1
|
Zhao ST, Qiu ZC, Xu ZQ, Tao ED, Qiu RB, Peng HZ, Zhou LF, Zeng RY, Lai SQ, Wan L. Curcumin attenuates myocardial ischemia‑reperfusion‑induced autophagy‑dependent ferroptosis via Sirt1/AKT/FoxO3a signaling. Int J Mol Med 2025; 55:51. [PMID: 39930816 PMCID: PMC11781526 DOI: 10.3892/ijmm.2025.5492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/04/2024] [Indexed: 02/14/2025] Open
Abstract
Curcumin (Cur) effectively attenuates myocardial ischemia/reperfusion injury (MIRI). MIRI has a complex mechanism and is associated with autophagy‑dependent ferroptosis. Therefore, the present study aimed to determine whether autophagy‑dependent ferroptosis occurs in MIRI and assess the mechanism of Cur in attenuating MIRI. The study was conducted on a Sprague‑Dawley rat MIRI model and H9c2 cell anoxia/reoxygenation (A/R) injury model. The effect of Cur pretreatment on A/R or MIRI induced autophagy‑dependent ferroptosis and its molecular mechanism were investigated. Protein expression, lysosomal, reactive oxygen species, Fe2+, oxidative systems, mitochondrial function, subcellular localization of molecules, and cardiac function assays will be employed. Cur decreased MIRI; improved myocardial histopathology; increased cardiomyocyte viability; inhibited ferroptosis, apoptosis and autophagy; reduced infarct size and maintained cardiac function. MIRI decreased silent information regulator 1 (Sirt1), decreased AKT and forkhead box O3A (FoxO3a) phosphorylation, leading to FoxO3a entry into the nucleus to activate translation of autophagy‑related genes and inducing ferroptosis, apoptosis and autophagy. However, Cur pretreatment activated AKT and FoxO3a phosphorylation via Sirt1, thereby transporting FoxO3a out of the nucleus, reducing autophagy‑related gene translation and attenuating MIRI‑induced ferroptosis, apoptosis and autophagy. Of note, the silencing of Sirt1 and administration of triciribine (an AKT inhibitor) both eliminated the protective effect of Cur. Thus, Cur maintained cardiomyocyte function by inhibiting autophagy‑dependent ferroptosis via Sirt1/AKT/FoxO3a signaling.
Collapse
Affiliation(s)
- Shi-Tao Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Cong Qiu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Qiang Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - En-De Tao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rong-Bin Qiu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Han-Zhi Peng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lian-Fen Zhou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rui-Yuan Zeng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
2
|
Wang Z, Zhao X, Lu M, Wang N, Xu S, Min D, Wang L. The role of sirtuins in the regulation of reactive oxygen species in myocardial ischemia/reperfusion injury. Mol Cell Biochem 2025:10.1007/s11010-024-05204-9. [PMID: 39920412 DOI: 10.1007/s11010-024-05204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/28/2024] [Indexed: 02/09/2025]
Abstract
Myocardial ischemia/reperfusion (I/R) injury has high morbidity and mortality rates, posing a significant burden on society. There is an urgent need to understand its pathogenesis and develop effective treatments. Reactive oxygen species (ROS) are crucial for the development of myocardial I/R injury, and inhibiting ROS overproduction is one of the most critical ways to delay myocardial I/R injury. Sirtuins are a group of nicotinic adenine dinucleotide ( +)-dependent histone deacetylases whose members can regulate ROS by modulating various biological processes. Numerous studies have shown that Sirtuins play an essential role in the progression of myocardial I/R injury by regulating ROS. This study focuses on the relationship between myocardial I/R injury and ROS, Sirtuins and ROS, discusses the role of Sirtuins in regulating ROS in myocardial I/R, and summarizes the therapeutic modalities aimed at targeting Sirtuins to modulate ROS in myocardial I/R injury, thereby guiding future research endeavors.
