1
|
Hernández-González M, de la Torre-Vázquez J, Barrera-Cobos FJ, Flores-Soto M, Guevara MA, González-Burgos I. Correlation between compulsive behaviors and plastic changes in the dendritic spines of the prefrontal cortex and dorsolateral striatum of male rats. Behav Brain Res 2024; 475:115199. [PMID: 39182621 DOI: 10.1016/j.bbr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a mental affliction characterized by compulsive behaviors often manifested in intrusive thoughts and repetitive actions. The quinpirole model has been used with rats to replicate compulsive behaviors and study the neurophysiological processes associated with this pathology. Several changes in the dendritic spines of the medial prefrontal cortex (mPFC) and dorsolateral striatum (DLS) have been related to the occurrence of compulsive behaviors. Dendritic spines regulate excitatory synaptic contacts, and their morphology is associated with various brain pathologies. The present study was designed to correlate the occurrence of compulsive behaviors (generated by administering the drug quinpirole) with the morphology of the different types of dendritic spines in the mPFC and DLS. A total of 18 male rats were used. Half were assigned to the experimental group, the other half to the control group. The former received injections of quinpirole, while the latter rats were injected with physiological saline solution, for 10 days in both cases. After the experimental treatment, the quinpirole rats exhibited all the parameters indicative of compulsive behavior and a significant correlation with the density of stubby and wide neckless spines in both the mPFC and DLS. Dendritic spines from both mPFC and DLS neurons showed plastic changes correlatively with the expression of compulsive behavior induced by quinpirole. Further studies are suggested to evaluate the involvement of glutamatergic neurotransmission in the neurobiology of OCD.
Collapse
Affiliation(s)
- Marisela Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Jahaziel de la Torre-Vázquez
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Francisco Javier Barrera-Cobos
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Mario Flores-Soto
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS. Guadalajara, Jalisco, Mexico
| | - Miguel Angel Guevara
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | | |
Collapse
|
2
|
Szechtman H, Dvorkin-Gheva A, Gomez-Marin A. A virtual library for behavioral performance in standard conditions-rodent spontaneous activity in an open field during repeated testing and after treatment with drugs or brain lesions. Gigascience 2022; 11:giac092. [PMID: 36261217 PMCID: PMC9581716 DOI: 10.1093/gigascience/giac092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Beyond their specific experiment, video records of behavior have future value-for example, as inputs for new experiments or for yet unknown types of analysis of behavior-similar to tissue or blood sample banks in life sciences where clinically derived or otherwise well-described experimental samples are stored to be available for some unknown potential future purpose. FINDINGS Research using an animal model of obsessive-compulsive disorder employed a standardized paradigm where the behavior of rats in a large open field was video recorded for 55 minutes on each test. From 43 experiments, there are 19,976 such trials that amount to over 2 years of continuous recording. In addition to videos, there are 2 video-derived raw data objects: XY locomotion coordinates and plots of animal trajectory. To motivate future use, the 3 raw data objects are annotated with a general schema-one that abstracts the data records from their particular experiment while providing, at the same time, a detailed list of independent variables bearing on behavioral performance. The raw data objects are deposited as 43 datasets but constitute, functionally, a library containing 1 large dataset. CONCLUSIONS Size and annotation schema give the library high reuse potential: in applications using machine learning techniques, statistical evaluation of subtle factors, simulation of new experiments, or as educational resource. Ultimately, the library can serve both as the seed and as the test bed to create a machine-searchable virtual library of linked open datasets for behavioral performance in defined conditions.
