1
|
Erfanparast A, Tamaddonfard E, Tamaddonfard S, Firooznia B, Hatami-Marandi A. Muscarinic cholinergic system of the dorsal hippocampus involvement in the modulation of formalin-induced orofacial nociception and relevant memory impairment in rats. Behav Brain Res 2025; 484:115518. [PMID: 40024485 DOI: 10.1016/j.bbr.2025.115518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
The hippocampus is well recognized for its significant contributions to learning, memory formation, and emotional regulation. In addition, it was approved by several studies that hippocampus plays a pivotal role in pain modulation; however, the exact mechanism has not yet been identified. In the current research, effects of microinjection of muscarinic M1 cholinergic agents into the CA1 region of the hippocampus in orofacial nociception evoked by formalin and corresponding memory impairment were investigated. Left and right sides of the hippocampus were implanted by guide cannulas. Orofacial nociception was elicited through subcutaneously injection of formalin (1.5 %) solution into the pad of vibrissa region. Evaluating memory was conducted with Morris water maze (MWM). Microinjections of McN-A-343 (a selective agonist of muscarinic M1 receptors) attenuated the both phases of orofacial nociceptive behavior, face rubbing. This effect of McN-A-343 was blocked by prior microinjection of pirenzepine (an antagonist of muscarinic receptors). On the other hand, McN-A-343 and pirenzepine increased and decreased traveled time as well as traveled distance in target zone of MWM, respectively. Additionally, McN-A-343 improved the memory deficits caused by orofacial nociception. Our results indicate that muscarinic acetylcholine receptors contribute significantly in the hippocampal modulation of orofacial nociception and related memory impairment.
Collapse
Affiliation(s)
- Amir Erfanparast
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran.
| | - Esmaeal Tamaddonfard
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran
| | - Sina Tamaddonfard
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran
| | - Behzad Firooznia
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran
| | - Ali Hatami-Marandi
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran
| |
Collapse
|
2
|
Faldu KG, Shah JS. Ambroxol Improves Amyloidogenic, NF-κB, and Nrf2 Pathways in a Scopolamine-Induced Cognitive Impairment Rat Model of Alzheimer's Disease. Drug Dev Res 2024; 85:e70017. [PMID: 39533780 DOI: 10.1002/ddr.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Ambroxol (ABX) is used to manage excessive production of mucus in the respiratory system. The present study sought to assess the neuroprotective potential of ambroxol by influencing the amyloidogenic, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways in a rat model of Alzheimer's disease (AD) induced by scopolamine. The AD pathology was induced by chronic administration of scopolamine. The rats were given scopolamine at a dose of 2 mg/kg via intraperitoneal injection daily for 14 days, followed by treatment (ABX 121.5, 135, and 180 mg/kg orally and 5 mg/kg orally of donepezil) for the next 28 days while continuing to receive daily scopolamine injection. The behavior of the rats was evaluated using Modified Y-Maze and Novel object recognition tasks. Analyses were carried out on AD pathological markers [Amyloid beta peptide 1-40, Amyloid beta peptide 1-42, acetylcholinesterase, beta-secretase 1 (BACE1), total tau, and p-tau], inflammatory markers [NF-κB, tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interferon γ], antioxidant markers (Nrf2 and heme Oxygenase 1 (HO-1)], along with synaptophysin and glial fibrillary acidic protein (GFAP) immunohistochemistry and histopathological assessment of the hippocampus. Our findings indicated that ABX reduced impairment in behavior. Levels of Acetylcholinesterase, BACE1, amyloid beta 1-40, amyloid beta 1-42, total tau, p-tau, NF-κB, IFN-γ, IL-6, and TNF-α decreased significantly. There was a significant increase in the levels of HO-1 and Nrf2. It stopped the neuronal degeneration, raised synaptophysin immunoreactivity, and lowered GFAP immunoreactivity. The current research indicates that ambroxol may possess senomorphic properties by impacting the transcription factors NF-κB and senescence-associated secretory phenotype (SASP). Consequently, it could provide neuroprotection through alterations in the Nrf2 and NF-κB signaling pathways in AD.
