, Nilkamhang S, Ruxrungtham K, Sungkanuparph S. Treatment outcomes and plasma level of ritonavir-boosted lopinavir monotherapy among HIV-infected patients who had NRTI and NNRTI failure. AIDS Res Ther 2009; 6:30. [PMID: 20030841 PMCID: PMC2805683 DOI: 10.1186/1742-6405-6-30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 12/23/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Different strategies of ritonavir-boosted lopinavir monotherapy have been explored; however, data regarding salvage therapy among HIV-infected patients who failed nucleoside reverse transcriptase inhibitor (NRTI) and non-nucleoside reverse transcriptase inhibitor (NNRTI) is still limited. METHODS A prospective study was conducted among HIV-infected patients who failed NNRTI-based antiretroviral therapy with M184V, TAMs, and NNRTI mutations, and were naïve to protease inhibitor. LPV/r at 400/100 mg and lamivudine 150 mg were given twice daily. CD4 and HIV-1 RNA were monitored at week 0, 12, 24, and 48. LPV Cmin was assayed for the first 14 patients using HPLC. RESULTS There were 40 patients with a mean age of 37 years and 70% were male. Median (IQR) baseline CD4 was 123 (37-245) cells/mm(3) and median (IQR) HIV-1 RNA was 55,800 (9,670-100,000) copies/mL. By intend-to-treat analysis, 30 (75%) and 24 (60%) patients achieved HIV-1 RNA at <400 and <50 copies/mL, respectively. In as-treated analysis, the corresponding rates were 29 (83%) and 23 (67%), respectively. Low-level viral rebound was found in 6 (15%) patients at week 48. Medians CD4 at week 12, 24, 36 and 48 were 249, 283, 307, and 351 cells/mm(3) and significantly changed from baseline (all, P < 0.05). At 6 and 12 weeks, median (min-max) LPV Cmin was 6.52 (1.62-11.64) mg/L and 5.79 (0.75-16.31) mg/L, respectively. There were increments of mean total cholesterol and triglyceride at 48 weeks from baseline (P < 0.05). CONCLUSION LPV/r monotherapy with recycled lamivudine can maintain virological suppression in a substantial proportion of patients failing NNRTI-based regimen and provides adequate plasma concentrations of LPV although the incidence of low-level viremia is relatively high.
Collapse
Affiliation(s)
- Weerawat Manosuthi
- Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, 11000, Thailand
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Wannarat Amornnimit
- Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Wisit Prasithsirikul
- Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Supeda Thongyen
- Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Samruay Nilkamhang
- Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Kiat Ruxrungtham
- The HIV Netherlands-Australia-Thailand (HIV-NAT) Research Collaboration, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|