1
|
Rabiee R, Hosseini Hooshiar S, Ghaderi A, Jafarnejad S. Schizophrenia, Curcumin and Minimizing Side Effects of Antipsychotic Drugs: Possible Mechanisms. Neurochem Res 2023; 48:713-724. [PMID: 36357748 DOI: 10.1007/s11064-022-03798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/12/2022]
Abstract
Schizophrenia is a mental disorder characterized by episodes of psychosis; major symptoms include hallucinations, delusions, and disorganized thinking. More recent theories focus on particular disorders of interneurons, dysfunctions in the immune system, abnormalities in the formation of myelin, and augmented oxidative stress that lead to alterations in brain structure. Decreased dopaminergic activity and increased phospholipid metabolism in the prefrontal cortex might be involved in schizophrenia. Antipsychotic drugs used to treat schizophrenia have many side effects. Alternative therapy such as curcumin (CUR) can reduce the severity of symptoms without significant side effects. CUR has important therapeutic properties such as antioxidant, anti-mutagenic, anti-inflammatory, and antimicrobial functions and protection of the nervous system. Also, the ability of CUR to pass the blood-brain barrier raises new hopes for neuroprotection. CUR can improve and prevent further probable neurological and behavioral disorders in patients with schizophrenia. It decreases the side effects of neuroleptics and retains lipid homeostasis. CUR increases the level of brain-derived neurotrophic factor and improves hyperkinetic movement disorders. CUR may act as an added counteraction mechanism to retain cell integrity and defense against free radical injury. Thus it appears to have therapeutic potential for improvement of schizophrenia. In this study, we review several properties of CUR and its ability to improve schizophrenia and minimize the side effects of antipsychotic drugs, and we explore the underlying mechanisms by which CUR affects schizophrenia and its symptoms.
Collapse
Affiliation(s)
- Reyhaneh Rabiee
- Student Research Committee, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeedeh Hosseini Hooshiar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine and Clinical Research Development Unit, Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
2
|
Zhou XH, Zhang CC, Wang L, Jin SL. Remimazolam induced cognitive dysfunction in mice via glutamate excitotoxicity. Transl Neurosci 2022; 13:104-115. [PMID: 35734308 PMCID: PMC9164290 DOI: 10.1515/tnsci-2022-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Several lines of evidence demonstrated the role of anesthetic drugs in cognitive functions. Some anesthetic agents have been confirmed to be associated with long-term spatial memory and learning in aged animal models. Methods C57BL/6 mice were divided into four different groups based on different concentrations of remimazolam treatments. Behavioral phenotype was observed by open field, rota rod, Morris water maze, and elevated plus maze test. Western blot was performed to see the expression pattern of different proteins. Confocal microscopy images were taken for neuronal and glial cells to see the effect of remimazolam on CNS cells. Results We showed that remimazolam, a new anesthetic drug, impaired cognitive behavior. Repetitive doses of remimazolam have been found to induce neuronal loss with a significant change in morphology. Here, we showed that a higher concentration of remimazolam had a significant effect on CNS cell activation. We showed that remimazolam caused memory dysfunction by inducing neuronal apoptosis via glutamate excitotoxicity. It also exhibited amyloid β plaque in the brain via abnormal phosphorylation of tau protein. Remimazolam-mediated regulation of glial cells in mouse cortex was observed and robust activation of astrocytes and microglial cells was found. Finally, we assessed the behavioral phenotype of mice and found that treatment with remimazolam induced significant behavioral changes and memory dysfunction. Conclusions This study provides insight into the mechanism of anesthetic drug-induced memory deficits and may help improve the therapeutic effects of anesthesia agents in clinical applications.
