1
|
Breault É, Desgagné M, Neve JD, Côté J, Barlow TMA, Ballet S, Sarret P. Multitarget ligands that comprise opioid/nonopioid pharmacophores for pain management: Current state of the science. Pharmacol Res 2024; 209:107408. [PMID: 39307212 DOI: 10.1016/j.phrs.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Chronic pain, which affects more than one-third of the world's population, represents one of the greatest medical challenges of the 21st century, yet its effective management remains sub-optimal. The 'gold standard' for the treatment of moderate to severe pain consists of opioid ligands, such as morphine and fentanyl, that target the µ-opioid receptor (MOP). Paradoxically, these opioids also cause serious side effects, including constipation, respiratory depression, tolerance, and addiction. In addition, the development of opioid-use disorders, such as opioid diversion, misuse, and abuse, has led to the current opioid crisis, with dramatic increases in addiction, overdoses, and ultimately deaths. As pain is a complex, multidimensional experience involving a variety of pathways and mediators, dual or multitarget ligands that can bind to more than one receptor and exert complementary analgesic effects, represent a promising avenue for pain relief. Indeed, unlike monomodal therapeutic approaches, the modulation of several endogenous nociceptive systems can often result in an additive or even synergistic effect, thereby improving the analgesic-to-side-effect ratio. Here, we provide a comprehensive overview of research efforts towards the development of dual- or multi-targeting opioid/nonopioid hybrid ligands for effective and safer pain management. We reflect on the underpinning discovery rationale by discussing the design, medicinal chemistry, and in vivo pharmacological effects of multitarget antinociceptive compounds.
Collapse
Affiliation(s)
- Émile Breault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Jérôme Côté
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Philippe Sarret
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
2
|
Mussetto V, Teuchmann HL, Heinke B, Trofimova L, Sandkühler J, Drdla-Schutting R, Hogri R. Opioids Induce Bidirectional Synaptic Plasticity in a Brainstem Pain Center in the Rat. THE JOURNAL OF PAIN 2023; 24:1664-1680. [PMID: 37150382 DOI: 10.1016/j.jpain.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Opioids are powerful analgesics commonly used in pain management. However, opioids can induce complex neuroadaptations, including synaptic plasticity, that ultimately drive severe side effects, such as pain hypersensitivity and strong aversion during prolonged administration or upon drug withdrawal, even following a single, brief administration. The lateral parabrachial nucleus (LPBN) in the brainstem plays a key role in pain and emotional processing; yet, the effects of opioids on synaptic plasticity in this area remain unexplored. Using patch-clamp recordings in acute brainstem slices from male and female Sprague Dawley rats, we demonstrate a concentration-dependent, bimodal effect of opioids on excitatory synaptic transmission in the LPBN. While a lower concentration of DAMGO (0.5 µM) induced a long-term depression of synaptic strength (low-DAMGO LTD), abrupt termination of a higher concentration (10 µM) induced a long-term potentiation (high-DAMGO LTP) in a subpopulation of cells. LTD involved a metabotropic glutamate receptor (mGluR)-dependent mechanism; in contrast, LTP required astrocytes and N-methyl-D-aspartate receptor (NMDAR) activation. Selective optogenetic activation of spinal and periaqueductal gray matter (PAG) inputs to the LPBN revealed that, while LTD was expressed at all parabrachial synapses tested, LTP was restricted to spino-parabrachial synapses. Thus, we uncovered previously unknown forms of opioid-induced long-term plasticity in the parabrachial nucleus that potentially modulate some adverse effects of opioids. PERSPECTIVE: We found a previously unrecognized site of opioid-induced plasticity in the lateral parabrachial nucleus, a key region for pain and emotional processing. Unraveling opioid-induced adaptations in parabrachial function might facilitate the identification of new therapeutic measures for addressing adverse effects of opioid discontinuation such as hyperalgesia and aversion.
