1
|
Liu T, Zhou M, Liang F. An Electromechanical Model-Based Study on the Dosage Effects of Ranolazine in Treating Failing HCM Cardiomyocyte. Cell Mol Bioeng 2025; 18:137-162. [PMID: 40290110 PMCID: PMC12018674 DOI: 10.1007/s12195-025-00842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 01/16/2025] [Indexed: 04/30/2025] Open
Abstract
Background and Objective Hypertrophic cardiomyopathy (HCM) is associated with a significant risk of progression to heart failure (HF). Extensive experimental and clinical research has highlighted the therapeutic benefits of ranolazine in alleviating electrophysiological abnormalities and arrhythmias in the context of HCM and HF. Despite these findings, there is a shortage of studies examining the electromechanical responses of failing HCM cardiomyocytes to ranolazine and the impact of ranolazine dosage on outcomes across varying degrees of HF. This study aims to systematically address these issues. Methods A computational modeling approach was utilized to quantify alterations in electromechanical variables within failing HCM cardiomyocytes subsequent to ranolazine treatment. The model parameters were calibrated against extant literature data to delineate the spectrum of HF severities and the changes in ion channels following the administration of various doses of ranolazine. Results The inhibition of the augmented late Na+ current in failing HCM cardiomyocyte with an adequate amount of ranolazine was found to be effective in alleviating electrophysiological abnormalities (e.g., prolongation of action potential (AP), Ca2+ overload in diastole), which contributed to improving the diastolic function of the cardiomyocyte, albeit with a modest negative effect on the systolic function. A threshold drug dose was identified for achieving a significant normalization of the overall electromechanical profile. The threshold drug dose for effective therapy was observed to be contingent upon the severity of HF and the status of certain key ion channels. Furthermore, it was determined that an increase of the drug dose beyond the threshold did not yield substantial additional improvements in the principal electromechanical variables. Conclusions The study demonstrated the presence of a threshold dose of ranolazine for effective treatment of failing HCM cardiomyocyte, and further established that this threshold is influenced by the severity of HF and the functional status of key ion channels. These findings may serve as theoretical evidence for comprehending the mechanisms underlying ranolazine's therapeutic efficacy in treating failing HCM hearts. Moreover, the study underscores the potential clinical value of personalized dosing strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-025-00842-5.
Collapse
Affiliation(s)
- Taiwei Liu
- Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Mi Zhou
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- Institute for Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University, Moscow, 19991 Russia
| |
Collapse
|
2
|
Patel J, Wang A, Naidu SS, Frishman WH, Aronow WS. Aficamten-A Second in Class Cardiac Myosin Inhibitor for Hypertrophic Cardiomyopathy. Cardiol Rev 2023:00045415-990000000-00167. [PMID: 37881953 DOI: 10.1097/crd.0000000000000620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Hypertrophic cardiomyopathy is an under-recognized disease with a genetic component that results in abnormal and often asymmetric thickening of the left ventricle in addition to decreased compliance and progressive fibrosis of the myocardium. It further poses significant complications related to dynamic left ventricular outflow obstruction over time in a significant majority. The medical management of obstructive hypertrophic cardiomyopathy has evolved over the decades as our understanding has grown. Traditionally, the mainstay in management has included the use of various negative inotropic agents. In contrast, the cardiac myosin inhibitors, aficamten and mavacamten, are novel therapies targeting cardiac contractility at the sarcomere level that have demonstrated improvement in clinical outcomes for patients, and mavacamten (Bristol Myers Squibb, Inc.) has now been approved by the Food and Drug Administration for the treatment of symptomatic obstructive HCM. Aficamten (Cytokinetics, Inc.) is the second in class cardiac myosin inhibitor that is currently being evaluated in ongoing phase III clinical trials, and is the subject of this review.
Collapse
Affiliation(s)
- Jay Patel
- From the Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | | | | | | | | |
Collapse
|
3
|
Desai MY, Hajj Ali A. Mavacamten, an Alternative to Septal Reduction Therapy for Patients with Hypertrophic Cardiomyopathy. Heart Int 2023; 17:2-4. [PMID: 37456351 PMCID: PMC10339467 DOI: 10.17925/hi.2023.17.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common heridetary cardiac disorder characterized by a wide range of symptoms. The pharmacological treatment of HCM is currently limited to beta blockers, non-dihydropyridine calcium channel blockers and disopyramide. Mavacamten is a novel cardiac myosin inhibitor, which was recently added to the limited pharmacological list of treatment options for HCM. This editorial elaborates on current evidence evaluating the use of mavacamten in patients with symptomatic obstructive HCM, comments on its current use and its expanded potential applications in the future.
