1
|
Sun WT, Du JY, Wang J, Wang YL, Dong ED. Potential preservative mechanisms of cardiac rehabilitation pathways on endothelial function in coronary heart disease. SCIENCE CHINA. LIFE SCIENCES 2025; 68:158-175. [PMID: 39395086 DOI: 10.1007/s11427-024-2656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 10/14/2024]
Abstract
Cardiac rehabilitation, a comprehensive exercise-based lifestyle and medical management, is effective in decreasing morbidity and improving life quality in patients with coronary heart disease. Endothelial function, an irreplaceable indicator in coronary heart disease progression, is measured by various methods in traditional cardiac rehabilitation pathways, including medicinal treatment, aerobic training, and smoking cessation. Nevertheless, studies on the effect of some emerging cardiac rehabilitation programs on endothelial function are limited. This article briefly reviewed the endothelium-beneficial effects of different cardiac rehabilitation pathways, including exercise training, lifestyle modification and psychological intervention in patients with coronary heart disease, and related experimental models, and summarized both uncovered and potential cellular and molecular mechanisms of the beneficial roles of various cardiac rehabilitation pathways on endothelial function. In exercise training and some lifestyle interventions, the enhanced bioavailability of nitric oxide, increased circulating endothelial progenitor cells (EPCs), and decreased oxidative stress are major contributors to preventing endothelial dysfunction in coronary heart disease. Moreover, the preservation of endothelial-dependent hyperpolarizing factors and inflammatory suppression play roles. On the one hand, to develop more endothelium-protective rehabilitation methods in coronary heart disease, adequately designed and sized randomized multicenter clinical trials should be advanced using standardized cardiac rehabilitation programs and existing assessment methods. On the other hand, additional studies using suitable experimental models are warranted to elucidate the relationship between some new interventions and endothelial protection in both macro- and microvasculature.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Jian-Yong Du
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jia Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Yi-Long Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Er-Dan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China.
- The Institute of Cardiovascular Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Schini-Kerth VB, Diouf I, Muzammel H, Said A, Auger C. Natural Products to Promote Vascular Health. Handb Exp Pharmacol 2025; 287:33-60. [PMID: 39317849 DOI: 10.1007/164_2024_721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Maintaining good vascular health is a major component in healthy ageing as it reduces the risk of cardiovascular diseases. Endothelial dysfunction, in particular, is a key mechanism in the development of major cardiovascular diseases including hypertension, atherosclerosis and diabetes. Recently, endothelial senescence has emerged as a pivotal early event in age-related endothelial dysfunction. Endothelial function is characterized by an imbalance between the endothelial formation of vasoprotective mechanisms, including the formation of nitric oxide (NO) and endothelium-dependent hyperpolarization responses, and an increased level of oxidative stress involving several pro-oxidant enzymes such as NADPH oxidases and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Pre-clinical studies have indicated that natural products, in particular several polyphenol-rich foods, can trigger activating pathways in endothelial cells promoting an increased formation of NO and endothelium-dependent hyperpolarization. In addition, some can even exert beneficial effects on endothelial senescence. Moreover, some of these products have been associated with the prevention and/or improvement of established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. Therefore, intake of certain natural products, such as dietary and plant-derived polyphenol-rich products, appears to be an attractive approach for a healthy vascular system in ageing.
Collapse
Affiliation(s)
- Valérie B Schini-Kerth
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France.
