1
|
Xu H, Zheng S, Zhang Q, Xu Y, Zhang H, Hu T, Zhang X, E J, Li X, Wang R, Liu H, Xie R. CUL1-neddylation contributes to K29-linked ubiquitination on p27 for autophagic degradation in sorafenib-resistant liver cancer. Cell Biol Toxicol 2025; 41:61. [PMID: 40111576 PMCID: PMC11926008 DOI: 10.1007/s10565-025-10008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Sorafenib has demonstrated great efficacy in liver cancer, however, its application as first-line treatment has been hampered due to the emerging drug resistance. This study is aimed to investigate the mechanism underlying acquired sorafenib resistance in liver cancer. Based on GSE109211 and TCGA datasets, bioinformatics analysis was conducted to find the potential genes implicated in the sorafenib resistance in liver cancer. mCherry-/eGFP-LC3B dual-fluorescent system was used to assess autophagic state. Wild and mutant types of HA-labeled ubiquitin (K27, K29, K33, K48, K63, K29R and K48R) were used to identify the type of polyubiquitin chains added to p27 by CUL1. Herein, we identified that F-box protein (SCF) ubiquitin ligase complexes (CUL1 and SKP2) and NEDD8 were highly expressed in sorafenib-resistant tissues using both the public data and clinical samples. NEDD8-mediated CUL1 neddylation enhanced SCF ubiquitin ligase complex to target p27 and subsequently linked K29-linked polyubiquitin chains to p27. Furthermore, NBR1 facilitated the degradation of ubiquitinated p27 protein by enhancing autophagy flux. Knocking down of CUL1 could prevent ubiquitination- and autophagy-mediated p27 protein degradation. The resistance to sorafenib was suppressed with CUL1 knockdown both in vitro and in vivo. In conclusion, our findings indicated that blocking neddylation or autophagy can restore drug sensitivity, thus providing a potential strategy for overcoming sorafenib resistance in the future.
Collapse
Affiliation(s)
- Haitao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shaoyue Zheng
- Department of Endoscope, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qiuqi Zhang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Ying Xu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Hanbo Zhang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Tianming Hu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xiaoling Zhang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiaoting E
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xuedong Li
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Ruitao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Hongyan Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Rui Xie
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
2
|
Peña M, Guzmán A, Mesas C, Porres JM, Martínez R, Bermúdez F, Melguizo C, Cabeza L, Prados J. Evaluation of the Leaves and Seeds of Cucurbitaceae Plants as a New Source of Bioactive Compounds for Colorectal Cancer Prevention and Treatment. Nutrients 2024; 16:4233. [PMID: 39683626 DOI: 10.3390/nu16234233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES The Cucurbitaceae family represents an important source of bioactive compounds with antioxidant, antimicrobial, anti-inflammatory and antitumor activities. This study aims to investigate the potential application of Cucurbitaceae leaves and seed extracts to prevent and treat colorectal cancer (CRC). METHODS Four extracts (ethanol extracts and protein extracts and hydrolysates) from the leaves and seeds of cucurbits were tested in T-84, HCT-15 and HT-29 CRC cells. The antitumor, antiangiogenic, antioxidant and chemopreventive potentials and bioactive composition of the active extracts were characterized. RESULTS Cold ethanolic extracts from the leaves and seeds of two interspecific Cucurbita genera (CLU01002 and COK01001) exhibited potent antiproliferative, specific and non-hepatotoxic activity against CRC cell lines, with a slight synergistic effect in combination with oxaliplatin. This antitumor activity was related to G2/M cell cycle arrest, the extrinsic apoptosis pathway, cytokinesis inhibition and autophagy. The extracts also inhibited tumor clonogenicity and angiogenesis, and modulated cancer stem cell (CSC) gene expression, as well as expressing antioxidant and chemopreventive cellular capabilities. Finally, phenolic and cucurbitane-type triterpenoid compounds (pengxianencins and cucurbitacins) were tentatively identified in the active extracts by UPLC-MS analysis and bioguided fractionation. CONCLUSIONS Extracts from leaves the and seeds of two interspecific Cucurbita genera (CLU01002 and COK01001) may contribute to the improvement of prevention and treatment strategies for CRC patients.
