1
|
Maximino C, van der Staay FJ. Behavioral models in psychopathology: epistemic and semantic considerations. Behav Brain Funct 2019; 15:1. [PMID: 30823933 PMCID: PMC6397463 DOI: 10.1186/s12993-019-0152-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/14/2019] [Indexed: 03/12/2023] Open
Abstract
The use of animals in neurosciences has a long history. It is considered indispensable in areas in which “translational” research is deemed invaluable, such as behavioral pharmacology and comparative psychology. Animal models are being used in pharmacology and genetics to screen for treatment targets, and in the field of experimental psychopathology to understand the neurobehavioral underpinnings of a disorder and of its putative treatment. The centrality of behavioral models betrays the complexity of the epistemic and semantic considerations which are needed to understand what a model is. In this review, such considerations are made, and the breadth of model building and evaluation approaches is extended to include theoretical considerations on the etiology of mental disorders. This expansion is expected to help improve the validity of behavioral models and to increase their translational value. Moreover, the role of theory in improving construct validity creates the need for behavioral scientists to fully engage this process.
Collapse
Affiliation(s)
- Caio Maximino
- Laboratório de Neurociências e Comportamento, Grupo de Pesquisas em Neurofarmacologia e Psicopatologia Experimental, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Unidade III - Av. dos Ipês, S/N, Marabá, Brazil
| | - Franz Josef van der Staay
- Behavior and Welfare Group, Department of Farm Animal Health, Veterinary Faculty, University Utrecht, P.O.Box 80.151, 3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Roberts LW, Tsungmey T, Kim JP, Hantke M. Views of the importance of psychiatric genetic research by potential volunteers from stakeholder groups. J Psychiatr Res 2018; 106:69-73. [PMID: 30292779 PMCID: PMC6333463 DOI: 10.1016/j.jpsychires.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 01/18/2023]
Abstract
Few studies have explored potential volunteers' attitudes toward genetic research. To address this gap in the literature, we developed an empirical project to document views held by individuals who may wish to enroll in genetic studies involving mental disorders. People living with mental illness, family members of people with mental illness, and community comparison volunteers were queried regarding their views on the importance of genetic research generally, in comparison with medical research, and in relation to 12 health conditions categorized in four types. T-tests and univariate and multivariate analysis of variance were used as appropriate. Participants expressed support for the importance of genetic research (mean = 9.43, scale = 1-10) and endorsed genetic research more highly compared with non-genetic medical research (mean = 9.43 vs. 8.69, P value = <0.001). The most highly endorsed genetic research was for cognitive disorders, followed by mental illness disorders, physical illness disorders, and addiction disorders (means = 8.88, 8.26, 8.16 and 7.55, respectively, P value = <0.001). Overall, this study provides evidence of strong endorsement of genetic research over non-genetic research by potential volunteers.
Collapse
Affiliation(s)
- Laura Weiss Roberts
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5717, USA.
| | - Tenzin Tsungmey
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, USA, 94305-5717
| | - Jane Paik Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, USA, 94305-5717
| | - Melinda Hantke
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, USA, 94305-5717
| |
Collapse
|
3
|
Alarcón RD. Pharmacogenomic perspectives on the management of mood disorders. PSYCHIATRIC BULLETIN 2018. [DOI: 10.1192/pb.bp.108.019497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SummaryPsychiatric pharmacogenomics is a relatively young field of clinical practice, focused on the identification of genetic profiles determining varieties of metabolic patterns that, in turn, assist in the choice of appropriate medications and their corresponding doses. In psychiatry, the mood disorders area has been the most active in trying to advance knowledge and expertise in pharmacogenomics. the cytochrome P450 system (particularly 2D6 and 2C19 enzymes and their respective codifying genes) and, more recently, serotonin transporter and receptor gene tests are among the most utilised and promising. In spite of encouraging findings, however, there are still many questions related to preciseness, scope, ethnic variations, diagnostic implications, ‘non-biological’ factors, and ethic considerations. the need of algorithms, follow-up studies, and assessment of financial impact, all listed here, require continuous and systematic research. It will not only add to the excitement of pharmacogenomics, but also to the creation of cogent evidence of its benefits.