Collapse
Affiliation(s)
- Milind Y Desai
- Hypertrophic Cardiomyopathy Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Adel Hajj Ali
- Hypertrophic Cardiomyopathy Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Sebastian SA, Panthangi V, Singh K, Rayaroth S, Gupta A, Shantharam D, Rasool BQ, Padda I, Co EL, Johal G. Hypertrophic Cardiomyopathy: Current Treatment and Future Options. Curr Probl Cardiol 2023; 48:101552. [PMID: 36529236 DOI: 10.1016/j.cpcardiol.2022.101552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a disease involving the cardiac sarcomere. It is associated with various disease-causing gene mutations and phenotypic expressions, managed with different therapies with variable prognoses. The heterogeneity of the disease is evident in the fact that it burdens patients of all ages. HCM is the most prevalent cause of sudden death in athletes. However, several technological advancements and therapeutic options have reduced mortality in patients with HCM to 0.5% per year. In addition, rapid advances in our knowledge of the molecular defects accountable for HCM have strengthened our awareness of the disorder and recommended new approaches to the assessment of prognosis. Despite all these evolutions, a small subgroup of patients with HCM will experience sudden cardiac death, and risk stratification remains a critical challenge. This review provides a practical guide to the updated recommendations for patients with HCM, including clinical updates for diagnosis, family screening, clinical imaging, risk stratification, and management.
Collapse
Affiliation(s)
| | | | - Karanbir Singh
- Department of Internal Medicine, Government Medical College, Amritsar, Punjab, India
| | - Swetha Rayaroth
- Department of Internal Medicine, JSS Medical College, Mysuru, Karnataka, India
| | - Aditi Gupta
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Belgaum, Karnataka, India
| | - Darshan Shantharam
- Department of Internal Medicine, Yenepoya Medical college, Mangalore, India
| | | | - Inderbir Padda
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, New York
| | - Edzel Lorraine Co
- Department of Internal Medicine, University of Santo Tomas, Manila, Philippines
| | - Gurpreet Johal
- Department of Cardiology, Valley Medical Center, University of Washington, Seattle, Washington
| |
Collapse
|
5
|
Reyes KRL, Bilgili G, Rader F. Mavacamten: A First-in-class Oral Modulator of Cardiac Myosin for the Treatment of Symptomatic Hypertrophic Obstructive Cardiomyopathy. Heart Int 2022; 16:91-98. [PMID: 36741099 PMCID: PMC9872784 DOI: 10.17925/hi.2022.16.2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 12/25/2022] Open
Abstract
Hypertrophic cardiomyopathy is the most common monogenic cardiovascular disease that is caused by sarcomeric protein gene mutations. A hallmark of the most common form of the disease is outflow obstruction secondary to systolic narrowing of the left ventricular outflow tract from septal hypertrophy, mitral valve abnormalities and, most importantly, hyperdynamic contractility. Recent mechanistic studies have identified excessive myosin adenosine triphosphatase activation and actin-myosin cross-bridging as major underlying causes. These studies have led to the development of mavacamten, a first-in-class myosin adenosine triphosphatase inhibitor and the first specific therapy for hypertrophic obstructive cardiomyopathy. Preclinical and subsequent pivotal clinical studies have demonstrated the efficacy and safety of mavacamten. A remarkable improvement among treated patients in peak oxygen consumption, functional capacity, symptom relief and post-exercise left ventricular outflow tract gradient, along with dramatic reductions in heart failure biomarkers, suggests that this new medication will be transformative for the symptom management of hypertrophic obstructive cardiomyopathy. There is also hope and early evidence that mavacamten may delay or obviate the need for invasive septal reduction therapies. In this article, we review the current evidence for the efficacy and safety of mavacamten and highlight important considerations for its clinical use.
