1
|
Misak A, Grman M, Ondrias K, Tomasova L. From methionine to sulfide: Exploring the diagnostic and therapeutic potential of sulfur-containing biomolecules in hypertension. Nitric Oxide 2025; 156:107-113. [PMID: 40157636 DOI: 10.1016/j.niox.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Sulfur-containing amino acids are involved in the regulation of vascular activity and blood pressure. Clinically, a positive correlation was found between serum homocysteine levels and blood pressure. On the other hand, methionine and cysteine levels were reduced in hypertensive patients. Recently, the redox state of sulfur-containing amino acids has emerged as potential diagnostic marker of cardiovascular health. Metabolomic studies have revealed a shift in thiol/disulfide ratio toward oxidized forms and overproduction of thiyl radicals in hypertensive patients. Although accumulating evidence confirms that sulfur-containing amino acids are essential for the maintaining of redox homeostasis and blood pressure control, their hypotensive and antioxidant properties have been primarily demonstrated in animal studies. While several groups are developing new targeted and triggered sulfur-based donors, standardized pharmacological interventions for hypertensive patients are largely absent and pose a challenge for future research. In this review, we summarize recent studies that investigate the role of sulfur-containing amino acids and their redox-active metabolites, including glutathione and sulfide, in blood pressure control and the development of systemic hypertension.
Collapse
Affiliation(s)
- Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| |
Collapse
|
2
|
Cacanyiova S, Berenyiova A, Malinska H, Huttl M, Markova I, Aydemir BG, Garaiova V, Cebova M. Female prediabetic rats are protected from vascular dysfunction: the role of nitroso and sulfide signaling. Biol Res 2024; 57:91. [PMID: 39587584 PMCID: PMC11590373 DOI: 10.1186/s40659-024-00575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The activity of perivascular adipose tissue (PVAT), a specific deposit of adipose tissue surrounding blood vessels, could contribute to sex differences in vascular tone control, particularly in dyslipidemic disorders; however, the mutual associations remain unclear. This study aimed to evaluate the relationships among sex, PVAT and vascular function in Wistar and hereditary hypertriglyceridemic (HTG) rats. Vasoactive responses of the isolated thoracic aorta with preserved or removed PVAT were compared in adult male and female Wistar and HTG rats, and the roles of nitric oxide (NO), hydrogen sulfide (H2S), cyclooxygenase (COX) and inflammatory signaling in vascular function were monitored in females. RESULTS HTG rats were hypertensive, but females less than males. Increased 2-h glycemia was observed in HTG rats regardless of sex; however, HTG females exhibited better glucose utilization than males did. Females, independent of strain, had better preserved endothelial function than males did. PVAT inhibited endothelium-dependent relaxation in all the rats except HTG females. In HTG males, pathologically increased aortic contractility was noted; however, in HTG females, the contractile responses were lower, thus approaching physiological levels despite the pro-contractile action of COX products. In HTG females, NO contributed to endothelial function to a lesser extent than it did in controls, but the presence of PVAT eliminated this difference, which corresponded with increased NO synthase activity. Although increased protein expression of several proinflammatory factors (TNFα, IL-6, iNOS, and NfκB) was confirmed in the aortic and PVAT tissue of HTG females, the protein expression of factors regulating the adhesion and infiltration of monocytes (ICAM-1 and MCP-1) was decreased in PVAT. Moreover, in HTG females, unlike in controls, H2S produced by PVAT did not inhibit endothelial relaxation, and regardless of PVAT, endogenous H2S had beneficial anticontractile effects, which were associated with increased protein expression of H2S-producing enzymes in both aortic and PVAT tissues. CONCLUSIONS Despite increased inflammation and the pathological impact of cyclooxygenase signaling in female HTG rats, protective vasoactive mechanisms associated with milder hypertension and improved endothelial function and contractility linked to PVAT activity were triggered. Sulfide and nitroso signaling represent important compensatory vasoactive mechanisms against hypertriglyceridemia-associated metabolic disorders and may be promising therapeutic targets in prediabetic females.