Collapse
Affiliation(s)
- Xin-hua Zhou
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai 201900, China
| | - Cheng-cheng Zhang
- Department of Anesthesiology, Changhai Hospital, The Naval Medical University, Shanghai 200433, China
| | - Ling Wang
- Department of Anesthesiology, Changhai Hospital, The Naval Medical University, Shanghai 200433, China
| | - Shan-liang Jin
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai 201900, China
| |
Collapse
|
3
|
Dose related effects of buspirone on pain, learning / memory and food intake. Regul Toxicol Pharmacol 2018; 99:182-190. [PMID: 30244043 DOI: 10.1016/j.yrtph.2018.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/17/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022]
Abstract
The present study concerned extending the therapeutic use of buspirone for treating pain and improving cognition. Effects of single and repeated administration of buspirone were therefore monitored on pain threshold in the hot plate test and on spatial memory in the water maze test in rats. Effects on cumulative food intake were also monitored. The drug was administered intraperitoneally in doses of 0.1, 0.3, 1.0 and 2.0 mg/kg. We found that single and repeated administration of buspirone in doses of 0.1 mg/kg decreased pain threshold in the hot plate test, while doses of 1.0 and 2.0 mg/kg increased it. Effects of single and repeated administration were not different. A dose of 0.3 mg/kg had no effect. Food intake increased following single as well as repeated administration of 0.1 mg/kg buspirone; higher doses had no effect. Low doses (0.1 and 0.3 mg/kg) improved acquisition and retention of memory in the water maze test, while memory extinction was reduced. Higher doses had either no effect (1.0 mg/kg) or impaired (2.0 mg/kg) performance in this test. The results suggest potential therapeutic use of selected doses of buspirone as an analgesic and nootropic drug.
Collapse
|
4
|
Haleem DJ, Nawaz S, Salman T. Dopamine and serotonin metabolism associated with morphine reward and its inhibition with buspirone: A study in the rat striatum. Pharmacol Biochem Behav 2018; 170:71-78. [PMID: 29782941 DOI: 10.1016/j.pbb.2018.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023]
Abstract
Adaptations within the nucleus accumbens (NAc) and caudate nucleus (CN) dopamine neurotransmission are involved in behavioral sensitization and enhanced incentive motivation towards drug paired stimuli which lead to drug addiction. Serotonin (5-hydroxytryptamine; 5-HT) can modulate dopamine neurotransmission to reduce rewarding effects of drugs of abuse. A recent study from our laboratory shows that rewarding effects of morphine are inhibited in rats co-treated with buspirone. To understand the neurochemical mechanism involved in morphine addiction and its inhibition with buspirone, present study determines the effects of buspirone, morphine and their co-administration on the metabolism of serotonin and dopamine in the NAc and CN. We find that rewarding effects of morphine are associated with an enhancement and attenuation of dopamine metabolism, respectively in the CN and NAc. Serotonin metabolism is enhanced in both regions. Co-administration of buspirone not only prevents rewarding effects of morphine, but its effects on the metabolism of dopamine and serotonin in the NAc and CN are also reversed. Results suggest that 5-HT1A receptor dependent modulation of dopamine neurotransmission in the CN and NAc is involved in the modulation of the rewarding effects of morphine in buspirone co-treated animals. The findings documenting an important role of 5-HT1A receptors in drug addiction suggest that synthetic opioid drugs with agonist activity of 5-HT1A receptors may prove non addictive analgesics.
Collapse
Affiliation(s)
- Darakhshan Jabeen Haleem
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| | - Shazia Nawaz
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Tabinda Salman
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
5
|
Malik T, Hasan S, Pervez S, Fatima T, Haleem DJ. Nigella sativa Oil Reduces Extrapyramidal Symptoms (EPS)-Like Behavior in Haloperidol-Treated Rats. Neurochem Res 2016; 41:3386-3398. [PMID: 27752803 DOI: 10.1007/s11064-016-2073-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/28/2016] [Accepted: 09/06/2016] [Indexed: 11/28/2022]
Abstract
The symptoms of Parkinsonism and oral dyskinesia have been showing to be induced by neuroleptics that significantly affect its clinical use. In this study, we investigate whether Nigella sativa-oil (NS) (black cumin seeds)-a traditional medicine used for the seizure treatment in eastern country-may reduce the haloperidol (HAL)-induced extrapyramidal symptoms (EPS)-like behavior in rats. After combine treatment with HAL (1 mg/kg) on NS (0.2 ml/rat), rats displayed a significant decreased EPS-like behavior including movement disorders and oral dyskinesia as compared to controls. Immunohistochemical analysis indicates that NS reduced astrogliosis in caudate and accumbens nuclei. These results suggest that NS may consider as an adjunct to antipsychotics to reduce the EPS-like side effect.