Collapse
Affiliation(s)
| | - Gizem Bilgili
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Florian Rader
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
6
|
Tamargo J, Tamargo M, Caballero R. Hypertrophic cardiomyopathy: an up-to-date snapshot of the clinical drug development pipeline. Expert Opin Investig Drugs 2022; 31:1027-1052. [PMID: 36062808 DOI: 10.1080/13543784.2022.2113374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hypertrophic cardiomyopathy (HCM) is a complex cardiac disease with highly variable phenotypic expression and clinical course most often caused by sarcomeric gene mutations resulting in left ventricular hypertrophy, fibrosis, hypercontractility, and diastolic dysfunction. For almost 60 years, HCM has remained an orphan disease and still lacks a disease-specific treatment. AREAS COVERED This review summarizes recent preclinical and clinical trials with repurposed drugs and new emerging pharmacological and gene-based therapies for the treatment of HCM. EXPERT OPINION The off-label drugs routinely used alleviate symptoms but do not target the core pathophysiology of HCM or prevent or revert the phenotype. Recent advances in the genetics and pathophysiology of HCM led to the development of cardiac myosin adenosine triphosphatase inhibitors specifically directed to counteract the hypercontractility associated with HCM-causing mutations. Mavacamten, the first drug specifically developed for HCM successfully tested in a phase 3 trial, represents the major advance for the treatment of HCM. This opens new horizons for the development of novel drugs targeting HCM molecular substrates which hopefully modify the natural history of the disease. The role of current drugs in development and genetic-based approaches for the treatment of HCM are also discussed.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| | - María Tamargo
- Department of Cardiology, Hospital Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
7
|
Huang PS, Cheng JF, Ko WC, Chang SH, Lin TT, Chen JJ, Chiu FC, Lin LY, Lai LP, Lin JL, Tsai CT. Unique clinical features and long term follow up of survivors of sudden cardiac death in an Asian multicenter study. Sci Rep 2021; 11:18250. [PMID: 34521870 PMCID: PMC8440502 DOI: 10.1038/s41598-021-95975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023] Open
Abstract
There has been no long-term clinical follow-up data of survivors or victims of sudden cardiac death (SCD). The Taiwan multi-center sudden arrhythmia death syndrome follow-up and clinical study (TFS-SADS) is a collaborative multi-center study with median follow-up time 43 months. In this cohort, the clinical characteristics of these SADS patients were compared with those with ischemic heart disease (IHD). In this SCD cohort, around half (42%) were patients with IHD, which was different from Caucasian SCD cohorts. Among those with normal heart, most had Brugada syndrome (BrS). Compared to those with SADS, patients with IHD were older, more males and more comorbidities, more arrhythmic death, and lower left ventricular ejection fraction. In the long-term follow-up, patients with SADS had a better survival than those with IHD (p < 0.001). In the Cox regression analysis to identify the independent predictors of mortality, older age, lower LVEF, prior myocardial infarction and history of out-of-hospital cardiac arrest were associated with higher mortality and beta blocker use and idiopathic ventricular fibrillation or tachycardia (IVF/IVT) with a better survival during follow-up. History of prior MI was associated with more arrhythmic death. Several distinct features of SCD were found in the Asia-Pacific region, such as higher proportion of SADS, poorer prognosis of LQTS and better prognosis of IVF/IVT. Patients with SADS had a better survival than those with IHD. For those with SADS, patients with channelopathy had a better survival than those with cardiomyopathy.
