1
|
Rostami M, Farahani P, Esmaelian S, Bahman Z, Fadel Hussein A, A Alrikabi H, Hosseini Hooshiar M, Yasamineh S. The Role of Dental-derived Stem Cell-based Therapy and Their Derived Extracellular Vesicles in Post-COVID-19 Syndrome-induced Tissue Damage. Stem Cell Rev Rep 2024; 20:2062-2103. [PMID: 39150646 DOI: 10.1007/s12015-024-10770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Long coronavirus disease 2019 (COVID-19) is linked to an increased risk of post-acute sequelae affecting the pulmonary and extrapulmonary organ systems. Up to 20% of COVID-19 patients may proceed to a more serious form, such as severe pneumonia, acute respiratory distress syndrome (ARDS), or pulmonary fibrosis. Still, the majority of patients may only have mild, self-limiting sickness. Of particular concern is the possibility of parenchymal fibrosis and lung dysfunction in long-term COVID-19 patients. Furthermore, it has been observed that up to 43% of individuals hospitalized with COVID-19 also had acute renal injury (AKI). Care for kidney, brain, lung, cardiovascular, liver, ocular, and tissue injuries should be included in post-acute COVID-19 treatment. As a powerful immunomodulatory tool in regenerative medicine, dental stem cells (DSCs) have drawn much interest. Numerous immune cells and cytokines are involved in the excessive inflammatory response, which also has a significant effect on tissue regeneration. A unique reservoir of stem cells (SCs) for treating acute lung injury (ALI), liver damage, neurological diseases, cardiovascular issues, and renal damage may be found in tooth tissue, according to much research. Moreover, a growing corpus of in vivo research is connecting DSC-derived extracellular vesicles (DSC-EVs), which are essential paracrine effectors, to the beneficial effects of DSCs. DSC-EVs, which contain bioactive components and therapeutic potential in certain disorders, have been shown as potentially effective therapies for tissue damage after COVID-19. Consequently, we explore the properties of DSCs in this work. Next, we'll look at how SARS-CoV-2 affects tissue damage. Lastly, we have looked at the use of DSCs and DSC-EVs in managing COVID-19 and chronic tissue damage, such as injury to the heart, brain, lung, and other tissues.
Collapse
Affiliation(s)
- Mitra Rostami
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Farahani
- Doctor of Dental Surgery, Faculty of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Zahra Bahman
- Faculty of dentistry, Belarusian state medical university, Minsk, Belarus
| | | | - Hareth A Alrikabi
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
2
|
Safitri E, Purnobasuki H, Purnama MTE, Chhetri S. Role of apoptotic inhibitors, viability, and differentiation in low oxygen tension of mesenchymal stem cells cultured in a rat model of ovarian failure. F1000Res 2023; 12:24. [PMID: 38644927 PMCID: PMC11031646 DOI: 10.12688/f1000research.124919.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 04/23/2024] Open
Abstract
Background: Stem cell therapy shows applications potential for malnutrition-induced ovarian failure in rat models. However, it is ineffective because of the lack of viability and differentiation of transplanted stem cells, resulting in low adaptation and survival rates. We aimed to determine whether stem cells cultured under low oxygen (O 2) tension improves the adaptability and viability of stem cells, as well as ovarian failure. Methods: After four days of culturing mesenchymal stem cells (MSCs) in 21% oxygen (normoxia) as the T2 group and 1% oxygen (low O 2 or hypoxia) as the T1 group, 200 million bone marrow-derived MSCs per rat were transplanted into female rats with ovarian failure (15 rats per treatment group). A total of 15 fertile and 15 infertile rats were categorized as the C+ and C- groups, respectively. Results: The slight increase in cells expressing HSP70 (C+, T2, T1, and C- groups were 0.5 a±0.53, 1.7 a±0.82, 6.2 b±1.5, and 9.6 c±1.3, respectively), decrease in cells expressing caspase-3 as an apoptotic inhibitor (C+, T2, T1, and C- groups were 0.2 a±0.42, 0.6 a±0.52, 4.8 b±1.03, and 7.3 c±1.42, respectively), and increase in cells expressing VEGF-1 (C+, T2, T1, and C- groups were 10.8 c±1.55, 8.7 b±0.48, 0.4 a±0.52, and 0.2 a±0.42, respectively) and GDF-9 (C+, T2, T1, and C- groups were 5.8 c±1.47, 4.6 b±0.97, 0.5 a±0.53, and 0.3 a±0.48, respectively) were used as markers for viability and differentiation in ovarian tissue, indicating that MSCs cultured under low O 2 tension were more effective than those cultured under normoxic conditions as a treatment for female rats with ovarian failure. Furthermore, infertile female rats treated with MSCs cultivated under low O 2 tension had an enhanced ovarian tissue shape, as indicated by the increasing Graafian follicle count (C+, T2, T1, and C- groups were 8.9 c±0.74, 4.5 b±0.71, 0.5 a±0.53, and 0.4 a±0.52, respectively). Conclusions: MSCs cultured under low O 2 tension are an effective treatment for malnourished rats with ovarian failure.