Collapse
Affiliation(s)
- Zheng Wang
- School of Medicine, Qilu Institute of Technology, Jinan, 250200, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110102, China
| | - Mingjing Lu
- School of Medicine, Qilu Institute of Technology, Jinan, 250200, China
| | - Naiyu Wang
- School of Medicine, Qilu Institute of Technology, Jinan, 250200, China
| | - Shu Xu
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China
| | - Dongyu Min
- Experimental Center of Traditional Chinese Medicine, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| | - Lijie Wang
- Department of Cardiology, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110033, China.
| |
Collapse
|
3
|
Chen D, Shen Y, Huang F, Huang B, Xu S, Li L, Liu J, Li Z, Li X. Ethanol extract of Polygonatum cyrtonema Hua mitigates non-alcoholic steatohepatitis in mice. Front Pharmacol 2025; 15:1487738. [PMID: 39949396 PMCID: PMC11821971 DOI: 10.3389/fphar.2024.1487738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/20/2024] [Indexed: 02/16/2025] Open
Abstract
Background Polygonum cyrtonema Hua is a kind of traditional Chinese botanic drug. Modern pharmacological research has confirmed that Polygonum cyrtonema Hua is able to alleviate nonalcoholic fatty liver disease, but the precise mechanism requires further investigation. This study investigated the protective effects and underlying mechanisms of Polygonatum cyrtonema ethanol extract (PCE) against Non-alcoholic steatohepatitis (NASH) in mice. Methods UHPLC-MS/MS was utilized to analyze the metabolites of PCE. The NASH mouse model was establishment in C57BL/6J mice via high-fat diet (HFD) feeding for 12 weeks, and from the 9th week, mice were gavaged with PCE (100, 300, and 900 mg/kg/day), simvastatin (4 mg/kg) or saline. One hand, liver injury was assessed by serum enzymes, biochemistry, and histopathology; On the other hand, RNA-seq, qPCR, and Western blot were employed to investigate the related molecular mechanisms. Results 211 metabolites were identified through UHPLC-MS/MS analysis. PCE ameliorated HFD induced liver injury and improved hepatocellular degeneration and steatosis in a dose-dependent way. PCE restored the expression of AMPK, SIRT1, SREBP1 and PPAR-α both in mRNA and protein levels. RNAseq identified unique gene expression profiles in response to high-fat diet (HFD) compared to the PCE treatments. HFD-induced DEGs were attenuated or abolished following PCE treatments. Ingenuity pathway analysis of RNA-seq data revealed key canonical pathways and upstream molecules regulated by PCE. Conclusion Our findings confirm the ability of PCE in alleviating NASH and underscores AMPK/SIRT1 pathway as a potential theraputic target for NASH treatment.
Collapse
Affiliation(s)
- Dongliang Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yue Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Department of Pharmacy, Bijie City Qixingguan District Hospital of Traditional Chinese Medicine, Bijie, Guizhou, China
| | - Fang Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Bo Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xia Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Li X, Wang T, Zhou Q, Li F, Liu T, Zhang K, Wen A, Feng L, Shu X, Tian S, Liu Y, Gao Y, Xia Q, Xin G, Huang W. Isorhamnetin Alleviates Mitochondrial Injury in Severe Acute Pancreatitis via Modulation of KDM5B/HtrA2 Signaling Pathway. Int J Mol Sci 2024; 25:3784. [PMID: 38612598 PMCID: PMC11011973 DOI: 10.3390/ijms25073784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Severe acute pancreatitis (SAP), a widespread inflammatory condition impacting the abdomen with a high mortality rate, poses challenges due to its unclear pathogenesis and the absence of effective treatment options. Isorhamnetin (ISO), a naturally occurring flavonoid, demonstrates robust antioxidant and anti-inflammatory properties intricately linked to the modulation of mitochondrial function. However, the specific protective impact of ISO on SAP remains to be fully elucidated. In this study, we demonstrated that ISO treatment significantly alleviated pancreatic damage and reduced serum lipase and amylase levels in the mouse model of SAP induced by sodium taurocholate (STC) or L-arginine. Utilizing an in vitro SAP cell model, we found that ISO co-administration markedly prevented STC-induced pancreatic acinar cell necrosis, primarily by inhibiting mitochondrial ROS generation, preserving ATP production, maintaining mitochondrial membrane potential, and preventing the oxidative damage and release of mitochondrial DNA. Mechanistically, our investigation identified that high-temperature