| | - Ibrahima Diouf
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Hira Muzammel
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Amissi Said
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- Regenerative Nanomedicine, INSERM UMR 1260, CRBS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Olas B. New light on changes in the number and function of blood platelets stimulated by cocoa and its products. Front Pharmacol 2024; 15:1366076. [PMID: 38533262 PMCID: PMC10963627 DOI: 10.3389/fphar.2024.1366076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Hyperactivation of blood platelets, one of the causes of heart attack, and other cardiovascular diseases (CVDs), is influenced by various dietary components, including phenolic compounds from vegetables, fruits, teas, wines, cocoa and its products, including chocolate. The present paper sheds new light on the effect of cocoa and its products, especially dark chocolate, on the number and function of blood platelets, and the anti-platelet activity of their constituent phenolic compounds. A review was performed of papers identified in various electronic databases, including PubMed, Science Direct, Scopus, Web of Knowledge, and Google Scholar, with the aim of determining whether their anti-platelet activity may serve as part of a sweet strategy in countering CVDs. Various studies demonstrate that cocoa consumption, especially in the form of dark chocolate, with a high flavanol concentration, has anti-platelet activity and may play a significant role in cardioprotection; they also note that cocoa consumption may be a good strategy in diminishing cardiovascular risk, including hyperactivation of blood platelets.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Šušnjara P, Mihaljević Z, Stupin A, Kolobarić N, Matić A, Jukić I, Kralik Z, Kralik G, Miloloža A, Pavošević T, Šerić V, Lončarić Z, Kerovec D, Galović O, Drenjančević I. Consumption of Nutritionally Enriched Hen Eggs Enhances Endothelium-Dependent Vasodilation via Cyclooxygenase Metabolites in Healthy Young People-A Randomized Study. Nutrients 2023; 15:1599. [PMID: 37049437 PMCID: PMC10097130 DOI: 10.3390/nu15071599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVE The present study aimed to evaluate the effects of enriched hen egg consumption on endothelium-dependent vasodilation (EDV) and the role of cyclooxygenases in EDV in the microcirculation of young healthy individuals. This study hypothesizes that Nutri4 eggs will improve endothelial function, which will be manifested by changes in microcirculatory flow measured by a laser Doppler flowmeter (LDF) during reactive hyperemia in response to vascular occlusion, in which n-3 PUFA plays an important role as well as its degradation pathway by cyclooxygenases. MATERIALS AND METHODS Participants consumed three eggs per day for three weeks: The control group (CTRL, n = 14) consumed regular hen eggs (approximately 0.330 mg of lutein, 1.785 mg of vitamin E, 0.054 mg of selenium and 438 mg of n-3 PUFAs daily) and Nutri4 group (n = 20) consumed enriched eggs (approximately 1.85 mg of lutein, 0.06 mg of selenium, 3.29 mg of vitamin E, and 1026 mg of n-3 PUFAs daily). Skin microvascular blood flow in response to EDV (post-occlusive reactive hyperemia (PORH) and iontophoresis of acetylcholine (AChID)) and sodium nitroprusside (SNPID; endothelium-independent) was assessed by laser Doppler flowmetry before and after dietary protocol and in a separate group of participants who were administered perorally 100 mg of indomethacin before microvascular response assessment. Arterial blood pressure, heart rate, serum lipid, and liver enzymes, anthropometric measurements, protein expression of cyclooxygenase 1 (COX-1), cyclooxygenase 2 (COX-2), neuronal nitric oxide synthases (nNOS), inducible nitric oxide synthases (iNOS), and endothelial nitric oxide synthases (eNOS) were measured before and after dietary protocol. RESULTS PORH and AChID were significantly enhanced, and SNPID remained unchanged in the Nutri4 group, while none was changed in the CTRL following a respective diet. PORH decreased after administration of indomethacin in Nutri4 after dietary protocol. Protein expression of COX-2 was significantly higher in the Nutri4 group compared to the CTRL after the dietary protocol. CONCLUSION Consumption of enriched eggs improves microvascular EDV in healthy young subjects. Results suggest an element of n-3 PUFAs metabolites via the cyclooxygenases pathway in enhanced reactive hyperemia.
Collapse
Affiliation(s)
- Petar Šušnjara
- Institute and Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (P.Š.); (Z.M.); (A.S.); (N.K.); (A.M.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (O.G.)
| | - Zrinka Mihaljević
- Institute and Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (P.Š.); (Z.M.); (A.S.); (N.K.); (A.M.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (O.G.)
| | - Ana Stupin
- Institute and Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (P.Š.); (Z.M.); (A.S.); (N.K.); (A.M.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (O.G.)
| | - Nikolina Kolobarić
- Institute and Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (P.Š.); (Z.M.); (A.S.); (N.K.); (A.M.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (O.G.)
| | - Anita Matić
- Institute and Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (P.Š.); (Z.M.); (A.S.); (N.K.); (A.M.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (O.G.)
| | - Ivana Jukić
- Institute and Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (P.Š.); (Z.M.); (A.S.); (N.K.); (A.M.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (O.G.)
| | - Zlata Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (O.G.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Gordana Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (O.G.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Anđelina Miloloža
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia; (A.M.); (T.P.); (V.Š.)
| | - Tihana Pavošević
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia; (A.M.); (T.P.); (V.Š.)