Collapse
Affiliation(s)
- Valeria Mussetto
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannah Luise Teuchmann
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernhard Heinke
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Lidia Trofimova
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Ruth Drdla-Schutting
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Roni Hogri
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Udell ME, Ni J, Garcia Martinez A, Mulligan MK, Redei EE, Chen H. TailTimer: A device for automating data collection in the rodent tail immersion assay. PLoS One 2021; 16:e0256264. [PMID: 34411163 PMCID: PMC8375991 DOI: 10.1371/journal.pone.0256264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
The tail immersion assay is a widely used method for measuring acute thermal pain in a way which is quantifiable and reproducible. It is non-invasive and measures response to a stimulus that may be encountered by an animal in its natural environment. However, quantification of tail withdrawal latency relies on manual timing of tail flick using a stopwatch, and precise temperatures of the water at the time of measurement are most often not recorded. These two factors greatly reduce the reproducibility of tail immersion assay data and likely contribute to some of the discrepancies present among relevant literature. We designed a device, TailTimer, which uses a Raspberry Pi single-board computer, a digital temperature sensor, and two electrical wires, to automatically record tail withdrawal latency and water temperature. We programmed TailTimer to continuously display and record water temperature and to only permit the assay to be conducted when the water is within ± 0.25°C of the target temperature. Our software also records the identification of the animals using a radio frequency identification (RFID) system. We further adapted the RFID system to recognize several specific keys as user interface commands, allowing TailTimer to be operated via RFID fobs for increased usability. Data recorded using the TailTimer device showed a negative linear relationship between tail withdrawal latency and water temperature when tested between 47-50°C. We also observed a previously unreported, yet profound, effect of water mixing speed on latency. In one experiment using TailTimer, we observed significantly longer latencies following administration of oral oxycodone versus a distilled water control when measured after 15 mins or 1 h, but not after 4 h. TailTimer also detected significant strain differences in baseline latency. These findings valorize TailTimer in its sensitivity and reliability for measuring thermal pain thresholds.
Collapse
Affiliation(s)
- Mallory E. Udell
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Jie Ni
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, and Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States of America
- * E-mail:
| |
Collapse
|
4
|
Shueb SS, Erb SJ, Lunzer MM, Speltz R, Harding-Rose C, Akgün E, Simone DA, Portoghese PS. Targeting MOR-mGluR 5 heteromers reduces bone cancer pain by activating MOR and inhibiting mGluR5. Neuropharmacology 2019; 160:107690. [PMID: 31271770 DOI: 10.1016/j.neuropharm.2019.107690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
Abstract
Pain is among the most common symptoms in cancer and approximately 90% of patients experience end-stage cancer pain. The management of cancer pain is challenging due to the significant side effects associated with opioids, and novel therapeutic approaches are needed. MMG22 is a bivalent ligand containing MOR agonist and mGluR5 antagonist pharmacophores joined by a 22-atom spacer. MMG22 exhibited extraordinary analgesia following intrathecal administration in a mouse model of bone cancer pain. Here, we assessed the effectiveness of systemic administration of MMG22 in reducing cancer pain and evaluated whether MMG22 displays side effects associated with opioids. Fibrosarcoma cells were injected into and around the calcaneus bone in C3H mice. Mechanical hyperalgesia was defined as an increase in the paw withdrawal frequencies (PWFs) evoked by application of a von Frey monofilament (3.9 mN bending force) applied to the plantar surface of the hind paw Subcutaneous (s.c.), intramuscular (i.m.), and oral (p.o.) administration of MMG22 produced robust dose-dependent antihyperalgesia, whose ED50 was orders of magnitude lower than morphine. Moreover, the ED50 for MMG22 decreased with disease progression. Importantly, s.c. administration of MMG22 did not produce acute (24 h) or long-term (9 days) tolerance, was not rewarding (conditioned place preference test), and did not produce naloxone-induced precipitated withdrawal or alter motor function. A possible mechanism of action of MMG22 is discussed in terms of inhibition of spinal NMDAR via antagonism of its co-receptor, mGluR5, and concomitant activation of neuronal MOR. We suggest that MMG22 may be a powerful alternative to traditional opioids for managing cancer pain. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