Collapse
Affiliation(s)
- Erma Safitri
- Division of Veterinary Reproduction, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Shekhar Chhetri
- Department of Animal Science, College of Natural Resources, Royal University of Bhutan, Lobesa, Punakha, 13001, Bhutan
| |
Collapse
|
3
|
Yudintceva N, Mikhailova N, Fedorov V, Samochernych K, Vinogradova T, Muraviov A, Shevtsov M. Mesenchymal Stem Cells and MSCs-Derived Extracellular Vesicles in Infectious Diseases: From Basic Research to Clinical Practice. Bioengineering (Basel) 2022; 9:662. [PMID: 36354573 PMCID: PMC9687734 DOI: 10.3390/bioengineering9110662] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are attractive in various fields of regenerative medicine due to their therapeutic potential and complex unique properties. Basic stem cell research and the global COVID-19 pandemic have given impetus to the development of cell therapy for infectious diseases. The aim of this review was to systematize scientific data on the applications of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) in the combined treatment of infectious diseases. Application of MSCs and MSC-EVs in the treatment of infectious diseases has immunomodulatory, anti-inflammatory, and antibacterial effects, and also promotes the restoration of the epithelium and stimulates tissue regeneration. The use of MSC-EVs is a promising cell-free treatment strategy that allows solving the problems associated with the safety of cell therapy and increasing its effectiveness. In this review, experimental data and clinical trials based on MSCs and MSC-EVs for the treatment of infectious diseases are presented. MSCs and MSC-EVs can be a promising tool for the treatment of various infectious diseases, particularly in combination with antiviral drugs. Employment of MSC-derived EVs represents a more promising strategy for cell-free treatment, demonstrating a high therapeutic potential in preclinical studies.
Collapse
Affiliation(s)
- Natalia Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg 194064, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Natalia Mikhailova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg 194064, Russia
| | - Viacheslav Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Konstantin Samochernych
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Tatiana Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, St. Petersburg 191036, Russia
| | - Alexandr Muraviov
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, St. Petersburg 191036, Russia
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg 194064, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| |
Collapse
|
4
|
Kandula UR, Wake AD. Promising Stem Cell therapy in the Management of HIV and AIDS: A Narrative Review. Biologics 2022; 16:89-105. [PMID: 35836496 PMCID: PMC9275675 DOI: 10.2147/btt.s368152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022]
Abstract
Stem cell therapies are becoming a major topic in biomedical research all over the planet. It may be a viable treatment choice for people suffering from a wide range of illnesses and injuries. It has recently emerged as an extremely intriguing and well-established science and research topic. Expectations have risen due to advancements in therapeutic approaches. Multiple laboratory testing of regulated stem cell culture and derivation is carried out before the formation of stem cells for the use of therapeutic process. Whereas HIV infection is contagious and can last a lifetime. Researchers are still working to develop a comprehensive and effective treatment for HIV and its associated condition, as well as AIDS. HIV propagation is primarily restricted to the immune system, notably T lymphocytes, as well as macrophages. Large numbers of research studies have contributed to a plethora of data about the enigmatic AIDS life cycle. This vast amount of data provides potential targets for AIDS therapies. Currently, stem cell transplantation, along with other procedures, provided novel insights into HIV pathogenesis and offered a glimpse of hope for the development of a viable HIV cure technique. One of its existing focus areas in HIV and AIDS research is to develop a novel therapeutic strategic plan capable of providing life-long complete recovery of HIV and AIDS without regular drug treatment and, inevitably, curative therapy for HIV and AIDS. The current paper tries to address the possibilities for improved stem cell treatments with "bone marrow, Hematopoietic, human umbilical cord mesenchymal, Genetical modifications with CRISPR/Cas9 in combination of stem cells, induced pluripotent stem cells applications" are discussed which are specifically applied in the HIV and AIDS therapeutic management advancement procedures.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Addisu Dabi Wake
