1
|
Rao Y, Li J, Qiao R, Luo J, Liu Y. Synergistic effects of tetramethylpyrazine and astragaloside IV on spinal cord injury via alteration of astrocyte A1/A2 polarization through the Sirt1-NF-κB pathway. Int Immunopharmacol 2024; 131:111686. [PMID: 38461631 DOI: 10.1016/j.intimp.2024.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Reactive astrocytes are hallmarks of traumatic spinal cord injury (T-SCI) and are associated with neuropathic pain (NP). Mediating the functional phenotype of reactive astrocytes helps neural repair and ameliorates NP in T-SCI. Here, we aimed to explore the role of tetramethylpyrazine (TMPZ) and astragaloside IV (AGS-IV) in astrocyte polarization and the underlying molecular mechanism in T-SCI. METHODS Primary cultured astrocytes from mice were treated with LPS or conditioned medium from "M1" polarized microglia (M1-CM), followed by TMPZ and/or AGS-IV administration. The expression levels of "A1" astrocyte-specific markers (including C3, GBP2, Serping1, iNOS), "A2" astrocyte-specific markers (including S100a10 and PTX3), Sirt1 and NF-κB were detected via western blotting. TNF-α and IL-1β levels were detected via ELISA. RT-PCR was used to evaluate OIP5-AS1 and miR-34a expression. si-OIP5-AS1 or the Sirt1 inhibitor EX-527 was administered to astrocytes. A spinal cord injury (SCI) model was constructed in Sprague-Dawley (SD) rats. Alterations in astrocytic "A1/A2" polarization in the spinal cord tissues were evaluated. RESULTS LPS and M1-CM induced "A1" polarization of primary astrocytes. TMPZ and ASG IV could substantially reduce the expression of "A1"-related biomarkers but enhance "A2"-related biomarkers. OIP5-AS1 and Sirt1 levels were reduced in "A1"-polarized astrocytes, while miR-34a and p-NF-κB p65 were elevated. TMPZ and ASG IV enhanced OIP5-AS1 and Sirt1 levels and, in contrast, attenuated the changes in miR-34a and p-NF-κB p65 levels. Notably, the TMPZ and ASG IV combination had stronger effects on astrocyte polarization than the single treatment with TMPZ or ASG IV. OIP5-AS1 knockdown and Sirt1 inhibition both reversed the regulatory effects of TMPZ and ASG IV in astrocytic polarization. According to the in vivo experiments, the expression of "A1"-associated markers was enhanced in the spinal cords of SCI rats. The TMPZ and ASG IV combination reduced astrocytic "A1" polarization and enhanced astrocytic "A2" polarization. The expression of lncRNA OIP5-AS1 and Sirt1 was enhanced by TMPZ and ASG IV, while that of miR-34a and p-NF-κB p65 was inhibited. CONCLUSION The combination of TMPZ and ASG IV can ameliorate dysregulated astrocytic polarization induced by spinal cord injury by affecting the lncRNA OIP5-AS1-Sirt1-NF-κB pathway.