Collapse
Affiliation(s)
- Tafheem Malik
- Neurochemistry and Biochemical Neuropharmacology Unit, Department of Biochemistry, The University of Karachi, Karachi, 75270, Pakistan. .,Basic Sciences, Physiology, National University of Health Sciences, Lombard, IL, USA. .,Histopathology Unit, Department of Pathology and Microbiology, The Aga Khan University Hospital, Karachi, Pakistan.
| | - Sheema Hasan
- Histopathology Unit, Department of Pathology and Microbiology, The Aga Khan University Hospital, Karachi, Pakistan
| | - Shahid Pervez
- Histopathology Unit, Department of Pathology and Microbiology, The Aga Khan University Hospital, Karachi, Pakistan
| | - Tasneem Fatima
- Department of Anatomy, United Medical and Dental College, Karachi, Pakistan
| | - Darakhshan Jabeen Haleem
- Neurochemistry and Biochemical Neuropharmacology Unit, Department of Biochemistry, The University of Karachi, Karachi, 75270, Pakistan.,Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine and Drug Research, The University of Karachi, Karachi, Pakistan
| |
Collapse
|
6
|
Inhibition of Reinforcing, Hyperalgesic, and Motor Effects of Morphine by Buspirone in Rats. THE JOURNAL OF PAIN 2016; 18:19-28. [PMID: 27742411 DOI: 10.1016/j.jpain.2016.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 01/14/2023]
Abstract
Morphine and other opioids are among the most effective prescription medications for the treatment of pain. Addiction and hyperalgesia associated with their long-term use limits the clinical utility of these drugs. In view of a role of somatodendritic serotonin-1A receptors in addiction and analgesic effects of morphine, the present study concerns effects of co-use of buspirone, a partial agonist at the serotonin-1A receptor, on reinforcing, hyperalgesic, and motor effects of morphine in rats. A dose of morphine (7.5 mg/kg) producing moderate effects on motor activity and analgesia, and buspirone (doses of 0, 1.0, and 2.0 mg/kg) were injected intraperitoneally. Reinforcing effects were monitored in a conditioned place preference (CPP) paradigm and associated changes in motor activity were monitored during a drug conditioning phase. The hot plate test was used to monitor nociceptive response. Acute administration of morphine decreased motor activity and reduced pain perception. Repeated administration was reinforcing in the CPP paradigm and was associated with hyperalgesia and tolerance in motor depressant effects of morphine. These effects of repeated morphine administration were blocked in rats cotreated with buspirone. Pain perception was also slightly reduced in rats repeatedly treated with higher doses of buspirone. The findings are important for improving and extending therapeutic medications for pain. PERSPECTIVE The present study shows an important role of serotonin-1A receptors in morphine-induced hyperalgesia and addiction. It shows that buspirone, a prescription medicine for anxiety and depression can block addictive and hyperalgesic effects of morphine. Clinicians should consider buspirone as adjunctive therapy with morphine to improve therapeutic medications in pain.