Collapse
Affiliation(s)
- Henry Szechtman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Alex Gomez-Marin
- Department of Systems Neurobiology, Instituto de Neurociencias (CSIC-UMH), 03550 Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|
3
|
Dorfman A, Szechtman H, Eilam D. Social interaction modulates the intensity of compulsive checking in a rat model of obsessive-compulsive disorder (OCD). Behav Brain Res 2019; 359:156-164. [DOI: 10.1016/j.bbr.2018.10.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/09/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
|
4
|
A dose-response study of separate and combined effects of the serotonin agonist 8-OH-DPAT and the dopamine agonist quinpirole on locomotor sensitization, cross-sensitization, and conditioned activity. Behav Pharmacol 2017; 27:439-50. [PMID: 26871406 DOI: 10.1097/fbp.0000000000000219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chronic treatment with the dopamine D2/D3 agonist, quinpirole, or the serotonin 1A agonist, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), induces behavioral sensitization. It is not known whether both drugs produce sensitization through a shared mechanism. Here, we examine whether quinpirole and 8-OH-DPAT show cross-sensitization and impact sensitization, as would be expected from shared mechanisms. Male rats (N=208) were assigned randomly to 16 groups formed by crossing four doses of quinpirole (0, 0.03125, 0.0625, or 0.125 mg/kg) with four doses of 8-OH-DPAT (0, 0.03125, 0.625, or 0.125 mg/kg). After a course of 10 drug treatments administered twice per week in locomotor activity chambers, all groups were challenged on separate tests with quinpirole (0.1 mg/kg), 8-OH-DPAT (0.1 mg/kg), or saline, and locomotor activity was evaluated. Challenge tests with quinpirole and 8-OHDPAT showed no cross-sensitization between the drugs. Chronic quinpirole (0.125 mg/kg) administration induced a sensitized quinpirole response that was attenuated dose-dependently by chronic 8-OH-DPAT cotreatment. Cotreatment with quinpirole (0.0625 mg/kg) and 8-OH-DPAT (all doses) induced quinpirole sensitization. Chronic 8-OH-DPAT (0.125 mg/kg) induced a sensitized 8-OHDPAT response that was prevented by chronic cotreatment with the lowest but not the highest dose of quinpirole. Cotreatment with 8-OHDPAT (0.0625) and quinpirole (0.125 mg/kg) induced sensitization to 8-OH-DPAT. The saline challenge test showed elevated locomotor activity in chronic quinpirole (0.125 mg/kg) and 8-OHDPAT (0.0625, 0.125 mg/kg) alone groups, and in seven of nine cotreated groups. The absence of cross-sensitization suggests separate mechanisms of sensitization to quinpirole and 8-OH-DPAT. Cotreatment effects suggest that induction of sensitization can be modulated by serotonin 1A and D2/D3 activity.
Collapse
|
5
|
Stuchlik A, Radostová D, Hatalova H, Vales K, Nekovarova T, Koprivova J, Svoboda J, Horacek J. Validity of Quinpirole Sensitization Rat Model of OCD: Linking Evidence from Animal and Clinical Studies. Front Behav Neurosci 2016; 10:209. [PMID: 27833539 PMCID: PMC5080285 DOI: 10.3389/fnbeh.2016.00209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/17/2016] [Indexed: 11/15/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder with 1–3% prevalence. OCD is characterized by recurrent thoughts (obsessions) and repetitive behaviors (compulsions). The pathophysiology of OCD remains unclear, stressing the importance of pre-clinical studies. The aim of this article is to critically review a proposed animal model of OCD that is characterized by the induction of compulsive checking and behavioral sensitization to the D2/D3 dopamine agonist quinpirole. Changes in this model have been reported at the level of brain structures, neurotransmitter systems and other neurophysiological aspects. In this review, we consider these alterations in relation to the clinical manifestations in OCD, with the aim to discuss and evaluate axes of validity of this model. Our analysis shows that some axes of validity of quinpirole sensitization model (QSM) are strongly supported by clinical findings, such as behavioral phenomenology or roles of brain structures. Evidence on predictive validity is contradictory and ambiguous. It is concluded that this model is useful in the context of searching for the underlying pathophysiological basis of the disorder because of the relatively strong biological similarities with OCD.