Collapse
Affiliation(s)
- Mercedes Peña
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
| | - Ana Guzmán
- Cellbitec S.L., Scientific Headquarters of the Almeria Technology Park, University of Almeria, 04128 Almeria, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
| | - Jesús M Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Centre (CIBM), Sport and Health Research Institute (IMUDS), University of Granada, 18016 Granada, Spain
| | - Rosario Martínez
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Centre (CIBM), Sport and Health Research Institute (IMUDS), University of Granada, 18016 Granada, Spain
| | - Francisco Bermúdez
- Cellbitec S.L., Scientific Headquarters of the Almeria Technology Park, University of Almeria, 04128 Almeria, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| |
Collapse
|
3
|
Bayati A, Ayoubi R, Aguila A, Zorca CE, Deyab G, Han C, Recinto SJ, Nguyen-Renou E, Rocha C, Maussion G, Luo W, Shlaifer I, Banks E, McDowell I, Del Cid Pellitero E, Ding XE, Sharif B, Séguéla P, Yaqubi M, Chen CXQ, You Z, Abdian N, McBride HM, Fon EA, Stratton JA, Durcan TM, Nahirney PC, McPherson PS. Modeling Parkinson's disease pathology in human dopaminergic neurons by sequential exposure to α-synuclein fibrils and proinflammatory cytokines. Nat Neurosci 2024; 27:2401-2416. [PMID: 39379564 DOI: 10.1038/s41593-024-01775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/28/2024] [Indexed: 10/10/2024]
Abstract
Lewy bodies (LBs), α-synuclein-enriched intracellular inclusions, are a hallmark of Parkinson's disease (PD) pathology, yet a cellular model for LB formation remains elusive. Recent evidence indicates that immune dysfunction may contribute to the development of PD. In this study, we found that induced pluripotent stem cell (iPSC)-derived human dopaminergic (DA) neurons form LB-like inclusions after treatment with α-synuclein preformed fibrils (PFFs) but only when coupled to a model of immune challenge (interferon-γ or interleukin-1β treatment) or when co-cultured with activated microglia-like cells. Exposure to interferon-γ impairs lysosome function in DA neurons, contributing to LB formation. The knockdown of LAMP2 or the knockout of GBA in conjunction with PFF administration is sufficient for inclusion formation. Finally, we observed that the LB-like inclusions in iPSC-derived DA neurons are membrane bound, suggesting that they are not limited to the cytoplasmic compartment but may be formed due to dysfunctions in autophagy. Together, these data indicate that immune-triggered lysosomal dysfunction may contribute to the development of PD pathology.
Collapse
Affiliation(s)
- Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Riham Ayoubi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Adriana Aguila
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Cornelia E Zorca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ghislaine Deyab
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Chanshuai Han
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Sherilyn Junelle Recinto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Cecilia Rocha
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Gilles Maussion
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Wen Luo
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Irina Shlaifer
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Emily Banks
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ian McDowell
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Esther Del Cid Pellitero
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Xue Er Ding
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Behrang Sharif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Carol X-Q Chen
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Zhipeng You
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Narges Abdian
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Patrick C Nahirney
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Geng W, Yan S, Sang D, Tao J, Zhang X, Gu X, Zhang X. Downregulating miR-432-5p exacerbates adriamycin-induced cardiotoxicity via activating the RTN3 signaling pathway. Aging (Albany NY) 2024; 16:11904-11916. [PMID: 39177670 PMCID: PMC11386913 DOI: 10.18632/aging.206062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/18/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Adriamycin (ADR) is a widely used chemotherapy drug in clinical practice and it causes toxicity in the myocardium affecting its clinical use. miR-432-5p is a miRNA primarily expressed in myocardial cells and has a protective effect in the myocardium. We aim to explore the protective effect of miR-432-5p on ADR-caused impaired mitochondrial ATP metabolism and endoplasmic reticulum stress (ERs). METHOD The primary cardiomyocytes were obtained from neonatal mice and the ADR was added to cells, meanwhile, a mice model was constructed through intravenous ADR challenge, and expression levels of miR-432-5p were examined. Subsequently, the miR-432-5p was introduced in vitro and in vivo to explore its effect on the activity of mitochondrial ATP synthesis, autophagy, and ER stress. The bioinformatics analysis was performed to explore the target of miR-432-5p. RESULTS ADR decreased the expression of miR-432-5p in cardiomyocytes. It also decreases mitochondrial ATP production and activates the ER stress pathway by increasing the expression of LC3B, Beclin 1, cleaved caspase 3, and induces cardiac toxicity. miR-432-5p exogenous supplementation can reduce the cardiotoxicity caused by ADR, and its protective effect on cardiomyocytes depends on the down-regulation of the RTN3 signaling pathway in ER. CONCLUSION ADR can induce the low expression of miR-432-5p, and activate the RTN3 pathway in ER, increase the expression of LC3B, Beclin 1, cleaved caspase 3, CHOP, and RTN3, and induce cardiac toxicity.