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia; (A.M.); (T.P.); (V.Š.)
| | - Zdenko Lončarić
- Department for Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (Z.L.); (D.K.)
| | - Darko Kerovec
- Department for Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (Z.L.); (D.K.)
| | - Olivera Galović
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (O.G.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Ul. Cara Hadrijana 8a, HR-31000 Osijek, Croatia
| | - Ines Drenjančević
- Institute and Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (P.Š.); (Z.M.); (A.S.); (N.K.); (A.M.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (O.G.)
| |
Collapse
|
5
|
Theranostic Potentials of Gold Nanomaterials in Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14133047. [PMID: 35804818 PMCID: PMC9264814 DOI: 10.3390/cancers14133047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hematological malignancies (HMs) cover 50% of all malignancies, and people of all ages can be affected by these deadly diseases. In many cases, conventional diagnostic tools fail to diagnose HMs at an early stage, due to heterogeneity and the long-term indolent phase of HMs. Therefore, many patients start their treatment at the late stage of HMs and have poor survival. Gold nanomaterials (GNMs) have shown promise as a cancer theranostic agent. GNMs are 1 nm to 100 nm materials having magnetic resonance and surface-plasmon-resonance properties. GNMs conjugated with antibodies, nucleic acids, peptides, photosensitizers, chemotherapeutic drugs, synthetic-drug candidates, bioactive compounds, and other theranostic biomolecules may enhance the efficacy and efficiency of both traditional and advanced theranostic approaches to combat HMs. Abstract Hematological malignancies (HMs) are a heterogeneous group of blood neoplasia generally characterized by abnormal blood-cell production. Detection of HMs-specific molecular biomarkers (e.g., surface antigens, nucleic acid, and proteomic biomarkers) is crucial in determining clinical states and monitoring disease progression. Early diagnosis of HMs, followed by an effective treatment, can remarkably extend overall survival of patients. However, traditional and advanced HMs’ diagnostic strategies still lack selectivity and sensitivity. More importantly, commercially available chemotherapeutic drugs are losing their efficacy due to adverse effects, and many patients develop resistance against these drugs. To overcome these limitations, the development of novel potent and reliable theranostic agents is urgently needed to diagnose and combat HMs at an early stage. Recently, gold nanomaterials (GNMs) have shown promise in the diagnosis and treatment of HMs. Magnetic resonance and the surface-plasmon-resonance properties of GNMs have made them a suitable candidate in the diagnosis of HMs via magnetic-resonance imaging and colorimetric or electrochemical sensing of cancer-specific biomarkers. Furthermore, GNMs-based photodynamic therapy, photothermal therapy, radiation therapy, and targeted drug delivery enhanced the selectivity and efficacy of anticancer drugs or drug candidates. Therefore, surface-tuned GNMs could be used as sensitive, reliable, and accurate early HMs, metastatic HMs, and MRD-detection tools, as well as selective, potent anticancer agents. However, GNMs may induce endothelial leakage to exacerbate cancer metastasis. Studies using clinical patient samples, patient-derived HMs models, or healthy-animal models could give a precise idea about their theranostic potential as well as biocompatibility. The present review will investigate the theranostic potential of vectorized GNMs in HMs and future challenges before clinical theranostic applications in HMs.
Collapse
|
6
|
Sabando C, Rodríguez-Díaz M, Ide W, Pastene E, Avello M, Simirgiotis M, Rojas S, Villarroel E, Silva-Grecchi T, Gutiérrez C, Bouza R, Cicchelli B, González M, Rodríguez-Llamazares S. Improvement of endothelial function by Gunnera tinctoria extract with antioxidant properties. Biol Res 2020; 53:55. [PMID: 33228801 PMCID: PMC7684749 DOI: 10.1186/s40659-020-00322-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Gunnera tinctoria has been collected by Mapuche-Pewenche people for food and medicinal purposes. The high polyphenol content of methanolic extract from G. tinctoria leaves with chemical constituents such as ellagic acid and quercetin derivatives suggests its application to prevent endothelial dysfunction and oxidative stress. The aim of this study was to provide evidence of the protective effect of this extract on endothelial function by reducing oxidative stress induced by high D-glucose and H2O2, as well as by stimulating nitric oxide (NO) levels in human umbilical vein endothelial cells (HUVECs). RESULTS A methanolic extract with a high content of polyphenols (520 ± 30 mg gallic acid equivalents/g dry extract) was obtained from G. tinctoria leaves. Its main constituent was ellagic acid. The results of Ferric reducing antioxidant power and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assays of the extract confirmed its antioxidant activity by inhibition pathway of radical species. The incubation of HUVECs with the extract decreased the apoptosis and reactive oxygen species (ROS) synthesis induced by high extracellular concentration of D-glucose or hydrogen peroxide. The extract increased endothelial NO levels and reduced vasoconstriction in human placental vessels. CONCLUSIONS This study provides evidence about the antioxidant and endothelial protective properties of methanolic G. tinctoria leaf extract. The extract improves the availability of NO in HUVECs, inhibiting the production of ROS and vasoconstriction.