Collapse
Affiliation(s)
- Ales Stuchlik
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences Prague, Czech Republic
| | - Dominika Radostová
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences Prague, Czech Republic
| | - Hana Hatalova
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences Prague, Czech Republic
| | - Karel Vales
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of SciencesPrague, Czech Republic; National Institute of Mental HealthKlecany, Czech Republic
| | - Tereza Nekovarova
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of SciencesPrague, Czech Republic; National Institute of Mental HealthKlecany, Czech Republic
| | - Jana Koprivova
- National Institute of Mental Health Klecany, Czech Republic
| | - Jan Svoboda
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences Prague, Czech Republic
| | - Jiri Horacek
- National Institute of Mental Health Klecany, Czech Republic
| |
Collapse
|
6
|
Alonso P, López-Solà C, Real E, Segalàs C, Menchón JM. Animal models of obsessive-compulsive disorder: utility and limitations. Neuropsychiatr Dis Treat 2015; 11:1939-55. [PMID: 26346234 PMCID: PMC4531004 DOI: 10.2147/ndt.s62785] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a disabling and common neuropsychiatric condition of poorly known etiology. Many attempts have been made in the last few years to develop animal models of OCD with the aim of clarifying the genetic, neurochemical, and neuroanatomical basis of the disorder, as well as of developing novel pharmacological and neurosurgical treatments that may help to improve the prognosis of the illness. The latter goal is particularly important given that around 40% of patients with OCD do not respond to currently available therapies. This article summarizes strengths and limitations of the leading animal models of OCD including genetic, pharmacologically induced, behavioral manipulation-based, and neurodevelopmental models according to their face, construct, and predictive validity. On the basis of this evaluation, we discuss that currently labeled "animal models of OCD" should be regarded not as models of OCD but, rather, as animal models of different psychopathological processes, such as compulsivity, stereotypy, or perseverance, that are present not only in OCD but also in other psychiatric or neurological disorders. Animal models might constitute a challenging approach to study the neural and genetic mechanism of these phenomena from a trans-diagnostic perspective. Animal models are also of particular interest as tools for developing new therapeutic options for OCD, with the greatest convergence focusing on the glutamatergic system, the role of ovarian and related hormones, and the exploration of new potential targets for deep brain stimulation. Finally, future research on neurocognitive deficits associated with OCD through the use of analogous animal tasks could also provide a genuine opportunity to disentangle the complex etiology of the disorder.
Collapse
Affiliation(s)
- Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain ; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain ; Centro de Investigación en Red de Salud Mental, Carlos III Health Institute, Barcelona, Spain ; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Clara López-Solà
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain ; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain ; Centro de Investigación en Red de Salud Mental, Carlos III Health Institute, Barcelona, Spain
| | - Eva Real
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain ; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain ; Centro de Investigación en Red de Salud Mental, Carlos III Health Institute, Barcelona, Spain
| | - Cinto Segalàs
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain ; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain ; Centro de Investigación en Red de Salud Mental, Carlos III Health Institute, Barcelona, Spain
| | - José Manuel Menchón
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain ; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain ; Centro de Investigación en Red de Salud Mental, Carlos III Health Institute, Barcelona, Spain ; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Albelda N, Joel D. Animal models of obsessive-compulsive disorder: exploring pharmacology and neural substrates. Neurosci Biobehav Rev 2011; 36:47-63. [PMID: 21527287 DOI: 10.1016/j.neubiorev.2011.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 01/07/2023]
Abstract
During the last 30 years there have been many attempts to develop animal models of obsessive-compulsive disorder (OCD). Most models have not been studied further following the original publication, and in the past few years, most papers present studies employing a few established animal models, exploring the neural basis of compulsive behavior and developing new treatment strategies. Here we summarize findings from the five most studied animal models of OCD: 8-OHDPAT (8-hydroxy-2-(di-n-propylamino)-tetralin hydrobromide) induced decreased alternation, quinpirole-induced compulsive checking, marble burying, signal attenuation and spontaneous stereotypy in deer mice. We evaluate each model's face validity, derived from similarity between the behavior in the model and the specific symptoms of the human condition, predictive validity, derived from similarity in response to treatment (pharmacological or other), and construct validity, derived from similarity in the mechanism (physiological or psychological) that induces behavioral symptoms and in the neural systems involved. We present ideas regarding future clinical research based on each model's findings, and on this basis, also emphasize possible new approaches for the treatment of OCD.
Collapse
Affiliation(s)
- Noa Albelda
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel
| | | |
Collapse
|