Collapse
|
7
|
Farhan M, Haleem DJ. Anxiolytic profile of fluoxetine as monitored following repeated administration in animal rat model of chronic mild stress. Saudi Pharm J 2016; 24:571-578. [PMID: 27752230 PMCID: PMC5059824 DOI: 10.1016/j.jsps.2015.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/13/2015] [Indexed: 11/30/2022] Open
Abstract
Background: Fluoxetine, a selective serotonin re-uptake inhibitor (SSRI), has been proposed to be more effective as an antidepressive drug as compared to other SSRIs. After chronic SSRI administration, the increase in synaptic levels of 5-HT leads to desensitization of somatodentritic 5-HT autoreceptors in the raphe nuclei. Chronic stress may alter behavioral, neurochemical and physiological responses to drug challenges and novel stressors. Methods: Twenty four male rats were used in this study. Animals of CMS group were exposed to CMS. Animals of stressed and unstressed group were administrated with fluoxetine at dose of 1.0 mg/kg s well as 5.0 mg/kg repeatedly for 07 days 1 h before exposed to CMS. The objective of the present study was to evaluate that repeated treatment with fluoxetine could attenuate CMS-induced behavioral deficits. Results: Treatment with fluoxetine attenuated CMS-induced behavioral deficits. Fluoxetine administration induced hypophagia in unstressed as well as CMS rats. Acute and repeated administration of fluoxetine increased motor activity in familiar environment but only repeated administration increased exploratory activity in open field. Anxiolytic effects of fluoxetine were greater in unstressed rats. These anxiolytic effects were produced as result of repeated administration not on acute administration of fluoxetine at 1.0 mg/kg as well as 5.0 mg/kg. Conclusion: The present study demonstrated that CMS exposure resulted into behavioral deficits and produced depressive-like symptoms. Fluoxetine, an SSRI, administration attenuated behavioral deficits induced by CMS. Anxiolytic effects of repeated fluoxetine administration were greater in unstressed than CMS animals.
Collapse
Affiliation(s)
- Muhammad Farhan
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Darakshan Jabeen Haleem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
8
|
Abstract
Antipsychotic drugs are extensively prescribed for the treatment of schizophrenia and other related psychiatric disorders. These drugs produced their action by blocking dopamine (DA) receptors, and these receptors are widely present throughout the brain. Therefore, extended antipsychotic use also leads to severe extrapyramidal side effects. The short-term effects include parkinsonism and the later appearing tardive dyskinesia. Currently available treatments for these disorders are mostly symptomatic and insufficient, and are often linked with a number of detrimental side effects. Antipsychotic-drug-induced tardive dyskinesia prompted researchers to explore novel drugs with fewer undesirable extrapyramidal side effects. Preclinical studies suggest a role of 5-hydroxytryptamine (serotonin)-1A and 2A/2C receptors in the modulation of dopaminergic neurotransmission and motivating a search for better therapeutic strategies for schizophrenia and related disorders. In addition, adjunctive treatment with antioxidants such as vitamin E, red rice bran oil, and curcumin in the early phases of illness may prevent additional oxidative injury, and thus improve and prevent further possible worsening of related neurological and behavioral deficits in schizophrenia. This review explains the role of serotonergic receptors and oxidative stress, with the aim of providing principles for prospect development of compounds to improve therapeutic effects of antischizophrenic drugs.
Collapse
Affiliation(s)
- Erum Shireen
- Department of Biochemistry, Neurochemistry and Biochemical Neuropharmacology Research Laboratory, University of Karachi, Karachi, Pakistan
| |
Collapse
|
9
|
Sonego AB, Gomes FV, Del Bel EA, Guimaraes FS. Cannabidiol attenuates haloperidol-induced catalepsy and c-Fos protein expression in the dorsolateral striatum via 5-HT1A receptors in mice. Behav Brain Res 2016; 309:22-8. [DOI: 10.1016/j.bbr.2016.04.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 11/15/2022]
|
10
|
Di Giovanni G, De Deurwaerdère P. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol Ther 2015; 157:125-62. [PMID: 26617215 DOI: 10.1016/j.pharmthera.2015.11.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293) 33076 Bordeaux Cedex, France.