Collapse
Affiliation(s)
- Constanza Sabando
- Centro de Investigación de Polímeros Avanzados (CIPA), Avda. Collao 1202, Edificio de Laboratorios, Concepción, Chile
| | | | - Walther Ide
- Centro de Investigación de Polímeros Avanzados (CIPA), Avda. Collao 1202, Edificio de Laboratorios, Concepción, Chile
| | - Edgar Pastene
- Laboratorio de Farmacognosia, Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.,Laboratorio de Síntesis y Biotransformación de Productos Naturales, Universidad del Bío-Bío, Avda. Andrés Bello 720, Chillán, Chile
| | - Marcia Avello
- Laboratorio de Farmacognosia, Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Susana Rojas
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile
| | - Enrique Villarroel
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile
| | - Tiare Silva-Grecchi
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile
| | - Cristian Gutiérrez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile
| | - Rebeca Bouza
- Departamento de Física, E.U.P. Ferrol, Universidad de A Coruña, Avda. 19 de Febrero, s/n, 15405, Ferrol, Spain
| | - Bárbara Cicchelli
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile
| | - Marcelo González
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile. .,Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile. .,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados (CIPA), Avda. Collao 1202, Edificio de Laboratorios, Concepción, Chile. .,Unidad de Desarrollo Tecnológico, Universidad de Concepción, Avda. Cordillera 2634, Coronel, Chile.
| |
Collapse
|
7
|
Gong YP, Zhang YW, Su XQ, Gao HB. Inhibition of long noncoding RNA MALAT1 suppresses high glucose-induced apoptosis and inflammation in human umbilical vein endothelial cells by suppressing the NF-κB signaling pathway. Biochem Cell Biol 2020; 98:669-675. [PMID: 32502356 DOI: 10.1139/bcb-2019-0403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The study investigated the expression of long noncoding RNA (lncRNA) MALAT1 in high glucose (HG)-induced human vascular endothelial cells (HUVECs) and the role of MALAT1 in the apoptosis of HG-induced HUVECs. The HUVECs were cultured and induced with 25 mmol/L HG. After that, the HUVECs were transfected with MALAT1 siRNA. The expression levels of MALAT1 were detected with qPCR, whereas the expression levels of Bax, Bcl-2, cleaved-caspase-3, cleaved-caspase-9, p-65, and p-p65 were detected using Western blot. The roles of MALAT1 in cell activities, including apoptosis, were evaluated using the CCK-8 assay, TUNEL staining, and flow cytometry. The expression levels of inflammatory factors (TNF-α and IL-6) were measured using ELISA. The expression levels of MALAT1, TNF-α, and IL-6 in HUVECs were increased in the HG environment; however, when MALAT1 was silenced in the HUVECs, cell proliferation increased significantly, the expression levels of TNF-α, IL-6, Bax, cleaved-caspase-3, and cleaved-caspase-9 decreased, and the rate of apoptosis also decreased. Silencing MALAT1 inhibited the expression of p-p65 in HG-induced HUVECs. In conclusion, our study demonstrated that MALAT1 is upregulated in HG-induced HUVECs, and inhibition of MALAT1 inhibits HG-induced apoptosis and inflammation in HUVECs by suppression of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yu-Ping Gong
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China.,Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China
| | - Ya-Wei Zhang
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China.,Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China
| | - Xiao-Qing Su
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China.,Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China
| | - Hai-Bo Gao
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China.,Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China
| |
Collapse
|
8
|
Delgado NTB, Rouver WN, Dos Santos RL. Protective Effects of Pomegranate in Endothelial Dysfunction. Curr Pharm Des 2020; 26:3684-3699. [PMID: 32250215 DOI: 10.2174/1381612826666200406152147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Punica granatum L. is an infructescence native of occidental Asia and Mediterranean Europe, popularly referred to as pomegranate. It has been used in ethnomedicine for several applications, including the treatment of obesity, inflammation, diabetes, and the regulation of blood lipid parameters. Thus, pomegranate has been linked to the treatment of cardiovascular diseases that have endothelial dysfunction as a common factor acting mainly against oxidative stress due to its high polyphenol content. Its biocomponents have antihypertensive, antiatherogenic, antihyperglycemic, and anti-inflammatory properties, which promote cardiovascular protection through the improvement of endothelial function. METHODS Different electronic databases were searched in a non-systematic way to uncover the literature of interest. CONCLUSION This review article presents updated information on the role of pomegranate in the context of endothelial dysfunction and cardiovascular diseases. We have shown that pomegranate, or rather its components (e.g., tannins, flavonoids, phytoestrogens, anthocyanins, alkaloids, etc.), have beneficial effects on the cardiovascular system, improving parameters such as oxidative stress and the enzymatic antioxidant system, reducing reactive oxygen species formation and acting in an anti-inflammatory way. Thus, this review may contribute to a better understanding of pomegranate's beneficial actions on endothelial function and possibly to the development of strategies associated with conventional treatments of cardiovascular diseases.