Collapse
|
4
|
Roberts LW, Kim JP. Receptiveness to participation in genetic research: A pilot study comparing views of people with depression, diabetes, or no illness. J Psychiatr Res 2017; 94:156-162. [PMID: 28719815 PMCID: PMC5621512 DOI: 10.1016/j.jpsychires.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Genetic research in human health relies on the participation of individuals with or at-risk for different types of diseases, including health conditions that may be stigmatized, such as mental illnesses. This preliminary study examines the differences in attitudes toward participation in genetic research among individuals with a psychiatric disorder, individuals with a physical disorder, and individuals with no known illness. METHODS Seventy-nine individuals with a history of diabetes or depression, or no known illness, underwent a simulated consent process for a hypothetical genetic research study. They were then surveyed about their willingness to participate in the hypothetical study and their attitudes about future and family participation in genetic research. RESULTS Participants with and without a history of depression ranked participating in genetic and medical research as very important and indicated that they were likely to participate in the hypothetical genetics study. Expressed willingness to participate was generally stable and consistent with future willingness. Individuals less strongly endorsed willingness to ask family members to participate in genetic research. CONCLUSION Individuals with and without a history of mental illness viewed genetic and medical research favorably and expressed willingness to participate in real-time and in the future. Informed consent processes ideally include an exploration of influences upon volunteers' enrollment decisions. Additional empirical study of influences upon genetic research participation is important to ensure that volunteers' rights are respected and that conditions that greatly affect the health of the public are not neglected scientifically.
Collapse
Affiliation(s)
- Laura Weiss Roberts
- Stanford University, School of Medicine, Department of Psychiatry and Behavioral Sciences, 401 Quarry Rd., Stanford, CA 94304, United States.
| | - Jane Paik Kim
- Stanford University, School of Medicine, Department of Psychiatry and Behavioral Sciences, 401 Quarry Rd., Stanford, CA 94304
| |
Collapse
|
5
|
Kalueff AV, Stewart AM, Song C, Berridge KC, Graybiel AM, Fentress JC. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci 2015; 17:45-59. [PMID: 26675822 DOI: 10.1038/nrn.2015.8] [Citation(s) in RCA: 535] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders--including models of autism spectrum disorder and obsessive compulsive disorder--that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute of Marine Drugs and Nutrition, Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.,Neuroscience Research Laboratory, ZENEREI Research Center, Slidell, Louisiana 70458, USA.,Institute of Translational Biomedicine, St Petersburg State University, St Petersburg 199034, Russia.,Institutes of Chemical Technologies and Natural Sciences, Ural Federal University, Ekaterinburg 620002, Russia
| | - Adam Michael Stewart
- Neuroscience Research Laboratory, ZENEREI Research Center, Slidell, Louisiana 70458, USA
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.,Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St, Life Sciences Centre, Halifax, Nova Scotia B3H4R2, Canada.,Graduate Institute of Neural Cognitive Science, China Medical University, Taichung 000001, Taiwan
| | - Kent C Berridge
- Department of Psychology, University of Michigan, 525E University Str, Ann Arbor, Michigan 48109, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, USA
| | - John C Fentress
- Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St, Life Sciences Centre, Halifax, Nova Scotia B3H4R2, Canada
| |
Collapse
|
6
|
Maximino C, Silva RXDC, da Silva SDNS, Rodrigues LDSDS, Barbosa H, de Carvalho TS, Leão LKDR, Lima MG, Oliveira KRM, Herculano AM. Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry. Front Behav Neurosci 2015; 9:233. [PMID: 26441567 PMCID: PMC4561806 DOI: 10.3389/fnbeh.2015.00233] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/18/2015] [Indexed: 01/04/2023] Open
Abstract
Current models in biological psychiatry focus on a handful of model species, and the majority of work relies on data generated in rodents. However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry. Specifically, this approach could help to identify conserved features of brain structure and behavior, as well as to understand how variation in gene expression or developmental trajectories relates to variation in brain and behavior pertinent to psychiatric disorders. To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa. In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.