Collapse
Affiliation(s)
- Wei Geng
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Shaohua Yan
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Dasen Sang
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Jie Tao
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Xuefei Zhang
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Xinshun Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiangyu Zhang
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| |
Collapse
|
5
|
Tantisuwat L, Saengklub N, Boonpala P, Kumphune S, Panyasing Y, Kalandakanond-Thongsong S, Kijtawornrat A. Sacubitril/valsartan mitigates cardiac remodeling, systolic dysfunction, and preserves mitochondrial quality in a rat model of mitral regurgitation. Sci Rep 2023; 13:11472. [PMID: 37455281 DOI: 10.1038/s41598-023-38694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Sacubitril/valsartan (SAC/VAL), an angiotensin receptor blocker-neprilysin inhibitor, has been widely used to treat several types of heart failure. Nevertheless, the effects of drugs in mitral regurgitation patients, from the molecular level to therapeutic effects, remain unclear. This study investigates the roles of SAC/VAL on cardiac function, mitochondrial quality, autophagy, mitophagy, and natriuretic peptides in a rat model of chronic mitral regurgitation. Male Sprague-Dawley rats underwent MR induction (n = 16) and sham surgeries (n = 8). Four weeks post-surgery confirmed MR rats were randomly divided into MR (n = 8) and SAC/VAL (n = 8) groups. The SAC/VAL group was administered SAC/VAL, whereas the MR and the sham rats received vehicle via oral gavage daily for 8 weeks. Cardiac geometry, function, and myocardial fibrosis were assessed by echocardiography and histopathology. Spectrophotometry and real-time PCR were performed to assess the pharmacological effects on mitochondrial quality, autophagy, mitophagy, and natriuretic peptides. MR rats demonstrated significant left heart dilation and left ventricular systolic dysfunction compared with the sham group, which could be significantly improved by SAC/VAL. In addition, SAC/VAL significantly reduced myocardial cardiac remodeling and fibrosis in MR rats. SAC/VAL improved the mitochondrial quality by attenuating mitochondrial reactive oxygen species production and mitochondrial depolarization compared with the MR group. Also, the upregulation of autophagy-related, mitophagy-related, and natriuretic peptide system gene expression in MR rats was attenuated by SAC/VAL treatment. In conclusion, this study demonstrated that SAC/VAL treatment could provide numerous beneficial effects in MR conditions, suggesting that this drug may be an effective treatment for MR.
Collapse
Affiliation(s)
- Lalida Tantisuwat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nakkawee Saengklub
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Pakit Boonpala
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, Thailand
- Biomedical Engineering and Innovation Research Centre, Chiang Mai University, Chiang Mai, Thailand
| | - Yaowalak Panyasing
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Chulalongkorn University Laboratory Animal Center (CULAC), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
AURKA, as a potential prognostic biomarker, regulates autophagy and immune infiltration in nasopharyngeal carcinoma. Immunobiology 2023; 228:152314. [PMID: 36587494 DOI: 10.1016/j.imbio.2022.152314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dysfunction of Aurora A (AURKA) plays crucial role in tumorigenesis and development of many types of cancer. However, the role of AURKA in nasopharyngeal carcinoma (NPC) has not been investigated yet. MATERIALS AND METHODS Two independent NPC cohorts (GSE61218 and GSE102349) were enrolled from public database to investigate the expression level of AURKA between NPC and nasopharyngitis samples, the association of AURKA expression level with prognosis in NPC, and the potential mechanism of AURKA in NPC by using bioinformatics analyses. The expression level of AURKA protein in 62 paired NPC and nasopharyngitis tissues was evaluated by immunohistochemistry (IHC). Two NPC cell lines (SUNE-1 and CNE-2) were enrolled and the expression levels of AURKA in the NPC cells were inhibited by RNA interference. The expression levels of mRNAs were tested by qPCR and western-blotting. CCK-8 assay was applied to measure the cell growth. Cell migration was measured by using wound healing assays. RESULTS AURKA was highly expressed in NPC samples compared to nasopharyngitis samples in GSE61218, which was confirmed by IHC. High expression of AURKA was associated with worse prognosis in GSE102349. Notably, silencing of AURKA was associated with significantly decreased cell growth and migration in NPC. Moreover, we found that the differentially expressed genes between high and low AURKA expression groups in GSE102349 were majorly enriched in both autophagy-related and immune-related pathways. Additionally, the expression level of AURKA was associated with the expression levels of autophagy-related genes and the infiltration of immune cells. CONCLUSION AURKA overexpressed in NPC, which was associated with poor prognosis. Silencing of AURKA inhibited the proliferation and migration of NPC cells. Besides, AURKA might participate in the regulation of both autophagy and immunity in NPC.