Collapse
Affiliation(s)
- Nathalie T B Delgado
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Wender N Rouver
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Roger L Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
9
|
Stupin M, Kibel A, Stupin A, Selthofer-Relatić K, Matić A, Mihalj M, Mihaljević Z, Jukić I, Drenjančević I. The Physiological Effect of n-3 Polyunsaturated Fatty Acids (n-3 PUFAs) Intake and Exercise on Hemorheology, Microvascular Function, and Physical Performance in Health and Cardiovascular Diseases; Is There an Interaction of Exercise and Dietary n-3 PUFA Intake? Front Physiol 2019; 10:1129. [PMID: 31543828 PMCID: PMC6728652 DOI: 10.3389/fphys.2019.01129] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Physical activity has a beneficial effect on systemic hemodynamics, physical strength, and cardiac function in cardiovascular (CV) patients. Potential beneficial effects of dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs), such as α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid on hemorheology, vascular function, inflammation and potential to improve physical performance as well as other CV parameters are currently investigated. Recent meta-analysis suggests no effect of n-3 PUFA supplementation on CV function and outcomes of CV diseases. On the other hand, some studies support beneficial effects of n-3 PUFAs dietary intake on CV and muscular system, as well as on immune responses in healthy and in CV patients. Furthermore, the interaction of exercise and dietary n-3 PUFA intake is understudied. Supplementation of n-3 PUFAs has been shown to have antithrombotic effects (by decreasing blood viscosity, decreasing coagulation factor and PAI-1 levels and platelet aggregation/reactivity, enhancing fibrinolysis, but without effects on erythrocyte deformability). They decrease inflammation by decreasing IL-6, MCP-1, TNFα and hsCRP levels, expression of endothelial cell adhesion molecules and significantly affect blood composition of fatty acids. Treatment with n-3 PUFAs enhances brachial artery blood flow and conductance during exercise and enhances microvascular post-occlusive hyperemic response in healthy humans, however, the effects are unknown in cardiovascular patients. Supplementation of n-3 PUFAs may improve anaerobic endurance and may modulate oxygen consumption during intense exercise, may increase metabolic capacity, enhance endurance capacity delaying the onset of fatigue, and improving muscle hypertrophy and neuromuscular function in humans and animal models. In addition, n-3 PUFAs have anti-inflammatory and anti-nociceptive effects and may attenuate delayed-onset muscle soreness and muscle stiffness, and preserve joint mobility. On the other hand, effects of n-3 PUFAs were variably observed in men and women and they vary depending on dietary protocol, type of supplementation and type of sports activity undertaken, both in healthy and cardiovascular patients. In this review we will discuss the physiological effects of n-3 PUFA intake and exercise on hemorheology, microvascular function, immunomodulation and inflammation and physical performance in healthy persons and in cardiovascular diseases; elucidating if there is an interaction of exercise and diet.