Collapse
Affiliation(s)
- Caio Maximino
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Rhayra Xavier do Carmo Silva
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Suéllen de Nazaré Santos da Silva
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Laís do Socorro dos Santos Rodrigues
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Hellen Barbosa
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Tayana Silva de Carvalho
- Universität Duisburg-EssenEssen, Germany
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Luana Ketlen dos Reis Leão
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Monica Gomes Lima
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Karen Renata Matos Oliveira
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Anderson Manoel Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| |
Collapse
|
7
|
Kalueff AV, Stewart AM, Song C, Gottesman II. Targeting dynamic interplay among disordered domains or endophenotypes to understand complex neuropsychiatric disorders: Translational lessons from preclinical models. Neurosci Biobehav Rev 2015; 53:25-36. [PMID: 25813308 DOI: 10.1016/j.neubiorev.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
Contemporary biological psychiatry uses clinical and experimental (animal) models to increase our understanding of brain pathogenesis. Modeling psychiatric disorders is currently performed by targeting various key neurobehavioral clusters of phenotypic traits (domains), including affective, cognitive, social, motor and reward. Analyses of such domains and their 'smaller units' - individual endophenotypes - are critical for the study of complex brain disorders and their neural underpinnings. The spectrum nature of brain disorders and the importance of pathogenetic linkage among various disordered domains or endophenotypes have also been recognized as an important strategic direction of translational research. Here, we discuss cross-domain analyses of animal models, and focus on their value for mimicking the clinical overlap between disordered neurobehavioral domains in humans. Based on recent experimental evidence, we argue that understanding of brain pathogenesis requires modeling the clinically relevant inter-relationships between various individual endophenotypes (or their domains).
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524025, Guangdong, China; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA.
| | - Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524025, Guangdong, China; Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St, Halifax, NS B3H 4R2, Canada
| | - Irving I Gottesman
- Department of Psychology, University of Minnesota, Elliot Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Modeling neuropsychiatric spectra to empower translational biological psychiatry. Behav Brain Res 2015; 276:1-7. [DOI: 10.1016/j.bbr.2014.01.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 01/03/2023]
|
9
|
Molenhuis RT, de Visser L, Bruining H, Kas MJ. Enhancing the value of psychiatric mouse models; differential expression of developmental behavioral and cognitive profiles in four inbred strains of mice. Eur Neuropsychopharmacol 2014; 24:945-54. [PMID: 24491952 DOI: 10.1016/j.euroneuro.2014.01.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 11/29/2013] [Accepted: 01/11/2014] [Indexed: 01/04/2023]
Abstract
The behavioral characterization of animal models of psychiatric disorders is often based upon independent traits measured at adult age. To model the neurodevelopmental aspects of psychiatric pathogenesis, we introduce a novel approach for a developmental behavioral analysis in mice. C57BL/6J (C57) mice were used as a reference strain and compared with 129S1/SvImJ (129Sv), BTBR T+tf/J (BTBR) and A/J (AJ) strains as marker strains for aberrant development. Mice were assessed at pre-adolescence (4 weeks), adolescence (6 weeks), early adulthood (8 weeks) and in adulthood (10-12 weeks) on a series of behavioral tasks measuring general health, neurological reflexes, locomotor activity, anxiety, short- and long-term memory and cognitive flexibility. Developmental delays in short-term object memory were associated with either a hypo-reactive profile in 129Sv mice or a hyper-reactive profile in BTBR mice. Furthermore, BTBR mice showed persistent high levels of repetitive grooming behavior during all developmental stages that was associated with the adult expression of cognitive rigidity. In addition, strain differences in development were observed in puberty onset, touch escape, and body position. These data showed that this longitudinal testing battery provides sufficient behavioral and cognitive resolution during different development stages and offers the opportunity to address the behavioral developmental trajectory in genetic mouse models for neurodevelopmental disorders. Furthermore, the data revealed that the assessment of multiple behavioral and cognitive domains at different developmental stages is critical to determine confounding factors (e.g., impaired motor behavior) that may interfere with the behavioral testing performance in mouse models for brain disorders.