Collapse
|
7
|
Wu Y, Mao Q, Liang X. Targeting the MicroRNA-490-3p-ATG4B-Autophagy Axis Relieves Myocardial Injury in Ischemia Reperfusion. J Cardiovasc Transl Res 2020; 14:173-183. [PMID: 32474761 DOI: 10.1007/s12265-020-09972-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 02/13/2020] [Indexed: 11/29/2022]
Abstract
We investigated the potential role of miR-490-3p in ischemia reperfusion (IR) injury. We first determined the expression of miR-490-3p and autophagy-related 4B cysteine (ATG4B) in IR. Then, to explore whether miR-490-3p would affect autophagy, apoptosis, and IR injury, we evaluated apoptosis, autophagy, and infarct size via gain- and loss-of-function experiments. Furthermore, we used adenovirus to enhance or inhibit the expression of ATG4B, and then measured autophagy, apoptosis, and IR injury. miR-490-3p was downregulated in the hearts during the process of IR, while ATG4B was upregulated. The inhibition of miR-490-3p or overexpression of ATG4B could promote the expression of LC3II, increase the autolysosomes, inhibit the expression of p62, and reduce infarct size. On all accounts, the inhibition of miR-490-3p could promote autophagy to reduce myocardial IR injury by upregulating ATG4B, a finding that provides new insights for the protective mechanism of autophagy in IR. Graphical Abstract.
Collapse
Affiliation(s)
- Yufu Wu
- Department of Cardiology, Liuzhou Traditional Chinese Medical Hospita, The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, 545001, People's Republic of China
| | - Qing Mao
- Department of Cardiology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, No. 86, Chongwen Road, Lishui District, Nanjing, 211200, Jiangsu, People's Republic of China.
| | - Xiulin Liang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| |
Collapse
|
8
|
Qi J, Luo X, Ma Z, Zhang B, Li S, Zhang J. Downregulation of miR-26b-5p, miR-204-5p, and miR-497-3p Expression Facilitates Exercise-Induced Physiological Cardiac Hypertrophy by Augmenting Autophagy in Rats. Front Genet 2020; 11:78. [PMID: 32140172 PMCID: PMC7042403 DOI: 10.3389/fgene.2020.00078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
Exercise-induced autophagy is associated with physiological left ventricular hypertrophy (LVH), and a growing body of evidence suggests that microRNAs (miRNAs) can regulate autophagy-related genes. However, the precise role of miRNAs in exercise induced autophagy in physiological LVH has not been fully defined. In this study, we investigated the microRNA–autophagy axis in physiological LVH and deciphered the underlying mechanism using a rat swimming exercise model. Rats were assigned to sedentary control (CON) and swimming exercise (EX) groups; those in the latter group completed a 10-week swimming exercise without any load. For in vitro studies, H9C2 cardiomyocyte cell line was stimulated with IGF-1 for hypertrophy. We found a significant increase in autophagy activity in the hearts of rats with exercise-induced physiological hypertrophy, and miRNAs showed a high score in the pathway enriched in autophagy. Moreover, the expression levels of miR-26b-5p, miR-204-5p, and miR-497-3p showed an obvious increase in rat hearts. Adenovirus-mediated overexpression of miR-26b-5p, miR-204-5p, and miR-497-3p markedly attenuated IGF-1-induced hypertrophy in H9C2 cells by suppressing autophagy. Furthermore, miR-26b-5p, miR-204-5p, and miR-497-3p attenuated autophagy in H9C2 cells through targeting ULK1, LC3B, and Beclin 1, respectively. Taken together, our results demonstrate that swimming exercise induced physiological LVH, at least in part, by modulating the microRNA–autophagy axis, and that miR-26b-5p, miR-204-5p, and miR-497-3p may help distinguish physiological and pathological LVH.