Affiliation(s)
- Sarah S Shueb
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samuel J Erb
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary M Lunzer
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rebecca Speltz
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Catherine Harding-Rose
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Eyup Akgün
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Philip S Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Bivalent ligand that activates mu opioid receptor and antagonizes mGluR5 receptor reduces neuropathic pain in mice. Pain 2018; 158:2431-2441. [PMID: 28891868 DOI: 10.1097/j.pain.0000000000001050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mu opioid receptor (MOR) and metabotropic glutamate receptor 5 (mGluR5) are well-established pharmacological targets in the management of chronic pain. Both receptors are expressed in the spinal cord. MMG22, a bivalent ligand containing 2 pharmacophores separated by 22 atoms, which simultaneously activates MOR and antagonizes mGluR5, has been shown to produce potent reversal of tactile hypersensitivity in rodent models of lipopolysaccharide (LPS)-and bone cancer-induced chronic pain. This study assessed whether intrathecal MMG22 also is effective in reducing pain of neuropathic origin. Furthermore, we theorized that MMG22 should reduce hyperalgesia in nerve-injured mice in a manner consistent with a synergistic interaction between MOR and mGluR5. Several weeks after spared nerve injury, tactile hypersensitivity was reversed in mice by the intrathecal injection of MMG22 (0.01-10 nmol) but also by its shorter spacer analog, MMG10, with similar potency. The potencies of the bivalent ligands were 10- to 14-fold higher than those of the compounds upon which the bivalent structure was based, the MOR agonist oxymorphone and the mGluR5 antagonist MPEP. Coadministration of oxymorphone and MPEP demonstrated analgesic synergism, an interaction confirmed by isobolographic analysis. This study indicates that in the spared nerve injury-induced model of neuropathic pain, the 2 pharmacophores of the bivalent ligands MMG22 and MMG10 target MOR and mGluR5 as separate receptor monomers. The observed increase in the potency of MMG22 and MMG10, compared with oxymorphone and MPEP, may reflect the synergistic interaction of the 2 pharmacophores of the bivalent ligand acting at their respective separate receptor monomers.
Collapse
|
6
|
Gawel K, Jenda-Wojtanowska M, Gibula-Bruzda E, Kedzierska E, Filarowska J, Marszalek-Grabska M, Wojtanowski KK, Komsta L, Talarek S, Kotlinska JH. The influence of AMN082, metabotropic glutamate receptor 7 (mGlu7) allosteric agonist on the acute and chronic antinociceptive effects of morphine in the tail-immersion test in mice: Comparison with mGlu5 and mGlu2/3 ligands. Physiol Behav 2017; 185:112-120. [PMID: 29294304 DOI: 10.1016/j.physbeh.2017.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/18/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022]
Abstract
Preclinical data indicated that the metabotropic glutamate receptors 5 (mGlu5) and glutamate receptors 2/3 (mGlu2/3) are involved in modulating morphine antinociception. However, little is known about the role of metabotropic glutamate receptors 7 (mGlu7) in this phenomenon. We compared the effects of AMN082 (0.1, 1 or 5mg/kg, ip), a selective mGlu7 allosteric agonist, LY354740 (0.1, 1 or 5mg/kg, ip), an mGlu2/3 agonist and MTEP (0.1, 1 or 5mg/kg, ip), a selective mGlu5 antagonist, on the acute antinociceptive effect of morphine (5mg/kg, sc) and also on the development and expression of tolerance to morphine analgesia in the tail-immersion test in mice. To determine the role of mGlu7 in morphine tolerance, and the association of the mGlu7 effect with the N-methyl-d-aspartate (NMDA) receptors regulation, we used MMPIP (10mg/kg, ip), a selective mGlu7 antagonist and MK-801, a NMDA antagonist. Herein, the acute administration of AMN082, MTEP or LY354740 alone failed to evoked antinociception, and did not affect morphine (5mg/kg, sc) antinociception. However, these ligands inhibited the development of morphine tolerance, and we indicated that MMPIP reversed the inhibitory effect of AMN082. When given together, the non-effective doses of AMN082 and MK-801 did not alter the tolerance to morphine. Thus, mGlu7, similarly to mGlu2/3 and mGlu5, are involved in the development of tolerance to the antinociceptive effects of morphine, but not in the acute morphine antinociception. Furthermore, while mGlu7 are engaged in the development of morphine tolerance, no interaction exists between mGlu7 and NMDA receptors in this phenomenon.