Collapse
Affiliation(s)
- Marko Stupin
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Cardiovascular Diseases, Osijek University Hospital, Osijek, Croatia
| | - Aleksandar Kibel
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Cardiovascular Diseases, Osijek University Hospital, Osijek, Croatia
| | - Ana Stupin
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kristina Selthofer-Relatić
- Department of Cardiovascular Diseases, Osijek University Hospital, Osijek, Croatia.,Department of Internal Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Matić
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Mihalj
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Dermatology, Osijek University Hospital, Osijek, Croatia
| | - Zrinka Mihaljević
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Jukić
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ines Drenjančević
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
10
|
Fang J, Sureda A, Silva AS, Khan F, Xu S, Nabavi SM. Trends of tea in cardiovascular health and disease: A critical review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Dantzer R, Cohen S, Russo SJ, Dinan TG. Resilience and immunity. Brain Behav Immun 2018; 74:28-42. [PMID: 30102966 PMCID: PMC6545920 DOI: 10.1016/j.bbi.2018.08.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022] Open
Abstract
Resilience is the process that allows individuals to adapt to adverse conditions and recover from them. This process is favored by individual qualities that have been amply studied in the field of stress such as personal control, positive affect, optimism, and social support. Biopsychosocial studies on the individual qualities that promote resilience show that these factors help protect against the deleterious influences of stressors on physiology in general and immunity in particular. The reverse is also true as there is evidence that immune processes influence resilience. Most of the data supporting this relationship comes from animal studies on individual differences in the ability to resist situations of chronic stress. These data build on the knowledge that has accumulated on the influence of immune factors on brain and behavior in both animal and human studies. In general, resilient individuals have a different immunophenotype from that of stress susceptible individuals. It is possible to render susceptible individuals resilient and vice versa by changing their inflammatory phenotype. The adaptive immune phenotype also influences the ability to recover from inflammation-induced symptoms. The modulation of these bidirectional relationships between resilience and immunity by the gut microbiota opens the possibility to influence them by probiotics and prebiotics. However, more focused studies on the reciprocal relationship between resilience and immunity will be necessary before this can be put into practice.
Collapse
Affiliation(s)
- Robert Dantzer
- The University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA.
| | - Sheldon Cohen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Scott J Russo
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustav L. Levy Place, New York, NY 10029, USA
| | - Timothy G Dinan
- APC Microbiome Ireland and Dept. of Psychiatry, University College Cork, Ireland
| |
Collapse
|
12
|
Adriouch S, Lampuré A, Nechba A, Baudry J, Assmann K, Kesse-Guyot E, Hercberg S, Scalbert A, Touvier M, Fezeu LK. Prospective Association between Total and Specific Dietary Polyphenol Intakes and Cardiovascular Disease Risk in the Nutrinet-Santé French Cohort. Nutrients 2018; 10:E1587. [PMID: 30380657 PMCID: PMC6266343 DOI: 10.3390/nu10111587] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epidemiological and experimental evidence support a protective effect of dietary polyphenols on chronic diseases, but high quality longitudinal data are needed, including details on categories of polyphenols. Our objective was to investigate the prospective association between total and individual classes and subclasses of dietary polyphenols and the risk of major cardiovascular disease in the NutriNet-Santé cohort. METHODS A total of 84,158 participants, who completed at least three 24 h dietary records, were included between May 2009 and June 2017. Individual polyphenols intakes were obtained by matching food consumption data from the 24 h dietary records with the Phenol-Explorer polyphenol composition database. Multivariable Cox proportional hazards models were used to characterize the associations between dietary polyphenols and the incidence of cardiovascular diseases, comparing tertile T3 vs. T1 of classes and subclasses of polyphenols. RESULTS Over a median of 4.9 years of follow-up, 602 major cardiovascular events were diagnosed. Intakes of anthocyanins, catechins, and flavonols were strongly inversely associated with cardiovascular disease risk (anthocyanins: Hazard Ratio (HR)for a 1-point increment of 10 mg/day = 0.98 (0.96⁻0.99, p = 0.03, HRT3vs.T1 = 0.66 (0.52⁻0.83), ptrend = 0.0003; catechins: HRfor a 1-point increment of 10 mg/day = 0.98 (0.96⁻0.99), p = 0.02, HRT3vs.T1 = 0.74 (0.60⁻0.91), ptrend = 0.004; flavonols: HRfor a 1-point increment of 10 mg/day = 0.94 (0.90⁻0.99), p = 0.02, HRT3vs.T1 = 0.75 (0.61⁻0.94), ptrend = 0.006). Intakes of dihydrochalcones, proanthocyaninidins, dihydroflavonols, hydroxybenzoic acids, and stilbenes were also associated with a decrease (13%, 19%, 24%, 24%, and 27%, respectively) in cardiovascular disease risk, when comparing tertile T3 to T1. CONCLUSIONS Higher intakes of polyphenols, especially of anthocyanins, catechins, and flavonols, were associated with a statistically significant decreased cardiovascular disease risk.
Collapse
Affiliation(s)
- Solia Adriouch
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Université Paris 13, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, F-93017 Bobigny, France.
| | - Aurélie Lampuré
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Université Paris 13, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, F-93017 Bobigny, France.
| | - Anouar Nechba
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Université Paris 13, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, F-93017 Bobigny, France.
| | - Julia Baudry
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Université Paris 13, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, F-93017 Bobigny, France.
| | - Karen Assmann
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Université Paris 13, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, F-93017 Bobigny, France.
| | - Emmanuelle Kesse-Guyot
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Université Paris 13, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, F-93017 Bobigny, France.
| | - Serge Hercberg
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Université Paris 13, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, F-93017 Bobigny, France.