Collapse
Affiliation(s)
- Khushboo Govind Faldu
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigna Samir Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
3
|
Holanda VAD, Oliveira MC, de Oliveira Torres CI, de Almeida Moura C, Belchior H, da Silva Junior ED, Gavioli EC. The alpha 1A antagonist tamsulosin impairs memory acquisition, consolidation and retrieval in a novel object recognition task in mice. Behav Brain Res 2024; 469:115027. [PMID: 38697302 DOI: 10.1016/j.bbr.2024.115027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Tamsulosin is an α1-adrenoceptor antagonist used to treat benign prostatic hyperplasia. This drug exhibits high affinity for α1A- and α1D-adrenoceptor subtypes, which are also expressed in the brain. While dementia symptoms have been reported after administration of tamsulosin in humans, studies on its effects on the rodent brain are still rare. The present study investigated the effects of tamsulosin (and biperiden, an amnesic drug) on cognitive performance in the object recognition task (ORT). Tamsulosin (0.001-0.01 mg/kg) was orally administrated in mice at three distinct time points: pre-training, post-training and pre-test session. Tamsulosin 0.01 mg/kg impaired object recognition regardless of when it was injected, whereas at lower doses did not affect mouse performance in the ORT. Biperiden also impaired acquisition and consolidation of object recognition in mice. Furthermore, the effects of tamsulosin on locomotion, motivation and anxiety were excluded as potential confounding factors. At all doses tested, tamsulosin did not alter distance moved, time spent exploring objects in the ORT, and anxiety-related behaviors in the elevated plus-maze test. By contrast, diazepam evoked a significant reduction of anxiety-like behaviours. In conclusion, tamsulosin impaired memory acquisition, consolidation and retrieval in an object recognition task in mice, thus affecting memory performance in a non-specific phase manner. These findings contribute to our understanding of the potential adverse effects of tamsulosin, and shed light on the role played by α1-adrenoceptors, particularly α1A- subtype, in cognitive processes.
Collapse
Affiliation(s)
- Victor A D Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Campus Universitário, Lagoa Nova, Natal 59078-900, Brazil
| | - Matheus C Oliveira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Campus Universitário, Lagoa Nova, Natal 59078-900, Brazil
| | - Carina I de Oliveira Torres
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Campus Universitário, Lagoa Nova, Natal 59078-900, Brazil
| | - Clarissa de Almeida Moura
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Campus Universitário, Lagoa Nova, Natal 59078-900, Brazil
| | - Hindiael Belchior
- Department of Physical Education, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Campus Universitário, Lagoa Nova, Natal 59078-900, Brazil
| | - Edilson D da Silva Junior
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Campus Universitário, Lagoa Nova, Natal 59078-900, Brazil
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Campus Universitário, Lagoa Nova, Natal 59078-900, Brazil.
| |
Collapse
|
4
|
Hajimohammadi S, Soodi M, Hajimehdipoor H, Sefidbakht S, Mashhadi Sharif N. Ferulago Angulata methanolic extract ameliorates scopolamine-induced memory impairment through the inhibition of hippocampal monoamine oxidase activity. Metab Brain Dis 2024; 39:691-703. [PMID: 38722561 DOI: 10.1007/s11011-024-01353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Ferulago angulata is a medicinal herb from the Apiaceae family known for its antioxidant, anti-apoptotic, and neuroprotective properties. This study aimed to assess the effects of F. angulata extract on neurobehavioral and biochemical parameters in scopolamine-induced amnesic rats. Fifty-six male Wistar rats were divided into seven groups and orally treated with F. angulata extract (100, 200, 400 mg/kg) and Rivastigmine (1.5 mg/kg) for 10 days. Starting on the sixth day of treatment, the Morris water maze behavioral study was conducted to evaluate cognitive function, with scopolamine administered 30 min before training. Biochemical assays, including monoamine oxidase and oxidative stress measures, were performed on hippocampal tissue. Results showed that extract treatment significantly attenuated scopolamine-induced memory impairment in a dose-dependent manner. Following scopolamine administration, malondialdehyde levels and monoamine oxidase A/B activity increased, while total thiol content and catalase activity decreased compared to the control group. Pretreatment with F. angulata extracts ameliorated the scopolamine-induced impairment in all factors. Toxicological evaluation of liver, lung, heart, and kidney tissues did not indicate any side effects at high doses. The total extract of F. angulata prevents scopolamine-induced learning and memory impairment through antioxidant mechanisms and inhibition of monoamine oxidase. These results suggest that F. angulata extract is effective in the scopolamine model and could be a promising agent for preventing dementia, especially Alzheimer's disease.