Collapse
Affiliation(s)
- Sona Cacanyiova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Andrea Berenyiova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hana Malinska
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Huttl
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Markova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Basak G Aydemir
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Garaiova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Cebova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Osikoya O, Hula N, da Silva RDNO, Goulopoulou S. Perivascular Adipose Tissue and Uterine Artery Adaptations to Pregnancy. Microcirculation 2024; 31:e12857. [PMID: 38826057 DOI: 10.1111/micc.12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 06/04/2024]
Abstract
Pregnancy is characterized by longitudinal maternal, physiological adaptations to support the development of a fetus. One of the cardinal maternal adaptations during a healthy pregnancy is a progressive increase in uterine artery blood flow. This facilitates sufficient blood supply for the development of the placenta and the growing fetus. Regional hemodynamic changes in the uterine circulation, such as a vast reduction in uterine artery resistance, are mainly facilitated by changes in uterine artery reactivity and myogenic tone along with remodeling of the uterine arteries. These regional changes in vascular reactivity have been attributed to pregnancy-induced adaptations of cell-to-cell communication mechanisms, with an emphasis on the interaction between endothelial and vascular smooth muscle cells. Perivascular adipose tissue (PVAT) is considered the fourth layer of the vascular wall and contributes to the regulation of vascular reactivity in most vascular beds and most species. This review focuses on mechanisms of uterine artery reactivity and the role of PVAT in pregnancy-induced maternal vascular adaptations, with an emphasis on the uterine circulation.
Collapse
Affiliation(s)
- Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Nataliia Hula
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA
| | - Renée de Nazaré Oliveira da Silva
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA
- Department of Gynecology and Obstetrics, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
4
|
Zampieri GM, Nunes PR, Abbade JF, Dias CA, Sandrim VC. Vascular contraction of umbilical arteries of pregnant women with preeclampsia. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2024; 46:e-rbgo2. [PMID: 38765503 PMCID: PMC11075432 DOI: 10.61622/rbgo/2024ao02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 05/22/2024] Open
Abstract
Objective Potassium channels have an important role in the vascular adaptation during pregnancy and a reduction in the expression of adenosine triphosphate-sensitive potassium channels (Katp) has been linked to preeclampsia. Activation of Katp induces vasodilation; however, no previous study has been conducted to evaluate the effects of the inhibition of these channels in the contractility of preeclamptic arteries. Glibenclamide is an oral antihyperglycemic agent that inhibits Katp and has been widely used in vascular studies. Methods To investigate the effects of the inhibition of Katp, umbilical arteries of preeclamptic women and women with healthy pregnancies were assessed by vascular contractility experiments, in the presence or absence of glibenclamide. The umbilical arteries were challenged with cumulative concentrations of potassium chloride (KCl) and serotonin. Results There were no differences between the groups concerning the maternal age and gestational age of the patients. The percentage of smokers, caucasians and primiparae per group was also similar. On the other hand, blood pressure parameters were elevated in the preeclamptic group. In addition, the preeclamptic group presented a significantly higher body mass index. The newborns of both groups presented similar APGAR scores and weights. Conclusion In the presence of glibenclamide, there was an increase in the KCl-induced contractions only in vessels from the PE group, showing a possible involvement of these channels in the disorder.
Collapse
Affiliation(s)
- Gabriela Morelli Zampieri
- Universidade Estadual Paulista "Julio de Mesquita Filho"BotucatuSPBrazilUniversidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP, Brazil.
| | - Priscila Rezeck Nunes
- Universidade Estadual Paulista "Julio de Mesquita Filho"BotucatuSPBrazilUniversidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP, Brazil.
| | - Joelcio Francisco Abbade
- Universidade Estadual Paulista "Julio de Mesquita Filho"BotucatuSPBrazilUniversidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP, Brazil.
| | - Carlos Alan Dias
- Universidade Estadual Paulista "Julio de Mesquita Filho"BotucatuSPBrazilUniversidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP, Brazil.
| | - Valeria Cristina Sandrim
- Universidade Estadual Paulista "Julio de Mesquita Filho"BotucatuSPBrazilUniversidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP, Brazil.