Collapse
Affiliation(s)
- Yaojian Rao
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Junjie Li
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Ruofei Qiao
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jinxin Luo
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yan Liu
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
2
|
Liu N, Ji Y, Liu R, Jin X. The state of astragaloside IV research: A bibliometric and visualized analysis. Fundam Clin Pharmacol 2024; 38:208-224. [PMID: 37700611 DOI: 10.1111/fcp.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Astragaloside IV has emerged as a pharmaceutical monomer with great medical applications and potential. Astragaloside IV has many effects such as improving myocardial ischemia, cerebral ischemia-reperfusion injury, anti-inflammatory, analgesic, antiviral, promoting lymphocyte proliferation, and antitumor effects. However, there are few bibliometric studies on astragaloside IV. OBJECTIVES We aim to visualize the hotspots and trends in astragaloside IV research through bibliometric analysis to further understand the future development of basic and clinical research. Methods The articles and reviews on astragaloside IV were screened from the Web of Science Core Collection, and knowledge maps were generated using CiteSpace software. Bibliometric analysis was performed on 971 articles published from 1998 to 2022. RESULTS The number of articles on astragaloside IV increased yearly. These publications came from 42 countries/regions, with China being the largest. The primary research institutions were Shanghai University of Traditional Chinese Medicine and Guangzhou University of Traditional Chinese Medicine. Journal of Ethnopharmacology was the most studied journal and co-cited journal. A total of 473 authors were included, among which Hongxin Wang had the highest number of publications and Zhang Wd had the highest total citation frequency. After analysis, the most common keywords are astragaloside IV, expression, and oxidative stress. Cardiovascular disease, cerebral ischemia, cancer, and kidney disease are current and developing research fields. CONCLUSION This study used bibliometrics and visualization methods to analyze the research hotspots and trends of astragaloside IV. Astragaloside IV on ischemia-reperfusion injury, cancer, and tumor may become the focus of future research.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yansu Ji
- Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Rui Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Jin
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| |
Collapse
|
3
|
Tan B, Wu X, Yu J, Chen Z. The Role of Saponins in the Treatment of Neuropathic Pain. Molecules 2022; 27:molecules27123956. [PMID: 35745079 PMCID: PMC9227328 DOI: 10.3390/molecules27123956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain is a chronic pain caused by tissue injury or disease involving the somatosensory nervous system, which seriously affects the patient's body function and quality of life. At present, most clinical medications for the treatment of neuropathic pain, including antidepressants, antiepileptic drugs, or analgesics, often have limited efficacy and non-negligible side effects. As a bioactive and therapeutic component extracted from Chinese herbal medicine, the role of the effective compounds in the prevention and treatment of neuropathic pain have gradually become a research focus to explore new analgesics. Notably, saponins have shown analgesic effects in a large number of animal models. In this review, we summarized the most updated information of saponins, related to their analgesic effects in neuropathic pain, and the recent progress on the research of therapeutic targets and the potential mechanisms. Furthermore, we put up with some perspectives on future investigation to reveal the precise role of saponins in neuropathic pain.
Collapse
Affiliation(s)
- Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
| | - Xueqing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
- Correspondence: ; Tel.: +86-571-88208228
| |
Collapse
|
4
|
Yi L, Li S, Hou A, Dai L. Preliminary study of astragaloside IV on oxaliplatin-induced peripheral neurotoxicity in rats. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221094157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: As an effective component of Astragalus membranaceus, astragaloside IV (AS-IV) has a history of thousands of years in China. Many evidences have indicated that AS-IV has a potential neuroprotective effect. In this study, we aimed to preliminarily study the effects of AS-IV on oxaliplatin-induced peripheral neurotoxicity (OIPN) in rats. Methods: Intraperitoneal injection of oxaliplatin for 4 weeks (4 mg/kg, twice a week) was used to establish peripheral neurotoxicity in rats. 40 Sprague Dawley rats were randomly divided into five groups, eight rats in each group, including control group, model group, and three AS-IV treated groups. Different doses of AS-IV (5 mg/kg, 10 mg/kg, and 20 mg/kg, daily) were orally administrated to OIPN rats once a day for 4 weeks at beginning of oxaliplatin administration. Behaviors and histologic evaluation of sciatic nerve and dorsal root ganglia (DRG) were performed to assess the changes of peripheral neurotoxicity through mechanical allodynia and cold allodynia, immunofluorescence, H&E staining, myelin staining, and Nissl staining. Results: AS-IV treatments were able to significantly reduce oxaliplatin induced mechanical and cold allodynia. Moreover, AS-IV administration could increase the levels of NGF, but decrease the levels of TNF-α and IL-6 in oxaliplatin induced rats. AS-IV suppressed the activation of Iba-1 in anterior horn of spinal cord of OIPN rats. The myelin sheath degenerations in the sciatic nerve of OIPN rats were repaired after AS-IV administration. Through observation of sciatic nerves and DRG, AS-IV treatments improved the oxaliplatin induced pathologic injuries in a dose-dependent. Conclusion: AS-IV administration was able to attenuate the oxaliplatin-induced peripheral neurotoxicity in rats.