Collapse
Affiliation(s)
- K Gawel
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland; Department of Experimental and Clinical Pharmacology, Medical University, Lublin, Poland
| | - M Jenda-Wojtanowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - E Gibula-Bruzda
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - E Kedzierska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - J Filarowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - M Marszalek-Grabska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - K K Wojtanowski
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University, Lublin, Poland
| | - L Komsta
- Department of Medicinal Chemistry, Medical University, Lublin, Poland
| | - S Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - J H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| |
Collapse
|
7
|
Sex Differences in Microglia Activity within the Periaqueductal Gray of the Rat: A Potential Mechanism Driving the Dimorphic Effects of Morphine. J Neurosci 2017; 37:3202-3214. [PMID: 28219988 DOI: 10.1523/jneurosci.2906-16.2017] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022] Open
Abstract
Although morphine remains the primary drug prescribed for alleviation of severe or persistent pain, both preclinical and clinical studies have shown that females require two to three times more morphine than males to produce comparable levels of analgesia. In addition to binding to the neuronal μ-opioid receptor, morphine binds to the innate immune receptor toll-like receptor 4 (TLR4) localized primarily on microglia. Morphine action at TLR4 initiates a neuroinflammatory response that directly opposes the analgesic effects of morphine. Here, we test the hypothesis that the attenuated response to morphine observed in females is the result of increased microglia activation in the periaqueductal gray (PAG), a central locus mediating the antinociceptive effects of morphine. We report that, whereas no overall sex differences in the density of microglia were noted within the PAG of male or female rats, microglia exhibited a more "activated" phenotype in females at baseline, with the degree of activation a significant predictor of morphine half-maximal antinociceptive dose (ED50) values. Priming microglia with LPS induced greater microglia activation in the PAG of females compared with males and was accompanied by increased transcription levels of IL-1β and a significant rightward shift in the morphine dose-response curve. Blockade of morphine binding to PAG TLR4 with (+)-naloxone potentiated morphine antinociception significantly in females such that no sex differences in ED50 were observed. These results demonstrate that PAG microglia are sexually dimorphic in both basal and LPS-induced activation and contribute to the sexually dimorphic effects of morphine in the rat.SIGNIFICANCE STATEMENT We demonstrate that periaqueductal gray (PAG) microglia contribute to the sexually dimorphic effects of morphine. Specifically, we report that increased activation of microglia in the PAG contributes to the attenuated response to morphine observed in females. Our data further implicate the innate immune receptor toll-like receptor 4 (TLR4) as an underlying mechanism mediating these effects and establish that TLR4 inhibition in the PAG of females reverses the sex differences in morphine responsiveness. These data suggest novel methods to improve current opioid-based pain management via inhibition of glial TLR4 and illustrate the necessity for sex-specific research and individualized treatment strategies for the management of pain in men and women.
Collapse
|
8
|
Zanos P, Georgiou P, Gonzalez LR, Hourani S, Chen Y, Kitchen I, Kieffer BL, Winsky-Sommerer R, Bailey A. Emotional Impairment and Persistent Upregulation of mGlu5 Receptor following Morphine Abstinence: Implications of an mGlu5-MOPr Interaction. Int J Neuropsychopharmacol 2016; 19:pyw011. [PMID: 26861145 PMCID: PMC4966274 DOI: 10.1093/ijnp/pyw011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 02/02/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND A difficult problem in treating opioid addicts is the maintenance of a drug-free state because of the negative emotional symptoms associated with withdrawal, which may trigger relapse. Several lines of evidence suggest a role for the metabotropic glutamate receptor 5 in opioid addiction; however, its involvement during opioid withdrawal is not clear. METHODS Mice were treated with a 7-day escalating-dose morphine administration paradigm. Following withdrawal, the development of affective behaviors was assessed using the 3-chambered box, open-field, elevated plus-maze and forced-swim tests. Metabotropic glutamate receptor 5 autoradiographic binding was performed in mouse brains undergoing chronic morphine treatment and 7 days withdrawal. Moreover, since there is evidence showing direct effects of opioid drugs on the metabotropic glutamate receptor 5 system, the presence of an metabotropic glutamate receptor 5/μ-opioid receptor interaction was assessed by performing metabotropic glutamate receptor 5 autoradiographic binding in brains of mice lacking the μ-opioid receptor gene. RESULTS Withdrawal from chronic morphine administration induced anxiety-like, depressive-like, and impaired sociability behaviors concomitant with a marked upregulation of metabotropic glutamate receptor 5 binding. Administration of the metabotropic glutamate receptor 5 antagonist, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine, reversed morphine abstinence-induced depressive-like behaviors. A brain region-specific increase in metabotropic glutamate receptor 5 binding was observed in the nucleus accumbens shell, thalamus, hypothalamus, and amygdala of μ-opioid receptor knockout mice compared with controls. CONCLUSIONS These results suggest an association between metabotropic glutamate receptor 5 alterations and the emergence of opioid withdrawal-related affective behaviors. This study supports metabotropic glutamate receptor 5 system as a target for the development of pharmacotherapies for the treatment of opioid addiction. Moreover, our data show direct effects of μ-opioid receptor system manipulation on metabotropic glutamate receptor 5 binding in the brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alexis Bailey
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK (Dr Zanos, Dr Georgiou, Ms Rojo Gonzalez, Prof. Hourani, Prof. Kitchen, Dr Winsky-Sommerer, and Dr Bailey); Department of Psychiatry, University of Maryland, School of Medicine, Baltimore, MD (Dr Zanos and Dr Georgiou); Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK (Dr Chen); Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Illkirch, France (Prof. Kieffer); Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada (Prof. Kieffer); Institute of Medical and Biomedical Education, St George's University of London, London (Dr Bailey).
