1
|
Gupta TA, Sanabria F. Motivated to time: Effects of reinforcer devaluation and opportunity cost on interval timing. Learn Behav 2023; 51:308-320. [PMID: 36781823 DOI: 10.3758/s13420-023-00572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2023] [Indexed: 02/15/2023]
Abstract
Prior research suggests that interval timing performance is sensitive to reinforcer devaluation effects and to the rate of competing sources of reinforcement. The present study sought to replicate and account for these findings in rats. A self-paced concurrent fixed-interval (FI) random-ratio (RR) schedule of reinforcement was implemented in which the FI requirement varied across training conditions (12, 24, 48 s). The RR requirement-which imposed an opportunity cost to responding on the FI component-was adjusted so that it took about twice the FI requirement, on average, to complete it. Probe reinforcer devaluation (prefeeding) sessions were conducted at the end of each condition. To assess the effect of contextual reinforcement on timing performance, the RR requirement was removed before the end of the experiment. Consistent with prior findings, performance on the FI component tracked schedule requirement and displayed scalar invariance; the removal of the RR component yielded more premature FI responses. For some rats, prefeeding reduced the number of trials initiated without affecting timing performance; for other rats, prefeeding delayed responding on the FI component but had a weaker effect on trial initiation. These results support the notion that timing and motivational processes are separable, suggesting novel explanations for ostensible motivational effects on timing performance.
Collapse
Affiliation(s)
- Tanya A Gupta
- Department of Psychology, Arizona State University, Tempe, AZ, USA.
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.
| | | |
Collapse
|
2
|
Holter MC, Hewitt LT, Nishimura KJ, Knowles SJ, Bjorklund GR, Shah S, Fry NR, Rees KP, Gupta TA, Daniels CW, Li G, Marsh S, Treiman DM, Olive MF, Anderson TR, Sanabria F, Snider WD, Newbern JM. Hyperactive MEK1 Signaling in Cortical GABAergic Neurons Promotes Embryonic Parvalbumin Neuron Loss and Defects in Behavioral Inhibition. Cereb Cortex 2021; 31:3064-3081. [PMID: 33570093 DOI: 10.1093/cercor/bhaa413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Many developmental syndromes have been linked to genetic mutations that cause abnormal ERK/MAPK activity; however, the neuropathological effects of hyperactive signaling are not fully understood. Here, we examined whether hyperactivation of MEK1 modifies the development of GABAergic cortical interneurons (CINs), a heterogeneous population of inhibitory neurons necessary for cortical function. We show that GABAergic-neuron specific MEK1 hyperactivation in vivo leads to increased cleaved caspase-3 labeling in a subpopulation of immature neurons in the embryonic subpallial mantle zone. Adult mutants displayed a significant loss of parvalbumin (PV), but not somatostatin, expressing CINs and a reduction in perisomatic inhibitory synapses on excitatory neurons. Surviving mutant PV-CINs maintained a typical fast-spiking phenotype but showed signs of decreased intrinsic excitability that coincided with an increased risk of seizure-like phenotypes. In contrast to other mouse models of PV-CIN loss, we discovered a robust increase in the accumulation of perineuronal nets, an extracellular structure thought to restrict plasticity. Indeed, we found that mutants exhibited a significant impairment in the acquisition of behavioral response inhibition capacity. Overall, our data suggest PV-CIN development is particularly sensitive to hyperactive MEK1 signaling, which may underlie certain neurological deficits frequently observed in ERK/MAPK-linked syndromes.
Collapse
Affiliation(s)
- Michael C Holter
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Lauren T Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,Interdepartmental Neuroscience Graduate Program, University of Texas, Austin, TX 78712, USA
| | - Kenji J Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,Interdepartmental Neuroscience Graduate Program, University of Texas, Austin, TX 78712, USA
| | - Sara J Knowles
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Shiv Shah
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Noah R Fry
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Tanya A Gupta
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Carter W Daniels
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA.,Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Guohui Li
- College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Steven Marsh
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | | | - Trent R Anderson
- College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Federico Sanabria
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - William D Snider
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|