Collapse
Affiliation(s)
- Remco T Molenhuis
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Leonie de Visser
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Hilgo Bruining
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Martien J Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
10
|
Zepf FD, Sánchez CL, Biskup CS, Kötting WF, Bubenzer S, Helmbold K, Eisert A, Gaber TJ, Landgraf M, Dahmen B, Poustka F, Wöckel L, Stadler C, Grabemann M, Mette C, Heinrich V, Uekermann J, Abdel-Hamid M, Kis B, Zimmermann M, Wiltfang J, Kuhn CM. Acute tryptophan depletion - converging evidence for decreasing central nervous serotonin synthesis in rodents and humans. Acta Psychiatr Scand 2014; 129:157-9. [PMID: 24237607 DOI: 10.1111/acps.12215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- F D Zepf
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany; JARA Translational Brain Medicine, Aachen, Jülich, Germany; Institute for Neuroscience and Medicine, Jülich Research Centre, Jülich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Stewart AM, Kalueff AV. Anxiolytic drug discovery: what are the novel approaches and how can we improve them? Expert Opin Drug Discov 2013; 9:15-26. [PMID: 24206163 DOI: 10.1517/17460441.2014.857309] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Contemporary biological psychiatry uses experimental (animal) models to increase our understanding of affective disorder pathogenesis. Despite the well-recognized spectrum nature of affective disorders, modern anxiolytic drug discovery mainly targets specific pathways and molecular determinants within a single phenotypic domain. However, greater understanding of the integrative mechanisms and pathogenesis is essential in order to develop new effective therapies. AREAS COVERED In this review, the authors emphasize the importance of a 'domain interplay-oriented' approach to experimental affective research. They also highlight the need to expand the scope of anxiolytic drug targets to better understand the pathogenesis of anxiety-spectrum disorders. EXPERT OPINION There is the potential to markedly improve the utility of animal models for affective disorders. First, the authors suggest that one such way would be by analyzing the systems of several domains and their interplay to better understand disease pathogenesis. Further, it could also be improved by expanding the range of model species and by extending the spectrum of anxiolytic drug targets; this would help to focus on emerging and unconventional systems to better develop new therapies.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute , 309 Palmer Court, Slidell, LA 70458 , USA +1 240 328 2275 ; +1 240 328 2275 ;
| | | |
Collapse
|
12
|
O'Tuathaigh CMP, Desbonnet L, Waddington JL. Mutant mouse models in evaluating novel approaches to antipsychotic treatment. Handb Exp Pharmacol 2012:113-45. [PMID: 23027414 DOI: 10.1007/978-3-642-25758-2_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this review we consider the application of mutant mouse phenotypes to the study of psychotic illness in general and schizophrenia in particular, as they relate to behavioral, psychopharmacological, and cellular phenotypes of putative import for antipsychotic drug development. Mutant models appear to be heuristic at two main levels; firstly, by indicating the functional roles of neuronal components thought to be of relevance to the putative pathobiology of psychotic illness, they help resolve overt behavioral and underlying cellular processes regulated by those neuronal components; secondly, by indicating the functional roles of genes associated with risk for psychotic illness, they help resolve overt behavioral and underlying cellular processes regulated by those risk genes. We focus initially on models of dopaminergic and glutamatergic dysfunction. Then, we consider advances in the genetics of schizophrenia and mutant models relating to replicable risk genes. Lastly, we extend this discussion by exemplifying two new variant approaches in mutant mice that may serve as prototypes for advancing antipsychotic drug development. There is continuing need not only to address numerous technical challenges but also to develop more "real-world" paradigms that reflect the milieu of gene × environment and gene × gene interactions that characterize psychotic illness and its response to antipsychotic drugs.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | | | | |
Collapse
|
13
|
Kalueff AV, Schmidt MV. Novel experimental models and paradigms for neuropsychiatric disorders: Editorial. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1355-6. [PMID: 21184793 DOI: 10.1016/j.pnpbp.2010.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 12/24/2022]
|
14
|
Koshiba M, Mimura K, Sugiura Y, Okuya T, Senoo A, Ishibashi H, Nakamura S. Reading marmoset behavior 'semantics' under particular social context by multi-parameters correlation analysis. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1499-504. [PMID: 21300127 DOI: 10.1016/j.pnpbp.2011.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/13/2011] [Accepted: 01/30/2011] [Indexed: 12/16/2022]
Abstract
Social interactions are a fundamental aspect of human and animal behavior. Although neuroimaging and other non-invasive methods have progressed recently, the neurobiology of social behavior requires the use of animal models. Here, we introduced a multi-behavior parameter integration method and applied it to female-male interaction of adult common marmosets (Callithrix jacchus). Based on the correlated parameters and meeting context, we found that the behavioral endpoints clustered in four distinct categories, which could be interpreted as active, freeze, alert, and affinity emotional states. The relevance of this interpretation was supported as the female behavior category change positively correlated with serum cortisol and progesterone levels after social interaction. Thus, our multi-behavior parameter integration method may be useful to evaluate social emotionality in animal models, as well as to quantify social behavior in human psychiatric disorders.