| |
Collapse
|
9
|
Webster CI, Caram-Salas N, Haqqani AS, Thom G, Brown L, Rennie K, Yogi A, Costain W, Brunette E, Stanimirovic DB. Brain penetration, target engagement, and disposition of the blood-brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1. FASEB J 2016; 30:1927-40. [PMID: 26839377 DOI: 10.1096/fj.201500078] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022]
Abstract
Receptor mediated transcytosis harnessing the cellular uptake and transport of natural ligands across the blood-brain barrier (BBB) has been identified as a means for antibody delivery to the CNS. In this study, we characterized bispecific antibodies in which a BBB-crossing antibody fragment FC5 was used as a BBB carrier. Cargo antibodies were either a high-affinity, selective antibody antagonist of the metabotropic glutamate receptor-1 (BBB-mGluR1), a widely abundant CNS target, or an IgG that does not bind the CNS target (BBB-NiP). Both BBB-NiP and BBB-mGluR1 demonstrated a similar 20-fold enhanced rate of transcytosis across an in vitro BBB model compared with mGluR1 IgG fused to a control antibody fragment. All 3 bispecific antibodies exhibited identical pharmacokinetics in vivo Comparative assessment of BBB-NiP and BBB-mGluR1 revealed that, whereas their serum pharmacokinetics and BBB penetration were identical, their central disposition (brain levels) and elimination (cerebrospinal fluid levels) were widely different, due to central target-mediated removal of the mGluR1-engaging antibody. Central mGluR1 target engagement after systemic administration was demonstrated by a dose-dependent inhibition of mGluR-1-mediated thermal hyperalgesia and by colocalization of the antibody with thalamic neurons involved in mGluR1-mediated pain processing. We demonstrate the feasibility of targeting central G-protein-coupled receptors using a BBB-crossing bispecific antibody approach and emerging principles that govern brain distribution and disposition of these antibodies. These data will be important for designing safe and selective CNS antibody therapeutics.-Webster, C. I., Caram-Salas, N., Haqqani, A. S., Thom, G., Brown, L., Rennie, K., Yogi, A., Costain, W., Brunette, E., Stanimirovic, D. B. Brain penetration, target engagement, and disposition of the blood-brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1.
Collapse
Affiliation(s)
- Carl I Webster
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, United Kingdom;
| | - Nadia Caram-Salas
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - George Thom
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, United Kingdom
| | - Lee Brown
- Translational Sciences, MedImmune, Cambridge, United Kingdom; and
| | - Kerry Rennie
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Alvaro Yogi
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Willard Costain
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Eric Brunette
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Jeske NA. Peripheral scaffolding and signaling pathways in inflammatory pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:31-52. [PMID: 25744669 DOI: 10.1016/bs.pmbts.2014.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peripheral injury precipitates the release and accumulation of extracellular molecules at the site of injury. Although these molecules exist in various forms, they activate specific receptor classes expressed on primary afferent neurons to mediate cellular and behavioral responses to both nonpainful and painful stimuli. These inflammatory mediators and subsequent receptor-mediated effects exist to warn an organism of future injury, thereby resulting in protection and rehabilitation of the wounded tissue. In this chapter, inflammatory mediators, their target receptor classes, and downstream signaling pathways are identified and discussed within the context of inflammatory hyperalgesia. Furthermore, scaffolding mechanisms that exist to support inflammatory signaling in peripheral afferent neuronal tissues specifically are identified and discussed. Together, the mediators, pathways, and scaffolding mechanisms involved in inflammatory hyperalgesia provide a unique knowledge point from which new therapeutic targets can be understood.