- Département de Santé Publique, Hôpital Avicenne, F-93017 Bobigny, France.
| | - Augustin Scalbert
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Mathilde Touvier
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Université Paris 13, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, F-93017 Bobigny, France.
| | - Léopold K Fezeu
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Université Paris 13, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, F-93017 Bobigny, France.
| |
Collapse
|
13
|
Stupin A, Rasic L, Matic A, Stupin M, Kralik Z, Kralik G, Grcevic M, Drenjancevic I. Omega-3 polyunsaturated fatty acids-enriched hen eggs consumption enhances microvascular reactivity in young healthy individuals. Appl Physiol Nutr Metab 2018; 43:988-995. [DOI: 10.1139/apnm-2017-0735] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The beneficial effect of omega-3 polyunsaturated fatty acids (PUFA) supplementation on the cardiovascular (CV) system is well supported in CV patients; however, the effect of the consumption of omega-3 PUFA-enriched functional food in healthy individuals is still not fully elucidated. This study aimed to determine the effect of the consumption of omega-3 PUFA-enriched hen eggs on the microvascular reactivity (primary outcome), blood pressure (BP), and serum lipid profile in young healthy individuals. The control group (N = 16) ate 3 ordinary hen eggs (277 mg of omega-3 PUFAs/day), and the OMEGA-3 group (N = 20) ate 3 omega-3 PUFA-enriched eggs containing 259 mg of omega-3 PUFAs/egg daily (α-linolenic acid (ALA), 167 mg/egg; eicosapentaenoic acid (EPA), 7 mg/egg; docosahexaenoic acid (DHA), 84 mg/egg) for 3 weeks (777 mg of omega-3 PUFA/day). Postocclusive reactive hyperemia (PORH) in skin microcirculation assessed by laser Doppler flowmetry, serum lipid profile, fasting blood glucose, high-sensitivity C-reactive protein (hsCRP), and arterial BP were measured in all subjects before and after the protocol. PORH was significantly enhanced, and triglycerides, hsCRP, and BP were significantly decreased in the OMEGA-3 group compared with baseline measurements, whereas there was no significant difference in the control group after the protocol when compared with baseline. To the best of our knowledge, this is the first study to demonstrate that consumption of a mixture of omega-3 PUFA (ALA + EPA + DHA), provided via enriched hen eggs, elicits changes in the microvascular reactivity, BP, and triglyceride level in healthy subjects that are associated with CV benefits, thus suggesting that daily consumption of omega-3 PUFA-enriched eggs in healthy individuals may potentially contribute to CV risk factor attenuation and disease prevention.
Collapse
Affiliation(s)
- Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
| | - Lidija Rasic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
| | - Anita Matic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
- Department for Cardiovascular Disease, Osijek University Hospital, Osijek HR-31000, Croatia
| | - Zlata Kralik
- Department for Special Zootechnics, Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
| | - Gordana Kralik
- Department for Special Zootechnics, Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
| | - Manuela Grcevic
- Department for Special Zootechnics, Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
| |
Collapse
|
14
|
Oak MH, Auger C, Belcastro E, Park SH, Lee HH, Schini-Kerth VB. Potential mechanisms underlying cardiovascular protection by polyphenols: Role of the endothelium. Free Radic Biol Med 2018; 122:161-170. [PMID: 29548794 DOI: 10.1016/j.freeradbiomed.2018.03.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Epidemiological studies have indicated that regular intake of polyphenol-rich diets such as red wine and tea, are associated with a reduced risk of cardiovascular diseases. The beneficial effect of polyphenol-rich products has been attributable, at least in part, to their direct action on the endothelial function. Indeed, polyphenols from tea, grapes, cacao, berries, and plants have been shown to activate endothelial cells to increase the formation of potent vasoprotective factors including nitric oxide (NO) and to delay endothelial ageing. Moreover, intake of such polyphenol-rich products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in Humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that polyphenols are able to promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Min-Ho Oak
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Eugenia Belcastro
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Sin-Hee Park
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Hyun-Ho Lee
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
15
|
Chang HT, Jan CR, Liang WZ. Protective effects of a phenolic glycoside compound curculigoside on H 2 O 2 -induced oxidative stress and cytotoxicity in normal human breast epithelial cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
16
|