Collapse
Affiliation(s)
- Samaneh Hajimohammadi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maliheh Soodi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran.
| | - Homa Hajimehdipoor
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salma Sefidbakht
- Department of Pathology, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
5
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, AlAseeri AA, Alruwaili M, Saad HM, Batiha GE. BDNF/TrkB activators in Parkinson's disease: A new therapeutic strategy. J Cell Mol Med 2024; 28:e18368. [PMID: 38752280 PMCID: PMC11096816 DOI: 10.1111/jcmm.18368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Research and DevelopmentFunogenAthensGreece
- Department of Research and DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Ali Abdullah AlAseeri
- Department of Internal MedicineCollege of Medicine, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
6
|
Faldu KG, Patel SS, Shah JS. Celastrus paniculatus oil ameliorates NF-KB mediated neuroinflammation and synaptic plasticity in the scopolamine-induced cognitive impairment rat model. Metab Brain Dis 2023; 38:1405-1419. [PMID: 36809523 DOI: 10.1007/s11011-023-01186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND AND AIM Traditionally, Celastrus paniculatus Willd. (CP) oil has been utilized as a tranquilizer and memory enhancer. The present study investigated the neuropharmacological activity and efficacy of CP oil in ameliorating scopolamine-induced cognitive impairment in rats. EXPERIMENTAL PROCEDURE Cognitive deficiency was induced in rats by administration of scopolamine (2 mg/kg intraperitoneal injection) for a period of 15 days. Donepezil served as a reference drug and CP oil was tested as both preventive and curative treatments. Animals' behaviour was assessed through the Morris water maze (MWM), novel object preference (NOR), and conditioned avoidance (CA) tests. Oxidative stress parameters, bioamine concentration (dopamine, noradrenaline, and 5-hydroxytryptamine), nerve growth factor (NGF), interleukin-6 (IL-6), nuclear factor kappa B (NF-кB), and tumor necrosis factor-alpha (TNFα) were estimated. Synaptophysin immunohistochemistry was performed. RESULTS Our results showed that CP oil ameliorated behavioural deficits. It reduced latency to find a hidden platform in MWM. Reduced novel object exploration time and discrimination index (p < 0.05) in the NOR. Reduced step-down latency and normalized conditioned avoidance response (p < 0.001) in the CA test. CP oil increased dopamine, serotonin, norepinephrine, superoxide dismutase (SOD), glutathione, and catalase levels. It decreased malondialdehyde (MDA), acetylcholinesterase activity, IL-6, NF-кB (P < 0.001), TNFα, and NGF levels. Treatment showed approximate typical reactivity to synaptophysin. CONCLUSION Our data is suggestive that CP oil treatment improves behavioural test outcomes, increases biogenic amine concentration, and decreases acetylcholinesterase activity, and neuroinflammatory biomarkers. It also restores synaptic plasticity. It thus improves cognitive functions against scopolamine-induced amnesia in rats by improving cholinergic function.
Collapse
Affiliation(s)
- Khushboo Govind Faldu
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Hwy, 382481, Gota, Ahmedabad, Gujarat, India
| | | | - Jigna Samir Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Hwy, 382481, Gota, Ahmedabad, Gujarat, India.
| |
Collapse
|
7
|
Patel P, Faldu K, Borisa A, Bhatt H, Shah J. Insights of Valacyclovir in Treatment of Alzheimer's Disease: Computational Docking Studies and Scopolamine Rat Model. Curr Neurovasc Res 2022; 19:344-357. [PMID: 36089794 DOI: 10.2174/1567202619666220908125125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's Disease (AD) impairs memory and cognitive functions in the geriatric population and is characterized by intracellular deposition of neurofibrillary tangles, extracellular deposition of amyloid plaques, and neuronal degeneration. Literature suggests that latent viral infections in the brain act as prions and promote neurodegeneration. Memantine possesses both anti-viral and N-methyl-D-aspartate (NMDA) receptor antagonistic activity. OBJECTIVES This research was designed to evaluate the efficacy of antiviral agents, especially valacyclovir, a prodrug of acyclovir in ameliorating the pathology of AD based on the presumption that anti-viral agents targeting the Herpes Simplex Virus (HSV) can have a protective effect on neurodegenerative diseases like Alzheimer's disease. METHODS Thus, we evaluated acyclovir's potential activity by in-silico computational docking studies against acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase 1 (BACE-1). These findings were further evaluated by in-vivo scopolamine-induced cognitive impairment in rats. Two doses of valacyclovir, a prodrug of acyclovir (100 mg/kg and 150 mg/kg orally) were tested. RESULTS Genetic Optimisation for Ligand Docking scores and fitness scores of acyclovir were comparable to donepezil. Valacyclovir improved neurobehavioral markers. It inhibited AChE and BuChE (p<0.001) enzymes. It also possessed disease-modifying efficacy as it decreased the levels of BACE-1 (p<0.001), amyloid beta 1-42 (p<0.001), amyloid beta 1-40 (p<0.001), phosphorylatedtau (p<0.001), neprilysin (p<0.01), and insulin-degrading enzyme. It ameliorated neuroinflammation through decreased levels of tumour necrosis factor α (p<0.001), nuclear factor-kappa B (p<0.001), interleukin 6 (p<0.001), interleukin 1 beta (p<0.001), and interferon-gamma (p<0.001). It also maintained synaptic plasticity and consolidated memory. Histopathology showed that valacyclovir could restore cellular density and also preserve the dentate gyrus. CONCLUSION Valacyclovir showed comparable activity to donepezil and thus can be further researched for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Parmi Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Khushboo Faldu