Collapse
Affiliation(s)
- Mamiko Koshiba
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Robertson HR, Feng G. Annual Research Review: Transgenic mouse models of childhood-onset psychiatric disorders. J Child Psychol Psychiatry 2011; 52:442-75. [PMID: 21309772 PMCID: PMC3075087 DOI: 10.1111/j.1469-7610.2011.02380.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Childhood-onset psychiatric disorders, such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), mood disorders, obsessive compulsive spectrum disorders (OCSD), and schizophrenia (SZ), affect many school-age children, leading to a lower quality of life, including difficulties in school and personal relationships that persist into adulthood. Currently, the causes of these psychiatric disorders are poorly understood, resulting in difficulty diagnosing affected children, and insufficient treatment options. Family and twin studies implicate a genetic contribution for ADHD, ASD, mood disorders, OCSD, and SZ. Identification of candidate genes and chromosomal regions associated with a particular disorder provide targets for directed research, and understanding how these genes influence the disease state will provide valuable insights for improving the diagnosis and treatment of children with psychiatric disorders. Transgenic mouse models are one important approach in the study of human diseases, allowing for the use of a variety of experimental approaches to dissect the contribution of a specific chromosomal or genetic abnormality in human disorders. While it is impossible to model an entire psychiatric disorder in a single mouse model, these models can be extremely valuable in dissecting out the specific role of a gene, pathway, neuron subtype, or brain region in a particular abnormal behavior. In this review we discuss existing transgenic mouse models for childhood-onset psychiatric disorders. We compare the strength and weakness of various transgenic mouse models proposed for each of the common childhood-onset psychiatric disorders, and discuss future directions for the study of these disorders using cutting-edge genetic tools.
Collapse
Affiliation(s)
- Holly R. Robertson
- Duke University, Neurobiology Department Durham, N.C.,Massachusetts Institute of Technology, Brain and Cognitive Sciences Department Cambridge, M.A
| | - Guoping Feng
- Duke University, Neurobiology Department Durham, N.C.,Massachusetts Institute of Technology, Brain and Cognitive Sciences Department Cambridge, M.A
| |
Collapse
|
16
|
Sadler JZ, Foster DW. Psychiatric molecular genetics and the ethics of social promises. JOURNAL OF BIOETHICAL INQUIRY 2011; 8:27-34. [PMID: 21625325 PMCID: PMC3102532 DOI: 10.1007/s11673-010-9273-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A recent literature review of commentaries and 'state of the art' articles from researchers in psychiatric genetics (PMG) offers a consensus about progress in the science of genetics, disappointments in the discovery of new and effective treatments, and a general optimism about the future of the field. I argue that optimism for the field of psychiatric molecular genetics (PMG) is overwrought, and consider progress in the field in reference to a sample estimate of US National Institute of Mental Health funding for this paradigm for the years 2008 and 2009. I conclude that the amounts of financial investment in PMG is questionable from an ethical perspective, given other research and clinical needs in the USA.
Collapse
Affiliation(s)
- John Z. Sadler
- Departments of Psychiatry & Clinical Sciences, Program in Ethics in Science & Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070
| | - Daniel W. Foster
- Departments of Psychiatry & Clinical Sciences, Program in Ethics in Science & Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070
| |
Collapse
|