Collapse
Affiliation(s)
- Lanjuan Yi
- Department of Gastroentrology, Yantaishan Hospital, Yantai, Shandong, China
| | - Shan Li
- Department 4 of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Aihua Hou
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Lingling Dai
- Department 4 of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| |
Collapse
|
5
|
Molecular Changes in the Dorsal Root Ganglion during the Late Phase of Peripheral Nerve Injury-induced Pain in Rodents: A Systematic Review. Anesthesiology 2021; 136:362-388. [PMID: 34965284 DOI: 10.1097/aln.0000000000004092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The dorsal root ganglion is widely recognized as a potential target to treat chronic pain. A fundamental understanding of quantitative molecular and genomic changes during the late phase of pain is therefore indispensable. The authors performed a systematic literature review on injury-induced pain in rodent dorsal root ganglions at minimally 3 weeks after injury. So far, slightly more than 300 molecules were quantified on the protein or messenger RNA level, of which about 60 were in more than one study. Only nine individual sequencing studies were performed in which the most up- or downregulated genes varied due to heterogeneity in study design. Neuropeptide Y and galanin were found to be consistently upregulated on both the gene and protein levels. The current knowledge regarding molecular changes in the dorsal root ganglion during the late phase of pain is limited. General conclusions are difficult to draw, making it hard to select specific molecules as a focus for treatment.
Collapse
|
6
|
Dai WL, Zhang L, Han L, Yang X, Hu L, Miao C, Song L, Xiao H, Liu JH, Liu WT. Regulation of the K ATP-JNK gap junction signaling pathway by immunomodulator astragaloside IV attenuates neuropathic pain. Reg Anesth Pain Med 2020; 45:955-963. [PMID: 32963077 DOI: 10.1136/rapm-2020-101411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Gap junctions play a pivotal role in contributing to the formation of astroglial networks and in chronic pain. However, the mechanisms underlying the dysfunction of astroglial gap junctions in chronic pain have not been fully elucidated. METHODS Chronic constriction injury (CCI) of the sciatic nerve was used to establish rat neuropathic pain model. C6 cells were used to perform experiments in vitro. Von Frey hairs and Hargreave's method were used to determine the withdrawal threshold of rats. Protein expression was detected by immunofluorescence and western blotting. RESULTS Astragaloside IV (AST IV) significantly attenuated neuropathic pain and suppressed the excitation of spinal astrocytes in rats with CCI. The antinociceptive effect of AST IV was reversed by the gap junction decoupler carbenoxolone (CBX). AST IV inhibited the high expression of phosphorylated connexin 43 (p-Cx43) and p-c-Jun N-terminal kinase (p-JNK) in spinal cord of rats with CCI. JNK inhibitor alleviated neuropathic pain, which was reversed by CBX. JNK inhibitor decreased the high expression of p-Cx43 in both rats with CCI and tumor necrosis factor-alpha (TNF-α)-treated C6 cells. Additionally, the analgesic effect of AST IV was reversed by the adenosine triphosphate-sensitive potassium (KATP) channel blocker, glibenclamide (Glib). Glib abolished the inhibitory effects of AST IV on p-JNK and p-Cx43 both in vivo and in vitro. KATP channel opener (KCO) mimicked the inhibitory effects of AST IV on p-JNK and p-Cx43 in TNF-α-treated C6 cells. CONCLUSION Our results indicate that the sciatic nerve CCI induces the dysfunction of gap junctions in the spinal cord by activating KATP/JNK signaling to contribute to neuropathic pain. AST IV attenuates neuropathic pain via regulating the KATP-JNK gap junction axis.