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Ankit Borisa
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Hardik Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
8
|
Vaidya S, Guerin AA, Walker LC, Lawrence AJ. Clinical Effectiveness of Muscarinic Receptor-Targeted Interventions in Neuropsychiatric Disorders: A Systematic Review. CNS Drugs 2022; 36:1171-1206. [PMID: 36269510 PMCID: PMC9653329 DOI: 10.1007/s40263-022-00964-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND For decades, treatment of mood disorders, psychoses, anxiety and dementia have been confounded by limited efficacy and high rates of treatment resistance. Preclinical and clinical evidence have highlighted disruption of cholinergic signalling in several neuropsychiatric conditions and examined intervention strategies including acetylcholinesterase inhibitors and nicotinic receptor-targeted intervention. However, the effectiveness of these approaches is often curtailed by on-target side effects. Post mortem studies implicate muscarinic receptor dysregulation in neuropsychiatric pathophysiology; therefore, we conducted a systematic review and meta-analysis to investigate the therapeutic efficacy and safety of muscarinic receptor-targeted interventions in adults with neuropsychiatric disorders. METHODS PubMed, EMBASE, PsycINFO, EBSCO and Web of Science were searched using relevant keywords from database inception to 7 August 2022. Randomised, double-blind, placebo-controlled studies were included if they investigated the effect of muscarinic receptor-targeted intervention in adults with a diagnosis of a neuropsychiatric disorder and were published in English. A narrative synthesis approach was adopted to describe the findings. Wherever three or more studies with a similar intervention were available, effect sizes were calculated, and a meta-analysis was performed. Cochrane risk-of-bias-2 tool was utilised to assess the risk of bias, and sensitivity analyses were performed to identify publication bias. Certainty analysis (high, moderate, low and/or very low) was conducted using GRADE criteria. RESULTS Overall, 33 studies met the inclusion criteria and 5 were included in the meta-analysis. Despite a limited pool with several different interventions, we found therapeutic efficacy of xanomeline (M1/M4 agonist) in primary psychotic disorders plus behavioural and psychological symptoms of dementia. Scopolamine showed a significant antidepressant effect in a combined cohort of major depressive and bipolar disorders in the short-term outcome measure, but no effect following cessation of treatment. Results from bias assessments suggest "very low" certainty in the antidepressant effect of scopolamine. Critical limitations of the current literature included low power, high heterogeneity in the patient population and a lack of active comparators. CONCLUSION While the results are not definitive, findings on muscarinic receptor-targeted interventions in several mental disorders are promising in terms of efficacy and safety, specifically in treating schizophrenia, mood disorders, and behavioural and psychiatric symptoms of Alzheimer's disease. However, orthosteric muscarinic receptor-targeted interventions are associated with a range of peripheral adverse effects that are thought to be mediated via M2/M3 receptors. The orthosteric binding site of muscarinic acetylcholine receptors is remarkably conserved, posing a challenge for subtype-selective interventions; nonetheless allosteric ligands with biased signalling pathways are now in development. We conclude that adequately powered prospective studies with subtype-selective interventions are required to determine the clinical effectiveness of muscarinic-receptor targeted interventions for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shivani Vaidya
- Florey Institute of Neuroscience & Mental Health, Royal Parade, Parkville, VIC 3010 Australia ,Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC 3010 Australia
| | - Alexandre A. Guerin
- Centre for Youth Mental Health, University of Melbourne, 35 Poplar Rd, Parkville, VIC 3052 Australia ,Orygen, 35 Poplar Rd, Parkville, VIC 3052 Australia
| | - Leigh C. Walker
- Florey Institute of Neuroscience & Mental Health, Royal Parade, Parkville, VIC 3010 Australia ,Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC 3010 Australia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience & Mental Health, Royal Parade, Parkville, VIC 3010 Australia ,Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|