| |
Collapse
|
11
|
Inhibition of apomorphine-induced behavioral sensitization in rats pretreated with fluoxetine. Behav Pharmacol 2015; 26:159-66. [PMID: 24755891 DOI: 10.1097/fbp.0000000000000040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite a number of clinically useful effects, there is growing evidence that psychosis and impulse control disorders develop in patients on apomorphine therapy. Evidence suggests a critical role of serotonin-1A receptors in psychosis, drug abuse, and in the mechanism of action of the prototypical selective serotonin reuptake inhibitor fluoxetine. We investigated whether fluoxetine can prevent apomorphine-induced behavioral sensitization in a rat model of psychosis. Animals treated with fluoxetine (5 and 10 mg/kg) for 2 weeks were subsequently cotreated with apomorphine (1.0 mg/kg) for 7 days. A single injection of apomorphine increased motor activity, whereas repeated daily injections produced a progressive sensitization of motor behavior. The sensitization effects of apomorphine did not occur in fluoxetine-pretreated and subsequently cotreated animals. To further elucidate the mechanism involved in the inhibition of apomorphine sensitization in fluoxetine-treated animals, we found that apomorphine-induced motor behavior was much greater in repeated apomorphine-treated than repeated saline-treated animals. It was also greater in apomorphine and fluoxetine-cotreated animals, but not in animals pretreated and cotreated with fluoxetine. The mechanism involved in the inhibition of apomorphine sensitization in fluoxetine-pretreated animals is discussed. The findings introduce an innovative approach for extending the therapeutic use of apomorphine and classical psychostimulant drugs.
Collapse
|
12
|
Muhammad Farhan, Hamna Rafiq, Hira Rafi. Prevalence of Depression in Animal Model of High Fat Diet Induced Obesity. JOURNAL OF PHARMACY AND NUTRITION SCIENCES 2015; 5:208-215. [DOI: 10.6000/1927-5951.2015.05.03.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The prevalence of obesity is substantially increased in developing countries and it is considerably associated with type 2 diabetes (T2DM), dyslipidemia, and hypertension. These symptoms are clustered to form metabolic syndrome. In accordance with the Researchers opinion, obese people are more likely to suffer from depression, a mental affliction that appears due to chronic stress, disturbs thoughts, behavior, and feelings. It has been addressed that the physiological impairments which are undergoing due to obesity can affect the metabolic activities which in turn give impact on brain and affect it’s functioning, because obesity itself seems to constitute a chronic stressful state thus, exacerbates the risk of depression. Present study intended to illuminate the anticipated links between obesity and stress. To make possible the study, animal model of obesity was accomplished by subjecting the Albino wistar rats with energy-dense diet (high fat diet) for 5 weeks; later on, chronic mild stress paradigm was implemented along with high fat feeding for 2 weeks. As expected, high fat feeding increased the adiposity in rodents. Obese animals presented the depressive symptoms more prominent than normal fat feeding rats. Present findings suggest that obesity could increase the depressive symptoms potentially involve in the recruitment of depression.
Collapse
|
13
|
5-HT1A receptor-dependent control of nigrostriatal dopamine neurotransmission in the pharmacotherapy of Parkinson’s disease and schizophrenia. Behav Pharmacol 2015; 26:45-58. [DOI: 10.1097/fbp.0000000000000123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
|
15
|
Inhibition of apomorphine-induced conditioned place preference in rats co-injected with buspirone: relationship with serotonin and dopamine in the striatum. Brain Res 2014; 1586:73-82. [PMID: 25160128 DOI: 10.1016/j.brainres.2014.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 11/21/2022]
Abstract
Apomorphine is a non-narcotic derivative of morphine, which acts as a dopamine agonist to produce psychostimulant like effects. Currently, apomorphine is used in patients with advanced Parkinson׳s disease, for the treatment of persistent and disabling motor fluctuations, but a constellation of addictive syndromes such as excessive over use of medication, compulsive behaviors, and disturbances of impulse control are noticed in certain patients. Research on rodent models using conditioned place preference (CPP) paradigm also shows that the drug is rewarding. Previously we have shown that repeated administration of apomorphine produces behavioral sensitization which is prevented in rats co-injected with a low (1.0mg/kg) but not higher (2.0mg/kg) dose of buspirone. The present study shows that rewarding effects of apomorphine (1.0mg/kg) in a CPP paradigm are also blocked in rats co-injected with a low (1.0mg/kg) but not higher (2.0mg/kg) dose of buspirone. The levels of serotonin and its metabolite are decreased in the caudate as well as nucleus accumbens of rats exhibiting CPP and the decreases do not occur in animals co-injected with low or higher dose of buspirone. The levels of dopamine and its metabolites are not affected in animals exhibiting CPP; administration as well as co-administration of higher dose of buspirone decreased dopamine metabolism in the caudate as well as nucleus accumbens. The findings suggest a critical role of serotonin in the rewarding effects of apomorphine and imply that co-use of buspirone at low doses can help to control addictive syndromes in Parkinson׳s disease patients on apomorphine therapy.