| |
Collapse
|
5
|
de Oliveira PB, Zochio GP, Caetano ESP, da Silva MLS, Dias-Junior CA. Vasodilator Responses of Perivascular Adipose Tissue-Derived Hydrogen Sulfide Stimulated with L-Cysteine in Pregnancy Hypertension-Induced Endothelial Dysfunction in Rats. Antioxidants (Basel) 2023; 12:1919. [PMID: 38001772 PMCID: PMC10669374 DOI: 10.3390/antiox12111919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Endothelium-derived nitric oxide (NO)-induced vasodilation is impaired in pregnancy hypertension. However, the role of perivascular adipose tissue (PVAT)-derived hydrogen sulfide (H2S), as an alternative for counteracting vascular dysfunction, is incompletely clear in hypertensive disorders of pregnancy. Therefore, PVAT-derived H2S-induced vasodilation was investigated in pregnancy hypertension-induced endothelial dysfunction. Non-pregnant (Non-Preg) and pregnant (Preg) rats were submitted (or not) to the deoxycorticosterone (DOCA)-salt protocol and assigned as follows (n = 10/group): Non-Preg, Non-Preg+DOCA, Preg, and Preg+DOCA groups. Systolic blood pressure (SBP), angiogenesis-related factors, determinant levels of H2S (PbS), NO (NOx), and oxidative stress (MDA) were assessed. Vascular changes were recorded in thoracic aortas with PVAT and endothelium (intact and removed layers). Vasorelaxation responses to the substrate (L-cysteine) for the H2S-producing enzyme cystathionine-γ-lyase (CSE) were examined in the absence and presence of CSE-inhibitor DL-propargylglycine (PAG) in thoracic aorta rings pre-incubated with cofactor for CSE (pyridoxal-5 phosphate: PLP) and pre-contracted with phenylephrine. Hypertension was only found in the Preg+DOCA group. Preg+DOCA rats showed angiogenic imbalances and increased levels of MDA. PbS, but not NOx, showed increased levels in the Preg+DOCA group. Pre-incubation with PLP and L-cysteine elevated determinants of H2S in PVAT and placentas of Preg-DOCA rats, whereas no changes were found in the aortas without PVAT. Aortas of Preg-DOCA rats showed that PVAT-derived H2S-dependent vasodilation was greater compared to endothelium-derived H2S, whereas PAG blocked these responses. PVAT-derived H2S endogenously stimulated with the amino acid L-cysteine may be an alternative to induce vasorelaxation in endothelial dysfunction related to pregnancy hypertension.
Collapse
Affiliation(s)
- Priscilla Bianca de Oliveira
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (P.B.d.O.); (G.P.Z.); (E.S.P.C.); (M.L.S.d.S.)
- Laboratory of Pharmacology, Marília Medical School (FAMEMA), Marília 17519-030, SP, Brazil
| | - Gabriela Palma Zochio
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (P.B.d.O.); (G.P.Z.); (E.S.P.C.); (M.L.S.d.S.)
| | - Edileia Souza Paula Caetano
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (P.B.d.O.); (G.P.Z.); (E.S.P.C.); (M.L.S.d.S.)
| | - Maria Luiza Santos da Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (P.B.d.O.); (G.P.Z.); (E.S.P.C.); (M.L.S.d.S.)
| | - Carlos Alan Dias-Junior
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (P.B.d.O.); (G.P.Z.); (E.S.P.C.); (M.L.S.d.S.)
| |
Collapse
|
6
|
Zhang Y, Jing M, Cai C, Zhu S, Zhang C, Wang Q, Zhai Y, Ji X, Wu D. Role of hydrogen sulphide in physiological and pathological angiogenesis. Cell Prolif 2022; 56:e13374. [PMID: 36478328 PMCID: PMC9977675 DOI: 10.1111/cpr.13374] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The role of hydrogen sulphide (H2 S) in angiogenesis has been widely demonstrated. Vascular endothelial growth factor (VEGF) plays an important role in H2 S-induced angiogenesis. H2 S promotes angiogenesis by upregulating VEGF via pro-angiogenic signal transduction. The involved signalling pathways include the mitogen-activated protein kinase pathway, phosphoinositide-3 kinase pathway, nitric oxide (NO) synthase/NO pathway, signal transducer and activator of transcription 3 (STAT3) pathway, and adenosine triphosphate (ATP)-sensitive potassium (KATP ) channels. H2 S has been shown to contribute to tumour angiogenesis, diabetic wound healing, angiogenesis in cardiac and cerebral ischaemic tissues, and physiological angiogenesis during the menstrual cycle and pregnancy. Furthermore, H2 S can exert an anti-angiogenic effect by inactivating Wnt/β-catenin signalling or blocking the STAT3 pathway in tumours. Therefore, H2 S plays a double-edged sword role in the process of angiogenesis. The regulation of H2 S production is a promising therapeutic approach for angiogenesis-associated diseases. Novel H2 S donors and/or inhibitors can be developed in the treatment of angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Yan‐Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Mi‐Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Chun‐Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Shuai‐Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Chao‐Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Qi‐Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Yuan‐Kun Zhai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical SciencesHenan UniversityKaifengHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina,School of StomatologyHenan UniversityKaifengHenanChina