Collapse
Affiliation(s)
- Pang-Shuo Huang
- grid.412094.a0000 0004 0572 7815Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County, Taiwan, ROC ,grid.412094.a0000 0004 0572 7815Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Fang Cheng
- grid.454740.6Division of Cardiology, Department of Internal Medicine, Ministry of Health and Welfare Pingtung Hospital, Pintung County, Taiwan, ROC ,grid.412094.a0000 0004 0572 7815Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chin Ko
- grid.413535.50000 0004 0627 9786Division of Cardiology, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan, ROC
| | - Shu-Hsuan Chang
- grid.415323.20000 0004 0639 3300Division of Cardiology, Department of Internal Medicine, Mennonite Christian Hospital, Hualien, Taiwan, ROC
| | - Tin-Tse Lin
- grid.412094.a0000 0004 0572 7815Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu City, Taiwan, ROC
| | - Jien-Jiun Chen
- grid.412094.a0000 0004 0572 7815Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County, Taiwan, ROC
| | - Fu-Chun Chiu
- grid.412094.a0000 0004 0572 7815Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County, Taiwan, ROC
| | - Lian-Yu Lin
- grid.412094.a0000 0004 0572 7815Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital , Taipei City, 100 Taiwan, ROC ,grid.412094.a0000 0004 0572 7815Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Ling-Ping Lai
- grid.412094.a0000 0004 0572 7815Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital , Taipei City, 100 Taiwan, ROC ,grid.412094.a0000 0004 0572 7815Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiunn-Lee Lin
- grid.412094.a0000 0004 0572 7815Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital , Taipei City, 100 Taiwan, ROC ,grid.412094.a0000 0004 0572 7815Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan ,grid.412955.e0000 0004 0419 7197Division of Cardiovascular Medicine, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Chia-Ti Tsai
- grid.412094.a0000 0004 0572 7815Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital , Taipei City, 100 Taiwan, ROC ,grid.412094.a0000 0004 0572 7815Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Maltês S, Lopes LR. New perspectives in the pharmacological treatment of hypertrophic cardiomyopathy. Rev Port Cardiol 2020; 39:99-109. [PMID: 32245685 DOI: 10.1016/j.repc.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/17/2019] [Accepted: 03/10/2019] [Indexed: 10/24/2022] Open
Abstract
Hypertrophic cardiomyopathy is an inherited cardiac disease and a major cause of heart failure and sudden death. Even though it was described more than 50 years ago, sarcomeric hypertrophic cardiomyopathy still lacks a disease-specific treatment. The drugs routinely used alleviate symptoms but do not prevent or revert the phenotype. With recent advances in the knowledge about the genetics and pathophysiology of hypertrophic cardiomyopathy, new genetic and pharmacological approaches have been recently discovered and studied that, by influencing different pathways involved in this disease, have the potential to function as disease-modifying therapies. These promising new pharmacological and genetic therapies will be the focus of this review.
Collapse
Affiliation(s)
- Sérgio Maltês
- Clínica Universitária de Cardiologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Luis Rocha Lopes
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, Inglaterra; St. Bartholomew's Hospital, Barts Heart Centre, London, Inglaterra; Centro Cardiovascular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
9
|
Maltês S, Lopes LR. New perspectives in the pharmacological treatment of hypertrophic cardiomyopathy. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.repce.2019.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
10
|
Current State of Hypertrophic Cardiomyopathy Clinical Trials. Glob Heart 2019; 14:317-325. [DOI: 10.1016/j.gheart.2019.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
|
11
|
Yuan J, Hong H, Zhang Y, Lu J, Yu Y, Bi X, Wang J, Ye J. Chrysophanol attenuated isoproterenol-induced cardiac hypertrophy by inhibiting Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway. Cell Biol Int 2019; 43:695-705. [PMID: 30977566 DOI: 10.1002/cbin.11146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 01/17/2023]
Abstract
Cardiac hypertrophy is a common pathological change found in various cardiovascular diseases. Although it has long been recognized as an important risk factor responsible for heart failure, there is still a lack of effective treatments in clinic. Chrysophanol is a natural compound with multiple biological activities and protective roles in the cardiovascular system. However, its potential effect on cardiac hypertrophy remains unclear. In the current study, we found that chrysophanol could protect against isoproterenol (ISO)-induced cardiac hypertrophy both in vitro and in vivo. Increase of cell surface and hypertrophic marker expression induced by ISO in neonatal rat cardiomyocytes was downregulated by chrysophanol. Moreover, chrysophanol ameliorated the abnormal changes of cardiac structure and function in rats subjected to ISO injection, as shown by echocardiography and morphometry measurements. Further mechanistical investigation demonstrated that chrysophanol inhibited phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) induced by ISO. Nuclear translocation of STAT3 and transcription of downstream genes promoted by ISO treatment were also remarkably suppressed by chrysophanol. Taken together, our findings revealed that chrysophanol attenuated ISO-induced cardiac hypertrophy by inhibiting JAK2/STAT3 signaling pathway. Chrysophanol may be a potential candidate compound for the prevention and treatment of hypertrophy-related cardiomyopathy.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, China
| | - Huiqi Hong
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, China
| | - Yuhong Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, China
| | - Youhui Yu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, China
| | - Xueying Bi
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, China
| | - Junjian Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, China
| |
Collapse
|