Collapse
|
16
|
Haleem DJ. Extending therapeutic use of psychostimulants: focus on serotonin-1A receptor. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:170-80. [PMID: 23906987 DOI: 10.1016/j.pnpbp.2013.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/02/2013] [Accepted: 07/16/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Despite a number of medicinally important pharmacological effects, the therapeutic use of psychostimulants is limited because of abuse potential and psychosis following long term use. Development of pharmacological agents for improving and extending therapeutic use of psychostimulants in narcolepsy, attention deficit hyperactivity disorder, Parkinson's disease, obesity and as cognitive enhancer is an important research imperative. In this regard, one potential target system is the 5-hydroxytryptamine (5-HT; serotonin) neurotransmitter system. The focus of the present article is to evaluate a potential role of 5-HT-1A receptor in the alleviation of abuse potential and psychosis-induced by prescription psychostimulants amphetamines and apomorphine. METHOD Synaptic contacts between dopamine systems and 5-HT-1A receptors are traced. Studies on serotonin-1A influences on the modulation of dopamine neurotransmission and psychostimulant-induced behavioral sensitization are accumulated. RESULTS Inhibition of amphetamine and apomorphine-induced behavioral sensitization by co administration of 5-HT-1A agonists cannot be explained in terms of direct activation of 5-HT-1A receptors, because activation of pre- as well as postsynaptic 5-HT-1A receptors tends to increase dopamine neurotransmission. CONCLUSION Long term use of amphetamine and apomorphine produces adaptive changes in 5-HT-1A receptor mediated functions, which are prevented by the co-use of 5-HT-1A agonists. In view of extending medicinal use of psychostimulants, it is important to evaluate the effects of co-use of 5-HT-1A agonists on potential therapeutic profile of amphetamine and apomorphine in preclinical research. It is also important to evaluate the functional significance of 5-HT-1A receptors on psychostimulant-induced behaviors in other addiction models such as drug self-administration and reinstatement of drug seeking behavior.
Collapse
Affiliation(s)
- Darakhshan Jabeen Haleem
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
17
|
Lagière M, Navailles S, Bosc M, Guthrie M, Deurwaerdère PD. Serotonin2C Receptors and the Motor Control of Oral Activity. Curr Neuropharmacol 2013; 11:160-70. [PMID: 23997751 PMCID: PMC3637670 DOI: 10.2174/1570159x11311020003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/11/2012] [Accepted: 11/17/2012] [Indexed: 11/22/2022] Open
Abstract
Data from many experiments has shown that serotonin2C (5-HT2C) receptor plays a role in the control of orofacial activity in rodents. Purposeless oral movements can be elicited either by agonists or inverse agonists implying a tight control exerted by the receptor upon oral activity. The effects of agonists has been related to an action of these drugs in the subthalamic nucleus and the striatum, the two input structures for cortical efferents to the basal ganglia, a group of subcortical structures involved in the control of motor behaviors. The oral effects of agonists are dramatically enhanced in case of chronic blockade of central dopaminergic transmission induced by neuroleptics or massive destruction of dopamine neurons. The mechanisms involved in the hypersensitized oral responses to 5-HT2C agonists are not clear and deserve additional studies. Indeed, while the oral behavior triggered by 5-HT2C drugs would barely correspond to the dyskinesia observed in humans, the clinical data have consistently postulated that 5-HT2C receptors could be involved in these aberrant motor manifestations.