Collapse
Affiliation(s)
- Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Li Zhang
- Department of Anesthesiology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liu Han
- Department of Anesthesiology, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing Yang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Miao
- Department of pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China .,Institute of Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Zhang J, Wu C, Gao L, Du G, Qin X. Astragaloside IV derived from Astragalus membranaceus: A research review on the pharmacological effects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 87:89-112. [PMID: 32089240 DOI: 10.1016/bs.apha.2019.08.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Decoctions prepared from the roots of Astragali Radix are known as "Huangqi" and are widely used in traditional Chinese medicine for treatment of viral and bacterial infections, inflammation, as well as cancer. Astragaloside IV (AS-IV), one of the major compounds from the aqueous extract of Astragalus membranaceus, is a cycloartane-type triterpene glycoside chemical. To date, many studies in cellular and animal models have demonstrated that AS-IV possesses potent protective effects in cardiovascular, lung, kidney and brain. Based on studies over the past several decades, this review systematically summarizes the pharmacological effects, pharmacokinetics and the toxicity of AS-IV. We analyze in detail the pharmacological effects of AS-IV on neuroprotection, liver protection, anti-cancer and anti-diabetes, attributable to its antioxidant, anti-inflammatory, anti-apoptotic properties, and the roles in enhancement of immunity, attenuation of the migration and invasion of cancer cells and improvement of chemosensitivity of chemotherapy drugs. In addition, the latest developments in the combination of AS-IV and other active ingredients of traditional Chinese medicine or chemical drugs are detailed. These pharmacological effects are associated with multiple signaling pathways, including the Raf-MEK-ERK pathway, EGFR-Nrf2 signaling pathway, Akt/PDE3B signaling pathway, AMPK signaling pathway, NF-κB signaling pathway, Nrf2 antioxidant signaling pathways, PI3K/Akt/mTOR signaling pathway, PKC-α-ERK1/2-NF-κB pathway, IL-11/STAT3 signaling pathway, Akt/GSK-3β/β-catenin pathway, JNK/c-Jun/AP-1 signaling pathway, PI3K/Akt/NF-κB pathway, miRNA-34a/LDHA pathway, Nox4/Smad2 pathway, JNK pathway and NF-kB/PPARγ pathway. This review will provide an overall understanding of the pharmacological functions of astragaloside IV on neuroprotection, liver protection, anti-cancer and anti-diabetes. In light of this, AS-IV will be a potent alternative therapeutic agent for treatment of the above mentioned diseases.
Collapse
Affiliation(s)
- Jianqin Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Chuxuan Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P. R. China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
| |
Collapse
|
8
|
Gong SS, Li YX, Zhang MT, Du J, Ma PS, Yao WX, Zhou R, Niu Y, Sun T, Yu JQ. Neuroprotective Effect of Matrine in Mouse Model of Vincristine-Induced Neuropathic Pain. Neurochem Res 2016; 41:3147-3159. [PMID: 27561290 DOI: 10.1007/s11064-016-2040-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/17/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022]
Abstract
Chemotherapy drugs such as vincristine (VCR) can cause neuropathic pain, and there is still lack of ideal strategy to treat it. The current study was designed to investigate effect of matrine (MT) on VCR-induced neuropathic pain in animal model. VCR (75 μg/kg, i.p. for 10 consecutive days) was administered to induce painful neuropathy model in mice. MT (15, 30 and 60 mg/kg, i.p.) and pregabalin (10 mg/kg, i.p.) were administered for 11 consecutive days. Various tests were performed to assess the degree of pain at different days (1, 6, 11, 16, and 21). Von Frey hair, hot plate, cold-plate and paw pressure tests were conducted to assess the degree of mechanical allodynia, thermal hyperalgesia, cold allodynia and mechanical hyperalgesia in the hind paw respectively. The electrophysiological and histopathological changes were also analyzed. Furthermore, tissue malondialdehyde (MDA), total antioxidant capacity (T-AOC),superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total calcium (TCA), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10) were measured to investigate possible involvement of MT in inflammation and oxidative stress. Administration of MT attenuated the VCR-induced behavioral alterations as well as electrophysiological and histopathological changes in a dose dependent manner. Further, MT also attenuated the VCR-induced oxidative stress (MDA, T-AOC, GSH-Px, SOD and TCA) and inflammation (MPO, TNF-α, IL-6 and IL-10). Taken together, MT ameliorated VCR-induced painful neuropathy, which might be attributed to neuroprotective effects by subsequent reduction in oxidative stress and anti-inflammatory actions.
Collapse
Affiliation(s)
- Shuai-Shuai Gong
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, 750004, China
| | - Meng-Ting Zhang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Juan Du
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Peng-Sheng Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Wan-Xia Yao
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Jian-Qiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China. .,Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|