Collapse
Affiliation(s)
- Nathaniel A Jeske
- Department of Oral and Maxillofacial Surgery, UT Health Science Center, San Antonio, Texas, USA.
| |
Collapse
|
11
|
Wang ZL, Fang Q, Han ZL, Pan JX, Li XH, Li N, Tang HH, Wang P, Zheng T, Chang XM, Wang R. Opposite effects of neuropeptide FF on central antinociception induced by endomorphin-1 and endomorphin-2 in mice. PLoS One 2014; 9:e103773. [PMID: 25090615 PMCID: PMC4121275 DOI: 10.1371/journal.pone.0103773] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022] Open
Abstract
Neuropeptide FF (NPFF) is known to be an endogenous opioid-modulating peptide. Nevertheless, very few researches focused on the interaction between NPFF and endogenous opioid peptides. In the present study, we have investigated the effects of NPFF system on the supraspinal antinociceptive effects induced by the endogenous µ-opioid receptor agonists, endomorphin-1 (EM-1) and endomorphin-2 (EM-2). In the mouse tail-flick assay, intracerebroventricular injection of EM-1 induced antinociception via µ-opioid receptor while the antinociception of intracerebroventricular injected EM-2 was mediated by both µ- and κ-opioid receptors. In addition, central administration of NPFF significantly reduced EM-1-induced central antinociception, but enhanced EM-2-induced central antinociception. The results using the selective NPFF1 and NPFF2 receptor agonists indicated that the EM-1-modulating action of NPFF was mainly mediated by NPFF2 receptor, while NPFF potentiated EM-2-induecd antinociception via both NPFF1 and NPFF2 receptors. To further investigate the roles of µ- and κ-opioid systems in the opposite effects of NPFF on central antinociception of endomprphins, the µ- and κ-opioid receptors selective agonists DAMGO and U69593, respectively, were used. Our results showed that NPFF could reduce the central antinociception of DAMGO via NPFF2 receptor and enhance the central antinociception of U69593 via both NPFF1 and NPFF2 receptors. Taken together, our data demonstrate that NPFF exerts opposite effects on central antinociception of endomorphins and provide the first evidence that NPFF potentiate antinociception of EM-2, which might result from the interaction between NPFF and κ-opioid systems.
Collapse
Affiliation(s)
- Zi-long Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Zheng-lan Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Jia-xin Pan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Xu-hui Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Hong-hai Tang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Pei Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Ting Zheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Xue-mei Chang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
- * E-mail:
| |
Collapse
|
12
|
Zhou Q, Wang J, Zhang X, Zeng L, Wang L, Jiang W. Effect of metabotropic glutamate 5 receptor antagonists on morphine efficacy and tolerance in rats with neuropathic pain. Eur J Pharmacol 2013; 718:17-23. [PMID: 24041921 DOI: 10.1016/j.ejphar.2013.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/29/2013] [Accepted: 09/04/2013] [Indexed: 11/30/2022]
Abstract
The metabotropic glutamate 5 (mGlu5) receptor is involved in both pain processing and modulation of µ-opioid induced antinociception and antihyperalgesia. Systemic mGlu5 receptor antagonists 2-methyl-6-phenylethynylpyridine (MPEP) or 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine (MTEP) provide antihyperalgesic effects in various pain models, but few studies have shown their interaction with morphine in neuropathic pain models. The aim of this study is to compare the effects of systemic and intrathecal MPEP/MTEP on morphine efficacy and tolerance in rats with chronic neuropathic pain. L5-6 spinal nerve ligation (SNL) was used to establish neuropathic pain model in rats. The Von Frey test and the hot water tail flick test were employed as behavior tests. Low, medium and high doses of MPEP/MTEP were tested for their effect on both acute morphine efficacy and chronic morphine tolerance. SNL provides sustained neuropathic pain on the ipsilateral hind paw of rats. Both systemic and intrathecal MPEP/MTEP had antiallodynia effects and boosted morphine's efficacy in a dose-dependent manner in the Von Frey tests but not in the tail flick tests. In fact, high doses of MTEP and MPEP attenuated morphine's antinociceptive effect in the latter test. After intrathecal chronic co-administration with morphine, low-doses of MTEP/MPEP attenuated morphine tolerance in both tests. Systemically, only MTEP attenuated morphine tolerance, and only in the Von Frey tests, not in the tail flick tests, whereas MPEP had no effect on morphine tolerance in either tests. The therapeutic use of mGlu5 receptor antagonists may have distinct effects in different pain models.
Collapse
Affiliation(s)
- Quanhong Zhou
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|