requirement A2 (HtrA2) may play a central regulatory role in mediating the protective effect of ISO on mitochondrial dysfunction in STC-injured acinar cells. Furthermore, through an integrated approach involving bioinformatics analysis, molecular docking analysis, and experimental validation, we uncovered that ISO may directly impede the histone demethylation activity of KDM5B, leading to the restoration of pancreatic HtrA2 expression and thereby preserving mitochondrial function in pancreatic acinar cells following STC treatment. In conclusion, this study not only sheds new light on the intricate molecular complexities associated with mitochondrial dysfunction during the progression of SAP but also underscores the promising value of ISO as a natural therapeutic option for SAP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Guang Xin
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Huang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Zhang T, Xu L, Guo X, Tao H, Liu Y, Liu X, Zhang Y, Meng X. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J Pharm Anal 2024; 14:157-176. [PMID: 38464786 PMCID: PMC10921247 DOI: 10.1016/j.jpha.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 03/12/2024] Open
Abstract
Heart failure (HF) is a highly morbid syndrome that seriously affects the physical and mental health of patients and generates an enormous socio-economic burden. In addition to cardiac myocyte oxidative stress and apoptosis, which are considered mechanisms for the development of HF, alterations in cardiac energy metabolism and pathological autophagy also contribute to cardiac abnormalities and ultimately HF. Silent information regulator 1 (Sirt1) and adenosine monophosphate-activated protein kinase (AMPK) are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and phosphorylated kinases, respectively. They play similar roles in regulating some pathological processes of the heart through regulating targets such as peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), protein 38 mitogen-activated protein kinase (p38 MAPK), peroxisome proliferator-activated receptors (PPARs), and mammalian target of rapamycin (mTOR). We summarized the synergistic effects of Sirt1 and AMPK in the heart, and listed the traditional Chinese medicine (TCM) that exhibit cardioprotective properties by modulating the Sirt1/AMPK pathway, to provide a basis for the development of Sirt1/AMPK activators or inhibitors for the treatment of HF and other cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaowei Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, 620032, China
| |
Collapse
|
6
|
Popiolek-Kalisz J, Fornal E. Dietary Isorhamnetin Intake Is Inversely Associated with Coronary Artery Disease Occurrence in Polish Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12546. [PMID: 36231844 PMCID: PMC9566513 DOI: 10.3390/ijerph191912546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The role of antioxidative agents in coronary artery disease (CAD) has been investigated, but the analysis of specific flavonols intake in Polish adults requires validated tools. The aim of this study was to estimate the dietary intake of flavonols in CAD patients by creating a food frequency questionnaire (FFQ) dedicated for this purpose in Polish adults. The FFQ included 140 products from 12 food groups. The study involved 103 adult respondents (43 CAD patients and 60 healthy controls). Mean daily intakes of total flavonols, quercetin, kaempferol, myricetin and isorhamnetin were calculated as absolute values and quartiles. Mean daily intakes of 12 main food categories and 27 subcategories were calculated as portions and quartiles. The validity test revealed high correlation for total flavonols, kaempferol, myricetin and isorhamnetin and moderate for quercetin. In the reproducibility analysis, the correlation was high for total flavonols, quercetin, kaempferol and myricetin, moderate for isorhamnetin and high for all 12 categories and 25 out of 27 subcategories of the tested food groups. The application of the FFQ in healthy adults and CAD patients revealed that dietary intakes of total flavonols and proportional intakes of kaempferol and isorhamnetin in Polish adults and CAD patients are higher than in most other European countries, while the proportional intakes of quercetin and myricetin are lower than in most European countries. The comparison between CAD patients and the healthy controls revealed significant differences in dietary isorhamnetin intake (p = 0.002). The results suggest that dietary isorhamnetin could have a potential role in CAD prevention.