Collapse
Affiliation(s)
- Jie Qi
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Xue Luo
- Medical College, Yangzhou Polytechnic College, Yangzhou, China
| | - Zhichao Ma
- The School of Physical Education, Wuhan Business University, Wuhan, China
| | - Bo Zhang
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Shuyan Li
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Jun Zhang
- College of Physical Education, Shanghai Normal University, Shanghai, China
| |
Collapse
|
9
|
Zhao Y, Bai J, Luo Q, Zhang JY, Xu JR, Duan JL, Yan YA, Wu LM, Lu WL. Electric charge conversable drug liposomes enable to enhance treatment efficacy of breast cancer. PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(3).190608.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intrinsic drug resistance has been demonstrated in different types of breast cancer cells, leading to the recurrence of disease after treatment. Here, we report a functional drug liposome that enables electric charge conversion in the weak acidic milieu of cancer to enhance the treatment efficacy of different breast cancers. The functional drug liposomes were developed by encapsulating daunorubicin and rofecoxib, and modified with new functional material, D-alpha tocopherol acid succinate-polyethylene glycol-glutarate (TPGS1000-glutarate). The results demonstrated that the liposomes promoted the effects of cellular uptake and lysosomal escape, followed by targeting the mitochondria. Consequently, the electric charge conversable drug liposomes significantly enhanced the treatment efficacy by initiating a cascade of reactions through inducing autophagy and apoptosis in different breast cancer cells. In conclusion, the electric charge conversable drug liposomes enable to enhance treatment efficacy of different breast cancers, and hence the study could offer a broadly applicable strategy to enhance efficacy against heterogeneous and refractory cancer cells.
Collapse
Affiliation(s)
- Yao Zhao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - Jing Bai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - Qian Luo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - Jing-Ying Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - Jia-Rui Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - Jia-Lun Duan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - YAn Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - Li-Ming Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| |
Collapse
|
10
|
He Y, Shin J, Gong W, Das P, Qu J, Yang Z, Liu W, Kang C, Qu J, Kim JS. Dual-functional fluorescent molecular rotor for endoplasmic reticulum microviscosity imaging during reticulophagy. Chem Commun (Camb) 2019; 55:2453-2456. [DOI: 10.1039/c9cc00300b] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A dual functional fluorescent molecular rotor was developed to trigger intracellular ER autophagy and quantify the local viscosity variations by FLIM imaging.
Collapse
Affiliation(s)
- Ying He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University
- Shenzhen 518060
- China
| | - Jinwoo Shin
- Department of Chemistry, Korea University
- Seoul 02841
- Korea
| | - Wanjun Gong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University
- Shenzhen 518060
- China
| | - Pintu Das
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University
- Shenzhen 518060
- China
| | - Jinghan Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University
- Shenzhen 518060
- China
| | - Zhigang Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University
- Shenzhen 518060
- China
| | - Wufan Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University
- Shenzhen 518060
- China
| | - Chulhun Kang
- Graduate School of East-West Medical Science, Kyung Hee University
- Yongin 446-701
- Korea
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University
- Shenzhen 518060
- China
| | - Jong Seung Kim
- Department of Chemistry, Korea University
- Seoul 02841
- Korea
| |
Collapse
|
11
|
Kloner RA, Brown DA, Csete M, Dai W, Downey JM, Gottlieb RA, Hale SL, Shi J. New and revisited approaches to preserving the reperfused myocardium. Nat Rev Cardiol 2017; 14:679-693. [PMID: 28748958 PMCID: PMC5991096 DOI: 10.1038/nrcardio.2017.102] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early coronary artery reperfusion improves outcomes for patients with ST-segment elevation myocardial infarction (STEMI), but morbidity and mortality after STEMI remain unacceptably high. The primary deficits seen in these patients include inadequate pump function, owing to rapid infarction of muscle in the first few hours of treatment, and adverse remodelling of the heart in the months that follow. Given that attempts to further reduce myocardial infarct size beyond early reperfusion in clinical trials have so far been disappointing, effective therapies are still needed to protect the reperfused myocardium. In this Review, we discuss several approaches to preserving the reperfused heart, such as therapies that target the mechanisms involved in mitochondrial bioenergetics, pyroptosis, and autophagy, as well as treatments that harness the cardioprotective properties of inhaled anaesthetic agents. We also discuss potential therapies focused on correcting the no-reflow phenomenon and its effect on healing and adverse left ventricular remodelling.