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
5
|
Khalid K, Padda J, Wijeratne Fernando R, Mehta KA, Almanie AH, Al Hennawi H, Padda S, Cooper AC, Jean-Charles G. Stem Cell Therapy and Its Significance in HIV Infection. Cureus 2021; 13:e17507. [PMID: 34595076 PMCID: PMC8468364 DOI: 10.7759/cureus.17507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is a major global public health issue. Despite this, the only treatment available in mainstay is antiretroviral therapy. This treatment is not curative, it needs to be used lifelong, and there are many issues with compliance and side effects. In recent years, stem cell therapy has shown promising results in HIV management, and it can have a major impact on the future of HIV treatment and prevention. The idea behind anti-HIV hematopoietic stem/progenitor cell (HSPC)-directed gene therapy is to genetically engineer patient-derived (autologous) HSPC to acquire an inherent resistance to HIV infection. Multiple stem-cell-based gene therapy strategies have been suggested that may infer HIV resistance including anti-HIV gene reagents and gene combinatorial strategies giving rise to anti-HIV gene-modified HSPCs. Such stem cells can hamper HIV progression in the body by interrupting key stages of HIV proliferation: viral entry, viral integration, HIV gene expression, etc.Hematopoietic stem cells (HSCs) may also protect leukocytes from being infected. Additionally, genetically engineered HSCs have the ability to continuously produce protected immune cells by prolonged self-renewal that can attack the HIV virus. Therefore, a successful treatment strategy has the potential to control the infection at a steady state and eradicate HIV from patients. This will allow for a potential future benefit with stem cell therapy in HIV treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gutteridge Jean-Charles
- Internal Medicine, JC Medical Center, Orlando, USA.,Internal Medicine, AdventHealth & Orlando Health Hospital, Orlando, USA
| |
Collapse
|
6
|
Liu Y, Xie S, Li L, Si Y, Zhang W, Liu X, Guo L, Liu B, Lu R. Clinical observations of bone marrow transfusion for promoting bone marrow reconstruction after chemotherapy for AIDS-related lymphoma. BMC Immunol 2021; 22:10. [PMID: 33509081 PMCID: PMC7845098 DOI: 10.1186/s12865-021-00399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/19/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND This study investigates the effect of autologous bone marrow transfusion (BMT) on the reconstruction of both bone marrow and the immune system in patients with AIDS-related lymphoma (ARL). METHODS A total of 32 patients with ARL participated in this study. Among them, 16 participants were treated with conventional surgery and chemotherapy (control group) and the remaining 16 patients were treated with chemotherapy followed by autologous bone marrow transfusion via a mesenteric vein (8 patients, ABM-MVI group) or a peripheral vein (8 patients, ABM-PI group). Subsequently, peripheral blood and lymphocyte data subsets were detected and documented in all patients. RESULTS Before chemotherapy, no significant difference in indicators was observed between three groups of ARL patients. Unexpectedly, 2 weeks after the end of 6 courses of chemotherapy, the ABM-MVI group, and the ABM-PI group yielded an increased level of CD8+T lymphocytes, white blood cells (WBC), and platelet (PLT) in peripheral blood in comparison to the control group. Notably, the number of CD4+T lymphocytes in the ABM-PI group was significantly higher than that in the other two groups. Additionally, no significant difference in haemoglobin levels was observed before and after chemotherapy in both the ABM-MVI and ABM-PI groups, while haemoglobin levels in the control group decreased significantly following chemotherapy. CONCLUSIONS Autologous bone marrow transfusion after chemotherapy can promote the reconstruction of both bone marrow and the immune system. There was no significant difference in bone marrow recovery and reconstruction between the mesenteric vein transfusion group and the peripheral vein transfusion group.