Collapse
Affiliation(s)
- Joanna Popiolek-Kalisz
- Clinical Dietetics Unit, Department of Bioanalytics, Medical University of Lublin, ul. Chodzki 7, 20-090 Lublin, Poland
- Department of Cardiology, Cardinal Wyszynski Hospital in Lublin, al. Krasnicka 100, 20-718 Lublin, Poland
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
7
|
Li ZY, Liu Y, Wang YY, Li X, Han ZN, Hong L, Li YS, Cui X. NOX4 stimulates ANF secretion via activation of the Sirt1/Nrf2/ATF3/4 axis in hypoxic beating rat atria. Mol Med Rep 2022; 25:84. [PMID: 35029280 PMCID: PMC8809118 DOI: 10.3892/mmr.2022.12600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
Silent information regulator factor 2-related enzyme 1 (Sirt1) is involved in the regulation of cell senescence, gene transcription, energy balance and oxidative stress. However, the effect of Sirt1 on atrial natriuretic factor (ANF) secretion, especially under hypoxic conditions is unclear. The present study aimed to investigate the effect of Sirt1, regulated by NADPH oxidase 4 (NOX4), on ANF secretion in isolated beating rat atria during hypoxia. ANF secretion was analyzed using radioimmunoassays and protein expression levels were determined by western blotting and immunofluorescence staining. Intra-atrial pressure was recorded using a physiograph. Hypoxia significantly upregulated Sirt1 and nuclear factor erythroid-2-related factor 2 (Nrf2) protein expression levels, together with significantly increased ANF secretion. Hypoxia-induced protein expression of Sirt1 was significantly blocked by a NOX4 inhibitor, GLX351322, and Nrf2 protein expression levels were significantly abolished using the Sirt1 inhibitor, EX527. Hypoxia also significantly elevated the protein expression levels of phosphorylated-Akt and sequestosome 1 and significantly downregulated Kelch-like ECH-associated protein 1 protein expression levels. These effects were significantly blocked by EX527, preventing hypoxia-induced Nrf2 expression. An Nrf2 inhibitor, ML385, significantly abolished the hypoxia-induced upregulation of activating transcription factor (ATF)3, ATF4, T cell factor (TCF)3 and TCF4/lymphoid enhancer factor 1 (LEF1) protein expression levels, and significantly attenuated hypoxia-induced ANF secretion. These results indicated that Sirt1 and Nrf2, regulated by NOX4, can potentially stimulate TCF3 and TCF4/LEF1 signaling via ATF3 and ATF4 activation, thereby potentially participating in the regulation of ANF secretion in beating rat atria during hypoxia. In conclusion, intervening with the Sirt1/Nrf2/ATF signaling pathway may be an effective strategy for resisting oxidative stress damage in the heart during hypoxia.
Collapse
Affiliation(s)
- Zhi-Yu Li
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Ying Liu
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Yue-Ying Wang
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Xiang Li
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Zhuo-Na Han
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Lan Hong
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Ying-Shun Li
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Xun Cui
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, Jilin 133002, P.R. China
| |
Collapse
|
8
|
Ali SS, Noordin L, Bakar RA, Zainalabidin S, Jubri Z, Wan Ahmad WAN. Current Updates on Potential Role of Flavonoids in Hypoxia/Reoxygenation Cardiac Injury Model. Cardiovasc Toxicol 2021; 21:605-618. [PMID: 34114196 DOI: 10.1007/s12012-021-09666-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/03/2021] [Indexed: 01/25/2023]
Abstract
Clinically, timely reperfusion strategies to re-establish oxygenated blood flow in ischemic heart diseases seem to salvage viable myocardium effectively. Despite the remarkable improvement in cardiac function, reperfusion therapy could paradoxically trigger hypoxic cellular injury and dysfunction. Experimental laboratory models have been developed over the years to explain better the pathophysiology of cardiac ischemia-reperfusion injury, including the in vitro hypoxia-reoxygenation cardiac injury model. Furthermore, the use of nutritional myocardial conditioning techniques have been successful. The cardioprotective potential of flavonoids have been greatly linked to its anti-oxidant, anti-apoptotic and anti-inflammatory properties. While several studies have reviewed the cardioprotective properties of flavonoids, there is a scarce evidence of their function in the hypoxia-reoxygenation injury cell culture model. Hence, the aim of this review was to lay out and summarize our current understanding of flavonoids' function in mitigating hypoxia-reoxygenation cardiac injury based on evidence from the last five years. We also discussed the possible mechanisms of flavonoids in modulating the cardioprotective effects as such information would provide invaluable insight on future therapeutic application of flavonoids.