Collapse
Affiliation(s)
- Mélanie Lagière
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | | | | | | | | |
Collapse
|
18
|
Multiple controls exerted by 5-HT2C receptors upon basal ganglia function: from physiology to pathophysiology. Exp Brain Res 2013; 230:477-511. [PMID: 23615975 DOI: 10.1007/s00221-013-3508-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Serotonin2C (5-HT2C) receptors are expressed in the basal ganglia, a group of subcortical structures involved in the control of motor behaviour, mood and cognition. These receptors are mediating the effects of 5-HT throughout different brain areas via projections originating from midbrain raphe nuclei. A growing interest has been focusing on the function of 5-HT2C receptors in the basal ganglia because they may be involved in various diseases of basal ganglia function notably those associated with chronic impairment of dopaminergic transmission. 5-HT2C receptors act on numerous types of neurons in the basal ganglia, including dopaminergic, GABAergic, glutamatergic or cholinergic cells. Perhaps inherent to their peculiar molecular properties, the modality of controls exerted by 5-HT2C receptors over these cell populations can be phasic, tonic (dependent on the 5-HT tone) or constitutive (a spontaneous activity without the presence of the ligand). These controls are functionally organized in the basal ganglia: they are mainly localized in the input structures and preferentially distributed in the limbic/associative territories of the basal ganglia. The nature of these controls is modified in neuropsychiatric conditions such as Parkinson's disease, tardive dyskinesia or addiction. Most of the available data indicate that the function of 5-HT2C receptor is enhanced in cases of chronic alterations of dopamine neurotransmission. The review illustrates that 5-HT2C receptors play a role in maintaining continuous controls over the basal ganglia via multiple diverse actions. We will discuss their interest for treatments aimed at ameliorating current pharmacotherapies in schizophrenia, Parkinson's disease or drugs abuse.
Collapse
|
19
|
Loane C, Politis M. Buspirone: What is it all about? Brain Res 2012; 1461:111-8. [DOI: 10.1016/j.brainres.2012.04.032] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/12/2012] [Accepted: 04/17/2012] [Indexed: 11/25/2022]
|
20
|
De Deurwaerdère P, Mignon L, Chesselet MF. Physiological and Pathophysiological Aspects of 5-HT2c Receptors in Basal Ganglia. 5-HT2C RECEPTORS IN THE PATHOPHYSIOLOGY OF CNS DISEASE 2011. [DOI: 10.1007/978-1-60761-941-3_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
21
|
Coleta M, Campos MG, Cotrim MD, Lima TCMD, Cunha APD. Assessment of luteolin (3',4',5,7-tetrahydroxyflavone) neuropharmacological activity. Behav Brain Res 2007; 189:75-82. [PMID: 18249450 DOI: 10.1016/j.bbr.2007.12.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/10/2007] [Accepted: 12/13/2007] [Indexed: 10/22/2022]
Abstract
Since the discovery that certain flavonoids (namely flavones) specifically recognise the central BDZ receptors, several efforts have been made to identify naturally occurring GABA(A) receptor benzodiazepine binding site ligands. Flavonoid derivatives with a flavone-like structure such as apigenin, chrysin and wogonin have been reported for their anxiolytic-like activity in different animal models of anxiety. Luteolin (3',4',5,7-tetrahydroxyflavone) is a widespread flavonoid aglycon that was reported as devoid of specific affinity for benzodiazepine receptor (BDZ-R) binding site, but its psychopharmacological activity is presently unknown. Considering (1) the close structural similarity with other active flavones, (2) the activity of some of its glycosilated derivatives and (3) the complexity of flavonoid effects in the central nervous system, luteolin was submitted to a battery of tests designed to evaluate its possible activity upon the CNS and its ability to interact with the BDZ-receptor binding sites was also analysed. Luteolin apparently has CNS activity with anxiolytic-like effects despite the low affinity for the BDZ-R shown in vitro. Our findings suggest a possible interaction with other neurotransmitter systems but we cannot rule out the possibility that luteolin's metabolites might show a higher affinity for the BDZ-R in vivo, thus eliciting the evident anxiolytic-like effects through a GABAergic mechanism.
Collapse
Affiliation(s)
- Miguel Coleta
- Laboratory of Pharmacognosy, Center for Pharmaceutical Studies, University of Coimbra, 3000 Coimbra, Portugal.
| | | | | | | | | |
Collapse
|