Chen JY, Ye ZX, Wang XF, Chang J, Yang MW, Zhong HH, Hong FF, Yang SL. Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomed Pharmacother 2017; 97:423-428. [PMID: 29091892 DOI: 10.1016/j.biopha.2017.10.122] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/22/2017] [Accepted: 10/22/2017] [Indexed: 12/25/2022] Open
Abstract
The pathological characteristics of atherosclerosis (AS) include lipid accumulation, fibrosis formation and atherosclerotic plaque produced in artery intima, which leads to vascular sclerosis, lumen stenosis and irritates the ischemic changes of corresponding organs. Endothelial dysfunction was closely associated with AS. Nitric oxide (NO) is a multifunctional signaling molecule involved in the maintenance of metabolic and cardiovascular homeostasis. NO is also a potent endogenous vasodilator and enters for the key processes that suppresses the formation vascular lesion even AS. NO bioavailability indicates the production and utilization of endothelial NO in organisms, its decrease is related to oxidative stress, lipid infiltration, the expressions of some inflammatory factors and the alteration of vascular tone, which plays an important role in endothelial dysfunction. The enhancement of arginase activity and the increase in asymmetric dimethylarginine and hyperhomocysteinemia levels all contribute to AS by intervening NO bioavailability in human beings. Diabetes mellitus, obesity, chronic kidney disease and smoking, etc., also participate in AS by influencing NO bioavailability and NO level. Here, we reviewed the relationship between NO bioavailability and AS according the newest literatures.
Collapse
Affiliation(s)
- Jing-Yi Chen
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Zi-Xin Ye
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiu-Fen Wang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Jian Chang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Mei-Wen Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Hua-Hua Zhong
- Department of Experimental Teaching Center, Nanchang University, Nanchang 330031, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang 330031, China.
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
17
|
Zhang Z, Chen W, Wang Y, Xiong T, Zhou C, Yao X, Lin B. Antioxidant and anti-inflammatory effects of DHK-medicated serum on high glucose-induced injury in endothelial cells. Mol Med Rep 2017; 16:7745-7751. [DOI: 10.3892/mmr.2017.7571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 07/18/2017] [Indexed: 11/05/2022] Open
|
18
|
Spigoni V, Mena P, Cito M, Fantuzzi F, Bonadonna RC, Brighenti F, Dei Cas A, Del Rio D. Effects on Nitric Oxide Production of Urolithins, Gut-Derived Ellagitannin Metabolites, in Human Aortic Endothelial Cells. Molecules 2016; 21:molecules21081009. [PMID: 27490528 PMCID: PMC6274502 DOI: 10.3390/molecules21081009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/19/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022] Open
Abstract
The consumption of foodstuffs yielding circulating compounds able to maintain endothelial function by improving nitric oxide (NO) bioavailability can be considered as an effective strategy for cardiovascular disease prevention. This work assessed the in vitro effects of urolithin A, urolithin B, and urolithin B-glucuronide, ellagitannin-derived metabolites of colonic origin, on NO release and endothelial NO synthase (eNOS) activation in primary human aortic endothelial cells (HAECs). Urolithins were tested both individually at 15 μM and as a mixture of 5 μM each, at different time points. The biotransformation of these molecules in cell media due to cell metabolism was also evaluated by UHPLC-MSn. The mix of urolithins at 5 μM significantly increased nitrite/nitrate levels following 24 h of incubation, while single urolithins at 15 μM did not modify NO bioavailability. Both the mix of urolithins at 5 μM and urolithin B-glucuronide at 15 μM activated eNOS expression. All urolithins underwent metabolic reactions, but these were limited to conjugation with sulfate moieties. This study represents a step forward in the understanding of cardiovascular health benefits of ellagitannin-rich foodstuffs and backs the idea that peripheral cells may contribute to urolithin metabolism.
Collapse
Affiliation(s)
- Valentina Spigoni
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma 43125, Italy.
| | - Monia Cito
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
| | - Federica Fantuzzi
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
- Division of Endocrinology, Azienda Ospedaliero-Universitaria of Parma, Parma 43126, Italy.
| | - Riccardo C Bonadonna
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
- Division of Endocrinology, Azienda Ospedaliero-Universitaria of Parma, Parma 43126, Italy.
| | - Furio Brighenti
- The Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma 43125, Italy.
| | - Alessandra Dei Cas
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
- Division of Endocrinology, Azienda Ospedaliero-Universitaria of Parma, Parma 43126, Italy.
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma 43125, Italy.
| |
Collapse
|