Collapse
Affiliation(s)
- Shafreena Shaukat Ali
- Programme of Biomedicine, School of Health Sciences (PPSK), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Liza Noordin
- Department of Physiology, School of Medical Sciences (PPSP), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ruzilawati Abu Bakar
- Department of Pharmacology, School of Medical Sciences (PPSP), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Faculty of Health Sciences, Center for Toxicology and Health Risk Studies (CORE), Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Zakiah Jubri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Wan Amir Nizam Wan Ahmad
- Programme of Biomedicine, School of Health Sciences (PPSK), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
9
|
Isorhamnetin Alleviates High Glucose-Aggravated Inflammatory Response and Apoptosis in Oxygen-Glucose Deprivation and Reoxygenation-Induced HT22 Hippocampal Neurons Through Akt/SIRT1/Nrf2/HO-1 Signaling Pathway. Inflammation 2021; 44:1993-2005. [PMID: 33999329 DOI: 10.1007/s10753-021-01476-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
This study is aimed at exploring the potential of isorhamnetin in protection against diabetes-exacerbated ischemia/reperfusion-induced brain injury and elucidating its action mechanism. After establishment of the model of high glucose (HG)-aggravated oxygen-glucose deprivation and reoxygenation (OGD/R), HT22 cell viability was detected by CCK-8. Lactate dehydrogenase (LDH) activity, casapase-3 activity, and oxidative stress-related markers in HT22 cells were detected by corresponding commercial kits. The apoptosis of HG-treated HT22 cells following OGD/R was observed with TUNEL staining. The level of pro-inflammatory cytokines was examined by ELISA. The expression of Akt/SIRT1/Nrf2/HO-1 signaling-related proteins was assayed by Western blot. The results showed that HG noticeably worsened the OGD/R-induced apoptosis of HT22 cells. Isorhamnetin relieved the HG-aggravated OGD/R-induced apoptosis, inflammatory response, and oxidative stress of HT22 cells. Isorhamnetin alleviated the HG-aggravated OGD/R injury in HT22 cells through Akt/SIRT1/Nrf2/HO-1 signaling pathway. Meanwhile, treatment with Akt inhibitor LY294002 reversed the protective effects of isorhamnetin against HG-aggravated OGD/R injury in HT22 cells. In a conclusion, Isorhamnetin alleviates HG-aggravated OGD/R in HT22 hippocampal neurons through Akt/SIRT1/Nrf2/HO-1 signaling pathway.