Collapse
Affiliation(s)
- Yixuan Liu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of surgery, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Lei Li
- Department of surgery, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, China
| | - Yanhui Si
- Department of surgery, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, China
| | - Weiwei Zhang
- Department of surgery, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, China
| | - Xin Liu
- Department of surgery, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Baochi Liu
- Department of surgery, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Savchenkova IP, Alekseyenkova SV, Yurov KP. [Mouse embryonic stem cells - a new cellular system for studying the equine infectious anemia virus in vitro and in vivo]. Vopr Virusol 2016; 61:107-111. [PMID: 36494943 DOI: 10.18821/0507-4088-2016-61-3-107-111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022]
Abstract
The complexity of the pathogenesis and insufficient knowledge about the slow retroviral infections, which include equine infectious anemia, necessitates finding an adequate laboratory model for the study of the infection process and immunogenesis to create means of prevention and treatment of diseases. Data about strains and cellular tropism of the virus are discussed. It was shown that mouse embryonic stem cells (ESCS) exhibited unique properties and characteristics. In contrast to fibroblasts and other cell types, these cells can be considered as a new cell system for studying EIAV in vitro and in vivo. Under differentiation-inducing conditions they are able to reproduce in vitro embryogenesis cells and form cells of three germ layers. Differentiation of mouse ESCs in the direction of hematopoiesis could contribute new knowledge and understanding of viral tropism EIAV in vitro. ESC can be returned back to the early pre-implantation embryo. Once in the germ cell environment, they participate in the formation of tissues and organs of the developing fetus. Thus, the adaptation of the mouse ESC to the equine EIAV through genetic transformation makes it possible to get closer to the creation of a laboratory model for the study of the in vivo immune response in the lentiviral infection.
Collapse
Affiliation(s)
- I P Savchenkova
- Ya.R. Kovalenko All-Russian Scientific Research Institute of Experimental Veterinary
| | - S V Alekseyenkova
- Ya.R. Kovalenko All-Russian Scientific Research Institute of Experimental Veterinary
| | - K P Yurov
- Ya.R. Kovalenko All-Russian Scientific Research Institute of Experimental Veterinary
| |
Collapse
|
8
|
Korpusik A, Kolev M. Single injection of CD8+ T lymphocytes derived from hematopoietic stem cells - Mathematical and numerical insights. Biosystems 2016; 144:46-54. [PMID: 27095371 DOI: 10.1016/j.biosystems.2016.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
Recently, hematopoietic stem cell (HSC) based therapy is being discussed as a possible treatment for HIV infection. The main advantage of this approach is that it limits the immune impairing effect of infection by introducing an independent influx of antigen-specific cytotoxic T lymphocytes (CTL). In this paper, we present a mathematical approach to predict the dynamics of HSC based therapy. We use a modification of a basic mathematical model for virus induced impairment of help to study how virus - immune system dynamics can be influenced by a single injection of CD8+ T lymphocytes derived from hematopoietic stem cells. Our mathematical and numerical results indicate that a single, large enough dose of genetically derived CTL may lead to restoration of the cellular immune response and result in long-term control of infection.
Collapse
Affiliation(s)
- Adam Korpusik
- Faculty of Technical Sciences, University of Warmia and Mazury, ul. Oczapowskiego 11, 10-719 Olsztyn, Poland.
| | - Mikhail Kolev
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury, ul. Słoneczna 54, 10-710 Olsztyn, Poland.
