1
|
Fazoli RTJ, Drager LF, Kalil-Filho R, Generoso G. RNA interference therapy in cardiology: will new targets improve therapeutic goals? Drugs Context 2024; 13:2024-3-1. [PMID: 39188988 PMCID: PMC11346576 DOI: 10.7573/dic.2024-3-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/10/2024] [Indexed: 08/28/2024] Open
Abstract
The discovery of RNA interference in 1998 opened avenues for the manipulation of gene expression, leading to the development of small interfering RNA (siRNA) drugs. Patisiran, the first FDA-approved siRNA medication, targets hereditary transthyretin amyloidosis with polyneuropathy. Givosiran, lumasiran and nedosiran further expand siRNA applications in treating rare genetic diseases, demonstrating positive outcomes. In cardiology, inclisiran, approved for hypercholesterolaemia, showcases sustained reductions in LDL cholesterol levels. However, ongoing research aims to establish its impact on cardiovascular outcomes. Lipoprotein(a), an independent risk factor for atherosclerotic cardiovascular disease, has become a focus of siRNA therapies, precipitating the development of specific siRNA drugs like olpasiran, zerlasiran and lepodisiran, with promising reductions in lipoprotein(a) levels. Research to assess the effectiveness of these medications in reducing events is currently under way. Zodasiran and plozasiran address potential risk factors for cardiovascular diseases, targeting triglyceride-rich lipoproteins. Zilebesiran, which targets hepatic angiotensinogen mRNA, has demonstrated a dose-related reduction in serum angiotensinogen levels, thereby lowering blood pressure in patients with systemic arterial hypertension. The evolving siRNA methodology presents a promising future in cardiology, with ongoing studies assessing its effectiveness in various conditions. In the future, larger studies will provide insights into improvements in cardiovascular outcomes, long-term safety and broader applications in the general population. This review highlights the historical timeline of the development of siRNA-based drugs, their clinical indications, potential side-effects and future perspectives.
Collapse
Affiliation(s)
- Renata TJ Fazoli
- Centro de Cardiologia, Hospital Sirio-Libanes, São Paulo, Brasil
| | - Luciano F Drager
- Centro de Cardiologia, Hospital Sirio-Libanes, São Paulo, Brasil
- Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Roberto Kalil-Filho
- Centro de Cardiologia, Hospital Sirio-Libanes, São Paulo, Brasil
- Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Giuliano Generoso
- Centro de Cardiologia, Hospital Sirio-Libanes, São Paulo, Brasil
- Center for Clinical and Epidemiological Research, University Hospital, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
2
|
Karp A, Jacobs M, Barris B, Labkowsky A, Frishman WH. Lipoprotein(a): A Review of Risk Factors, Measurements, and Novel Treatment Modalities. Cardiol Rev 2024:00045415-990000000-00218. [PMID: 38415744 DOI: 10.1097/crd.0000000000000667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The study of lipoprotein(a) [Lp(a)] has long been a source of interest as a possible independent risk factor for atherosclerotic cardiovascular disease (ASCVD). The results of large sample observational studies, genome-wide association studies, and Mendelian randomization studies have been strong indicators supporting the link between ASCVD and Lp(a) despite early studies, with less sensitive assays, failing to show a connection. The recommendations for the indications and frequency of testing Lp(a) levels vary between US, Canadian, and European organizations due to the uncertain role of Lp(a) in ASCVD. The innovation of recent therapies, such as antisense oligonucleotides and small interfering RNA, designed to specifically target and reduce Lp(a) levels by targeting mRNA translation have once more thrust LP(a) into the spotlight of inquiry. These emerging modalities serve the dual purpose of definitively elucidating the connection between elevated Lp(a) levels and atherosclerotic cardiovascular risk, as well as the possibility of providing clinicians with the tools necessary to manage elevated Lp(a) levels in vulnerable populations. This review seeks to examine the mechanisms of atherogenicity of Lp(a) and explore the most current pharmacologic therapies currently in development.
Collapse
Affiliation(s)
- Avrohom Karp
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - Menachem Jacobs
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Ben Barris
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - Alexander Labkowsky
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - William H Frishman
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
3
|
Heydari M, Rezayi M, Ruscica M, Jpamialahamdi T, Johnston TP, Sahebkar A. The ins and outs of lipoprotein(a) assay methods. Arch Med Sci Atheroscler Dis 2023; 8:e128-e139. [PMID: 38283929 PMCID: PMC10811544 DOI: 10.5114/amsad/176653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024] Open
Abstract
Pathophysiological, epidemiological and genetic studies convincingly showed lipoprotein(a) (Lp(a)) to be a causal mediator of atherosclerotic cardiovascular disease (ASCVD). This happens through a myriad of mechanisms including activation of innate immune cells, endothelial cells as well as platelets. Although these certainties whether or not Lp(a) is ready for prime-time clinical use remain debated. Thus, remit of the present review is to provide an overview of different methods that have been employed for the measurement of Lp(a). The methods include dynamic light scattering, multi-angle light scattering analysis, near-field imaging, sedimentation, gel filtration, and electron microscopy. The development of multiple Lp(a) detection methods is vital for improved prediction of ASCVD risk.
Collapse
Affiliation(s)
- Maryam Heydari
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Science, Università degli Studi di Milano, Milan, Italy
| | - Tannaz Jpamialahamdi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MI, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Zhang W, Jiang Y, He Y, Boucetta H, Wu J, Chen Z, He W. Lipid carriers for mRNA delivery. Acta Pharm Sin B 2023; 13:4105-4126. [PMID: 37799378 PMCID: PMC10547918 DOI: 10.1016/j.apsb.2022.11.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Messenger RNA (mRNA) is the template for protein biosynthesis and is emerging as an essential active molecule to combat various diseases, including viral infection and cancer. Especially, mRNA-based vaccines, as a new type of vaccine, have played a leading role in fighting against the current global pandemic of COVID-19. However, the inherent drawbacks, including large size, negative charge, and instability, hinder its use as a therapeutic agent. Lipid carriers are distinguishable and promising vehicles for mRNA delivery, owning the capacity to encapsulate and deliver negatively charged drugs to the targeted tissues and release cargoes at the desired time. Here, we first summarized the structure and properties of different lipid carriers, such as liposomes, liposome-like nanoparticles, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanoemulsions, exosomes and lipoprotein particles, and their applications in delivering mRNA. Then, the development of lipid-based formulations as vaccine delivery systems was discussed and highlighted. Recent advancements in the mRNA vaccine of COVID-19 were emphasized. Finally, we described our future vision and perspectives in this field.
Collapse
Affiliation(s)
- Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxin Jiang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yonglong He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Wu
- Department of Geriatric Cardiology, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|