Collapse
|
10
|
Gao M, Lan J, Bao B, Yao W, Cao Y, Shan M, Cheng F, Chen P, Zhang L. Effects of carbonized process on quality control, chemical composition and pharmacology of Typhae Pollen: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113774. [PMID: 33388428 DOI: 10.1016/j.jep.2020.113774] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/08/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Carbonized Typhae Pollen (CTP), a processed product of Typhae Pollen after stir-fried, is a well-known Traditional Chinese Medicine (TCM) with functions of removing blood stasis and hemostasis. AIM OF REVIEW The aim of this study is to summarize and discuss up-to-date information on quality control of CTP, and effects of carbonized process on phytochemistry and biological activities. We hope this review could provide feasible insights for further studies of CTP on its material basis and pharmacological effect mechanism. MATERIAL AND METHODS The information of TP before and after carbonized process was collected from online databases (PubMed, CNKI, Google Scholar, Baidu Xueshu, Web of Science, SpringerLink, Wiley Online Library, SciFinder and Chemical book). Meanwhile local books, published and unpublished Ph.D., MSc. dissertations were also taken into consideration. RESULTS A total of 27 Ph.D., MSc. dissertations and 208 articles were collected from online database, from which 122 compounds of TP were collected, but only two researches focused on the chemical compositions of CTP. Introductions of new technologies and intelligent processing equipment developments are considered as two main solutions to the quality control of CTP. CTP is a well-known ethnic medicine in China with a fantastic efficacy in curing bleeding caused by blood stasis. Flavonoids were reported as the main active compounds for removing blood stasis while the enhanced hemostatic activity were consistent with flavonoid aglycones. Modern pharmacological researches showed that CTP has wound healing activity, effects on blood vessels, antithrombotic activity, hemostatic activity, antioxidant activity and immunomodulatory activity. CONCLUSIONS Although CTP has been widely used in clinic, there are some problems blocking its further development. Unknown mechanism and uncertain active compounds might be the main reasons for few rules on controlling the quality of CTP. It is necessary to investigate the mechanisms and the relationship between carbonized process and the changes in constituents as well as pharmacological effects. This is essential to promote the safe clinical use of CTP.
Collapse
Affiliation(s)
- Mingliang Gao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jinshan Lan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Peidong Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
11
|
Zhai T, Zhang X, Hei Z, Jin L, Han C, Ko AT, Yu X, Wang J. Isorhamnetin Inhibits Human Gallbladder Cancer Cell Proliferation and Metastasis via PI3K/AKT Signaling Pathway Inactivation. Front Pharmacol 2021; 12:628621. [PMID: 33679411 PMCID: PMC7927673 DOI: 10.3389/fphar.2021.628621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
Gallbladder cancer (GBC) is the most common biliary tract tumor with a poor prognosis. Isorhamnetin is a flavonoid compound extracted from Hippophae rhamnoides L. and has several pharmacological effects including anti-inflammatory and anti-cancer properties. We treated GBC-SD and NOZ of GBC cell lines with different isorhamnetin concentrations in vitro. A cell counting kit-8 (CCK-8) assay, transwell assay, Hoechst 33342 stain assay, flow cytometric analysis, and a colony-forming assay were performed to investigate the effect of isorhamnetin on the proliferation, apoptosis, metastasis, and cycle arrest of GBC cells. A western blotting assay was conducted to explore the related protein expression level of GBC cells. A mice xenograft model and immunohistochemistry staining were employed to assess the effect of isorhamnetin in vivo. Isorhamnetin was found to suppress cell proliferation and metastasis, and trigger apoptosis and arrest the G2/M phase in GBC cells via the inactivation of the PI3K/AKT signaling cascade. Our findings are of clinical significance in providing a novel treatment approach for GBC.