| |
Collapse
|
9
|
Zanussi S, Bortolin MT, Pratesi C, Tedeschi R, Basaglia G, Abbruzzese L, Mazzucato M, Spina M, Vaccher E, Tirelli U, Rupolo M, Michieli M, Di Mascio M, De Paoli P. Autograft HIV-DNA load predicts HIV-1 peripheral reservoir after stem cell transplantation for AIDS-related lymphoma patients. AIDS Res Hum Retroviruses 2015; 31:150-9. [PMID: 25581618 DOI: 10.1089/aid.2014.0157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Autologous stem cell transplantation (ASCT) is a widely used procedure for AIDS-related lymphomas, and it represents an opportunity to evaluate strategies curing HIV-1 infection. The association of autograft HIV-DNA load with peripheral blood HIV-1 reservoir before ASCT and its contribution in predicting HIV-1 reservoir size and stability during combination antiretroviral therapy (cART) after transplantation are unknown. Aiming to obtain information suggesting new functional cure strategies by ASCT, we retrospectively evaluated HIV-DNA load in autograft and in peripheral blood before and after transplantation in 13 cART-treated HIV-1 relapse/refractoring lymphoma patients. Among them seven discontinued cART after autograft infusion. HIV-DNA was evaluated by a sensitive quantitative real-time polymerase chain reaction (PCR). After debulking chemotherapy/mobilization, the autograft HIV-1 reservoir was higher than and not associated with the peripheral HIV-1 reservoir at baseline [median 215 HIV-DNA copies/10(6) autograft mononuclear cells, range 13-706 vs. 82 HIV-DNA copies/10(6) peripheral blood mononuclear cells (PBMCs), range 13-479, p = 0.03]. After high dose chemotherapy and autograft infusion, HIV-DNA levels reached a plateau between month 6 and 12 of follow-up. No association was found between peripheral HIV-DNA levels at baseline and after infusion in both cART interrupting and not interrupting patients. Only in the last subgroup, a stable significant linear association between autograft and peripheral blood HIV-1 reservoir emerged from month 1 (R(2) = 0.84, p = 0.01) to month 12 follow-up (R(2) = 0.99, p = 0.0005). In summary, autograft HIV-1 reservoir size could be influenced by the mobilization phase and predicts posttransplant peripheral HIV-1 reservoir size in patients on continuous cART. These findings could promote new research on strategies reducing the HIV-1 reservoir by using the ASCT procedure.
Collapse
Affiliation(s)
- Stefania Zanussi
- Microbiology, Immunology, and Virology Unit, CRO National Cancer Institute, Aviano, Italy
| | - Maria Teresa Bortolin
- Microbiology, Immunology, and Virology Unit, CRO National Cancer Institute, Aviano, Italy
| | - Chiara Pratesi
- Microbiology, Immunology, and Virology Unit, CRO National Cancer Institute, Aviano, Italy
| | - Rosamaria Tedeschi
- Microbiology, Immunology, and Virology Unit, CRO National Cancer Institute, Aviano, Italy
| | - Giancarlo Basaglia
- Microbiology, Immunology, and Virology Unit, CRO National Cancer Institute, Aviano, Italy
| | - Luciano Abbruzzese
- Stem Cell Collection and Processing Unit, CRO National Cancer Institute, Aviano, Italy
| | - Mario Mazzucato
- Stem Cell Collection and Processing Unit, CRO National Cancer Institute, Aviano, Italy
| | - Michele Spina
- Division of Medical Oncology A, CRO National Cancer Institute, Aviano, Italy
| | - Emanuela Vaccher
- Division of Medical Oncology A, CRO National Cancer Institute, Aviano, Italy
| | - Umberto Tirelli
- Division of Medical Oncology A, CRO National Cancer Institute, Aviano, Italy
| | - Maurizio Rupolo
- Cellular Therapy and High Dose Chemotherapy Unit, CRO National Cancer Institute, Aviano, Italy
| | - Mariagrazia Michieli
- Cellular Therapy and High Dose Chemotherapy Unit, CRO National Cancer Institute, Aviano, Italy
| | | | - Paolo De Paoli
- Scientific Directorate, CRO National Cancer Institute, Aviano, Italy
| |
Collapse
|
10
|
Type I interferon suppresses de novo virus-specific CD4 Th1 immunity during an established persistent viral infection. Proc Natl Acad Sci U S A 2014; 111:7409-14. [PMID: 24799699 DOI: 10.1073/pnas.1401662111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CD4 T cells are central to orchestrate, sustain, and potentially regenerate antiviral immunity throughout persistent viral infections. Although the evolving immune environment during persistent infection reshapes established CD4 T-cell responses, the fate of naïve CD4 T cells primed in the midst of persistent infection is unclear. We demonstrate that, in marked contrast to the onset of infection, virus-specific CD4 T cells primed during an established persistent infection have diminished ability to develop Th1 responses, to efficiently accumulate in peripheral tissues, and almost exclusively differentiate into T follicular helper cells. Consistent with suppressed Th1 and heightened Tfh differentiation, virus-specific CD4 T cells primed during the established persistent infection provide help to B cells, but only limited help to CD8 T cells. The suppression of de novo Th1 generation and tissue distribution was mediated by chronic type I IFN (IFN-I) production and was effectively restored by blocking IFN-I signaling during CD4 T-cell priming. Thus, we establish a suppressive function of chronic IFN-I signaling and mechanism of immunoregulation during an established persistent virus infection.