Collapse
Affiliation(s)
- Robert A Kloner
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Center for Drug Discovery, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Metabolic Phenotyping Core, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Marie Csete
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90017, USA
| | - Wangde Dai
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - James M Downey
- Department of Physiology and Cell Biology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, USA
| | - Roberta A Gottlieb
- Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, California 90048, USA
| | - Sharon L Hale
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
| | - Jianru Shi
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| |
Collapse
|
12
|
Current Evidence for a Role of Neuropeptides in the Regulation of Autophagy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5856071. [PMID: 28593174 PMCID: PMC5448050 DOI: 10.1155/2017/5856071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/30/2017] [Indexed: 12/14/2022]
Abstract
Neuropeptides drive a wide diversity of biological actions and mediate multiple regulatory functions involving all organ systems. They modulate intercellular signalling in the central and peripheral nervous systems as well as the cross talk among nervous and endocrine systems. Indeed, neuropeptides can function as peptide hormones regulating physiological homeostasis (e.g., cognition, blood pressure, feeding behaviour, water balance, glucose metabolism, pain, and response to stress), neuroprotection, and immunomodulation. We aim here to describe the recent advances on the role exerted by neuropeptides in the control of autophagy and its molecular mechanisms since increasing evidence indicates that dysregulation of autophagic process is related to different pathological conditions, including neurodegeneration, metabolic disorders, and cancer.
Collapse
|
13
|
Downregulated endogenous sulfur dioxide/aspartate aminotransferase pathway is involved in angiotensin II-stimulated cardiomyocyte autophagy and myocardial hypertrophy in mice. Int J Cardiol 2016; 225:392-401. [DOI: 10.1016/j.ijcard.2016.09.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 11/23/2022]
|
14
|
Zhou L, Ma B, Han X. The role of autophagy in angiotensin II-induced pathological cardiac hypertrophy. J Mol Endocrinol 2016; 57:R143-R152. [PMID: 27620875 DOI: 10.1530/jme-16-0086] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022]
Abstract
Pathological cardiac hypertrophy is associated with nearly all forms of heart failure. It develops in response to disorders such as coronary artery disease, hypertension and myocardial infarction. Angiotensin II (Ang II) has direct effects on the myocardium and promotes hypertension. Chronic elevation of Ang II can lead to pathological cardiac hypertrophy and cardiac failure. Autophagy is an important process in the pathogenesis of cardiovascular diseases. Under physiological conditions, autophagy is an essential homeostatic mechanism to maintain the global cardiac structure function by ridding damaged cells or unwanted macromolecules and organelles. Dysregulation of autophagy may play an important role in Ang II-induced cardiac hypertrophy although conflicting reports on the effects of Ang II on autophagy and cardiac hypertrophy exist. Some studies showed that autophagy activation attenuated Ang II-induced cardiac dysfunction. Others suggested that inhibition of the Ang II induced autophagy should be protective. The discrepancies may be due to different model systems and different signaling pathway involved. Ang II-induced cardiac hypertrophy may be alleviated through regulation of autophagy. This review focuses on Ang II to highlight the molecular targets and pathways identified in the prevention and treatment of Ang II-induced pathological cardiac hypertrophy by regulating autophagy.
Collapse
Affiliation(s)
- Lichun Zhou
- Department of PharmacologySchool of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Baohua Ma
- Pharmaceutical Preparation SectionCentral Hospital of Qingdao, Qingdao, Shandong Province, China
| | - Xiuzhen Han
- Department of PharmacologySchool of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|