Collapse
Affiliation(s)
- Tianyu Zhai
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, China.,Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Zhang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyu Hei
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longyang Jin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chao Han
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Audrey Tsznam Ko
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xiaofeng Yu
- Department of General Surgery, People's Hospital of Gaoxin District, Suzhou, China
| | - Jiandong Wang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, China.,Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Xu Y, Tang C, Tan S, Duan J, Tian H, Yang Y. Cardioprotective effect of isorhamnetin against myocardial ischemia reperfusion (I/R) injury in isolated rat heart through attenuation of apoptosis. J Cell Mol Med 2020; 24:6253-6262. [PMID: 32307912 PMCID: PMC7294129 DOI: 10.1111/jcmm.15267] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
In this study, we investigated the effects of isorhamnetin on myocardial ischaemia reperfusion (I/R) injury in Langendorff‐perfused rat hearts. Isorhamnetin treatment (5, 10 and 20 μg/mL) significantly alleviated cardiac morphological injury, reduced myocardial infarct size, decreased the levels of marker enzymes (LDH and CK) and improved the haemodynamic parameters, reflected by the elevated levels of the left ventricular developed pressure (LVDP), coronary flow (CF) and the maximum up/down velocity of left ventricular pressure (+dp/dtmax). Moreover, isorhamnetin reperfusion inhibited apoptosis of cardiomyocytes in the rats subjected to cardiac I/R in a dose‐dependent manner concomitant with decreased protein expression of Bax and cleaved‐caspase‐3, as well as increased protein expression of Bcl‐2. In addition, I/R‐induced oxidative stress was manifestly mitigated by isorhamnetin treatment, as showed by the decreased malondialdehyde (MDA) level and increased antioxidant enzymes activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH‐Px). These results indicated that isorhamnetin exerts a protective effect against I/R‐induced myocardial injury through the attenuation of apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Yan Xu
- Department of Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Chun Tang
- Department of Nephrology, Center of Nephrology and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, PR China
| | - Shengyu Tan
- Department of Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Juan Duan
- Department of Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Hongmei Tian
- Department of Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yu Yang
- Department of Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
13
|
Ferenczyova K, Kalocayova B, Bartekova M. Potential Implications of Quercetin and its Derivatives in Cardioprotection. Int J Mol Sci 2020; 21:E1585. [PMID: 32111033 PMCID: PMC7084176 DOI: 10.3390/ijms21051585] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Quercetin (QCT) is a natural polyphenolic compound enriched in human food, mainly in vegetables, fruits and berries. QCT and its main derivatives, such as rhamnetin, rutin, hyperoside, etc., have been documented to possess many beneficial effects in the human body including their positive effects in the cardiovascular system. However, clinical implications of QCT and its derivatives are still rare. In the current paper we provide a complex picture of the most recent knowledge on the effects of QCT and its derivatives in different types of cardiac injury, mainly in ischemia-reperfusion (I/R) injury of the heart, but also in other pathologies such as anthracycline-induced cardiotoxicity or oxidative stress-induced cardiac injury, documented in in vitro and ex vivo, as well as in in vivo experimental models of cardiac injury. Moreover, we focus on cardiac effects of QCT in presence of metabolic comorbidities in addition to cardiovascular disease (CVD). Finally, we provide a short summary of clinical studies focused on cardiac effects of QCT. In general, it seems that QCT and its metabolites exert strong cardioprotective effects in a wide range of experimental models of cardiac injury, likely via their antioxidant, anti-inflammatory and molecular pathways-modulating properties; however, ageing and presence of lifestyle-related comorbidities may confound their beneficial effects in heart disease. On the other hand, due to very limited number of clinical trials focused on cardiac effects of QCT and its derivatives, clinical data are inconclusive. Thus, additional well-designed human studies including a high enough number of patients testing different concentrations of QCT are needed to reveal real therapeutic potential of QCT in CVD. Finally, several negative or controversial effects of QCT in the heart have been reported, and this should be also taken into consideration in QCT-based approaches aimed to treat CVD in humans.
Collapse
Affiliation(s)
- Kristina Ferenczyova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (K.F.); (B.K.)
| | - Barbora Kalocayova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (K.F.); (B.K.)
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (K.F.); (B.K.)