| |
Collapse
|
7
|
The role of adipose tissue-derived hydrogen sulfide in inhibiting atherosclerosis. Nitric Oxide 2022; 127:18-25. [PMID: 35839994 DOI: 10.1016/j.niox.2022.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S) is the third gaseous signaling molecule discovered in the body after NO and CO and plays an important organismal protective role in various diseases. Within adipose tissue, related catalytic enzymes (cystathionine-β-synthetase, cystathionine-γ-lyase, and 3-mercaptopyruvate transsulfuration enzyme) can produce and release endogenous H2S. Atherosclerosis (As) is a pathological change in arterial vessels that is closely related to abnormal glucose and lipid metabolism and a chronic inflammatory response. Previous studies have shown that H2S can act on the cardiovascular system, exerting effects such as improving disorders of glycolipid metabolism, alleviating insulin resistance, protecting the function of vascular endothelial cells, inhibiting vascular smooth muscle cell proliferation and migration, regulating vascular tone, inhibiting the inflammatory response, and antagonizing the occurrence and development of As.
Collapse
|
8
|
Mitidieri E, Turnaturi C, Vanacore D, Sorrentino R, d'Emmanuele di Villa Bianca R. The Role of Perivascular Adipose Tissue-Derived Hydrogen Sulfide in the Control of Vascular Homeostasis. Antioxid Redox Signal 2022; 37:84-97. [PMID: 35442088 DOI: 10.1089/ars.2021.0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: Emerging evidence suggests that perivascular adipose tissue (PVAT) has a relevant role in the control of vascular tone in physiology and pathology. Healthy PVAT has anticontractile, anti-inflammatory, and antioxidative actions. Accumulating data from both human and experimental animal models indicate that PVAT dysfunction is conceivably coupled to cardiovascular diseases, and it is associated with vascular inflammation, oxidative stress, and arterial remodeling. Therefore, "healthy" PVAT may constitute a novel therapeutic target for the prevention and treatment of cardiovascular diseases. Recent Advances: Hydrogen sulfide (H2S) has been recognized as a vascular anti-contractile factor released from PVAT. The enzymes deputed to H2S biosynthesis are variously expressed in PVAT and strictly dependent on the vascular bed and species. Metabolic and cardiovascular diseases can alter the morphological and secretory characteristics of PVAT, influencing also the H2S signaling. Here, we discuss the role of PVAT-derived H2S in healthy conditions and its relevance in alterations occurring in vascular disorders. Critical Issues: We discuss how a better understanding may help in the prevention of vascular dysfunction related to alteration in PVAT-released H2S as well as the importance of the interplay between PVAT and H2S. Future Directions: We propose future directions to evaluate the contribution of each enzyme involved in H2S biosynthesis and their alteration/switch occurring in vascular disorders and the remaining challenges in investigating the role of H2S. Antioxid. Redox Signal. 37, 84-97.
Collapse
Affiliation(s)
- Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carlotta Turnaturi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Domenico Vanacore
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
9
|
Liu XY, Qian LL, Wang RX. Hydrogen Sulfide-Induced Vasodilation: The Involvement of Vascular Potassium Channels. Front Pharmacol 2022; 13:911704. [PMID: 35721210 PMCID: PMC9198332 DOI: 10.3389/fphar.2022.911704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) has been highlighted as an important gasotransmitter in mammals. A growing number of studies have indicated that H2S plays a key role in the pathophysiology of vascular diseases and physiological vascular homeostasis. Alteration in H2S biogenesis has been reported in a variety of vascular diseases and H2S supplementation exerts effects of vasodilation. Accumulating evidence has shown vascular potassium channels activation is involved in H2S-induced vasodilation. This review aimed to summarize and discuss the role of H2S in the regulation of vascular tone, especially by interaction with different vascular potassium channels and the underlying mechanisms.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|