Collapse
|
11
|
Cray J, Cooper GM. Regression modeling to inform cell incorporation into therapies for craniosynostosis. J Craniofac Surg 2013; 24:226-31. [PMID: 23348290 DOI: 10.1097/scs.0b013e31826cfe09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Designing an appropriate tissue engineering solution for craniosynostosis (CS) necessitates determination of whether CS-derived cells differ from normal (wild-type, WT) cells and what assays are appropriate to test for differences. Traditional methodologies to statistically compare cellular behavior may not accurately reflect biologically relevant differences because they poorly address variation. Here, logistic regression was used to determine which assays could identify a biological difference between WT and CS progenitor cells. Quantitative alkaline phosphatase and MTS proliferation assays were performed on adipose, muscle, and bone marrow-derived cells from WT and CS rabbits. Data were stratified by assay, cell type, and days in culture. Coefficients of variation were calculated and assay results coded as predictive variables. Phenotype (WT or CS) was coded as the dependent variable. Sensitivity-specificity curves, classification tables, and receiver operating characteristic curves were plotted for discriminating models. Two data sets were utilized for subsequent analyses; one was used to develop the logistic regression models for prediction, and the other independent data set was used to determine the ability to predict group membership based on the predictive equation. The resulting coefficients of variation were high for all differentiation measures. Upon model implementation, bone marrow assays were observed to result in 72%-100% predictability for phenotype. We found predictive differences in our muscle-derived and bone marrow-derived cells suggesting biologically relevant differences. This data analysis methodology could help identify homogenous cells that do not differ between pathologic and normal individuals or cells that differ in their osteogenic potential, depending on the type of cell-based therapy being developed.
Collapse
Affiliation(s)
- James Cray
- Department of Oral Biology, Surgery/Plastic Surgery, and Orthodontics, Georgia, USA
| | | |
Collapse
|
12
|
Current world literature. Curr Opin Pediatr 2012; 24:770-9. [PMID: 23146873 DOI: 10.1097/mop.0b013e32835af8de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Le Douce V, Janossy A, Hallay H, Ali S, Riclet R, Rohr O, Schwartz C. Achieving a cure for HIV infection: do we have reasons to be optimistic? J Antimicrob Chemother 2012; 67:1063-74. [PMID: 22294645 PMCID: PMC3324423 DOI: 10.1093/jac/dkr599] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The introduction of highly active antiretroviral therapy (HAART) in 1996 has transformed a lethal disease to a chronic pathology with a dramatic decrease in mortality and morbidity of AIDS-related symptoms in infected patients. However, HAART has not allowed the cure of HIV infection, the main obstacle to HIV eradication being the existence of quiescent reservoirs. Several other problems have been encountered with HAART (such as side effects, adherence to medication, emergence of resistance and cost of treatment), and these motivate the search for new ways to treat these patients. Recent advances hold promise for the ultimate cure of HIV infection, which is the topic of this review. Besides these new strategies aiming to eliminate the virus, efforts must be made to improve current HAART. We believe that the cure of HIV infection will not be attained in the short term and that a strategy based on purging the reservoirs has to be associated with an aggressive HAART strategy.
Collapse
Affiliation(s)
- Valentin Le Douce
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Andrea Janossy
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Houda Hallay
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Sultan Ali
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Raphael Riclet
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Olivier Rohr
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
- IUT de Schiltigheim, 1 Allée d'Athènes, 67300 Schiltigheim, France
- Institut Universitaire de France, 103 Bd Saint Michel, Paris, France
| | - Christian Schwartz
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
- IUT de Schiltigheim, 1 Allée d'Athènes, 67300 Schiltigheim, France
| |
Collapse
|