- Institute of Physiology, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| |
Collapse
|
14
|
Rutin alleviates hypoxia/reoxygenation-induced injury in myocardial cells by up-regulating SIRT1 expression. Chem Biol Interact 2019; 297:44-49. [DOI: 10.1016/j.cbi.2018.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/13/2018] [Accepted: 10/22/2018] [Indexed: 01/18/2023]
|
15
|
Vagula JM, Rocha BA, Silva AR, Narain N, Bersani-Amado CA, Junior OOS, Visentainer JV. Analysis of Solanum Americanum Mill. by Ultrafast Liquid Chromatography with Diode Array and Time-Of-flight Mass Spectrometry Detection with Evaluation of Anti-Inflammatory Properties in Rodent Models. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1399413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Julianna M. Vagula
- Department of Food Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Bruno A. Rocha
- Department of Food Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Alexandre R. Silva
- Laboratory of Flavor & Chromatographic Analysis, Federal University of Sergipe, São Cristóvão, Brazil
| | - Narendra Narain
- Laboratory of Flavor & Chromatographic Analysis, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Oscar O. S. Junior
- Department of Food Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Jesuí V. Visentainer
- Department of Food Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
16
|
Zhao TT, Yang TL, Gong L, Wu P. Isorhamnetin protects against hypoxia/reoxygenation-induced injure by attenuating apoptosis and oxidative stress in H9c2 cardiomyocytes. Gene 2018; 666:92-99. [PMID: 29730426 DOI: 10.1016/j.gene.2018.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
To unveil the possible protective role of isorhamnetin, an immediate 3'-O-methylated metabolite of quercetin, in cardiomyocyte under hypoxia/reoxygenation (H/R) condition and the underlying mechanisms involved, H9c2 cardiomyocytes were exposed to the vehicle or H/R for 6 h (2 h of hypoxia following by 4 h of reoxygenation) with isorhamnetin (0, 3, 6, 12, 25, 50 μM for 4 h prior to H/R exposure). Apoptosis was evaluated by TUNEL staining, flow cytometry analysis and western blot assay for cleaved caspase-3. Myocardial injure in vivo was determined by infarct size using TTC staining, histological damage using H&E staining and myocardial apoptosis. Here, we found that isorhamnetin dose-dependently protected H9c2 cardiomyocytes against H/R-induced injure, as evidenced by the reduction in lactate dehydrogenase (LDH) levels, increases in cell viability, superoxide dismutase (SOD) and catalase (CAT) activity, with the maximal effects at 25 μΜ. In addition, isorhamnetin treatment significantly inhibited apoptosis in H/R-induced H9c2 cardiomyocytes and ameliorated H/R-induced myocardial injure in vivo, concomitant with the upregulation of sirtuin 1 (SIRT1) expression. Mechanism studies demonstrated that isorhamnetin pretreatment remarkably abolished H/R-induced downregulation of Nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions and upregulation of NADPH oxidase-2/4 (NOX-2/4) expressions in cardiomyocytes. However, SIRT1 inhibition (Sirtinol) not only inhibited isorhamnetin-induced Nrf2/HO-1 upregulation and NOX-2/4 downregulation, but also alleviated its anti-apoptotic effects. Taken together, these data indicate that isorhamnetin can exhibit positive effect on H/R-induced injure by attenuating apoptosis and oxidative stress in H9c2 cardiomyocytes, which is partly attributable to the upregulation of SIRT1 and Nrf2/HO-1-mediated antioxidant signaling pathway.
Collapse
Affiliation(s)
- Ting-Ting Zhao
- Cardiovascular Department, The Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Tian-Lun Yang
- Cardiovascular Department, The Xiangya Hospital of Central South University, Changsha City, Hunan Province, China.
| | - Li Gong
- Cardiovascular Department, The Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Pei Wu
- Cardiovascular Department, The Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
17
|
Qiu L, Ma Y, Luo Y, Cao Z, Lu H. Protective effects of isorhamnetin on N2a cell against endoplasmic reticulum stress-induced injury is mediated by PKCε. Biomed Pharmacother 2017; 93:830-836. [DOI: 10.1016/j.biopha.2017.06.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023] Open
|
18
|
Yang X, Dong WB, Lei XP, Li QP, Zhang LY, Zhang LP. Resveratrol suppresses hyperoxia-induced nucleocytoplasmic shuttling of SIRT1 and ROS production in PBMC from preterm infants in vitro. J Matern Fetal Neonatal Med 2017; 31:1142-1150. [PMID: 28420272 DOI: 10.1080/14767058.2017.1311310] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xi Yang
- Department of Neonatology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wen-Bin Dong
- Department of Neonatology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Ping Lei
- Department of Neonatology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing-Ping Li
- Department of Neonatology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lian-Yu Zhang
- Department of Neonatology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ling-Ping Zhang
- Department of Neonatology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|