1
|
Misak A, Grman M, Ondrias K, Tomasova L. From methionine to sulfide: Exploring the diagnostic and therapeutic potential of sulfur-containing biomolecules in hypertension. Nitric Oxide 2025; 156:107-113. [PMID: 40157636 DOI: 10.1016/j.niox.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Sulfur-containing amino acids are involved in the regulation of vascular activity and blood pressure. Clinically, a positive correlation was found between serum homocysteine levels and blood pressure. On the other hand, methionine and cysteine levels were reduced in hypertensive patients. Recently, the redox state of sulfur-containing amino acids has emerged as potential diagnostic marker of cardiovascular health. Metabolomic studies have revealed a shift in thiol/disulfide ratio toward oxidized forms and overproduction of thiyl radicals in hypertensive patients. Although accumulating evidence confirms that sulfur-containing amino acids are essential for the maintaining of redox homeostasis and blood pressure control, their hypotensive and antioxidant properties have been primarily demonstrated in animal studies. While several groups are developing new targeted and triggered sulfur-based donors, standardized pharmacological interventions for hypertensive patients are largely absent and pose a challenge for future research. In this review, we summarize recent studies that investigate the role of sulfur-containing amino acids and their redox-active metabolites, including glutathione and sulfide, in blood pressure control and the development of systemic hypertension.
Collapse
Affiliation(s)
- Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| |
Collapse
|
2
|
Louca P, Nogal A, Moskal A, Goulding NJ, Shipley MJ, Alkis T, Lindbohm JV, Hu J, Kifer D, Wang N, Chawes B, Rexrode KM, Ben-Shlomo Y, Kivimaki M, Murphy RA, Yu B, Gunter MJ, Suhre K, Lawlor DA, Mangino M, Menni C. Cross-Sectional Blood Metabolite Markers of Hypertension: A Multicohort Analysis of 44,306 Individuals from the COnsortium of METabolomics Studies. Metabolites 2022; 12:601. [PMID: 35888725 PMCID: PMC9324896 DOI: 10.3390/metabo12070601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022] Open
Abstract
Hypertension is the main modifiable risk factor for cardiovascular morbidity and mortality but discovering molecular mechanisms for targeted treatment has been challenging. Here we investigate associations of blood metabolite markers with hypertension by integrating data from nine intercontinental cohorts from the COnsortium of METabolomics Studies. We included 44,306 individuals with circulating metabolites (up to 813). Metabolites were aligned and inverse normalised to allow intra-platform comparison. Logistic models adjusting for covariates were performed in each cohort and results were combined using random-effect inverse-variance meta-analyses adjusting for multiple testing. We further conducted canonical pathway analysis to investigate the pathways underlying the hypertension-associated metabolites. In 12,479 hypertensive cases and 31,827 controls without renal impairment, we identified 38 metabolites, associated with hypertension after adjusting for age, sex, body mass index, ethnicity, and multiple testing. Of these, 32 metabolite associations, predominantly lipid (steroids and fatty acyls) and organic acids (amino-, hydroxy-, and keto-acids) remained after further adjusting for comorbidities and dietary intake. Among the identified metabolites, 5 were novel, including 2 bile acids, 2 glycerophospholipids, and ketoleucine. Pathway analysis further implicates the role of the amino-acids, serine/glycine, and bile acids in hypertension regulation. In the largest cross-sectional hypertension-metabolomics study to date, we identify 32 circulating metabolites (of which 5 novel and 27 confirmed) that are potentially actionable targets for intervention. Further in-vivo studies are needed to identify their specific role in the aetiology or progression of hypertension.
Collapse
Affiliation(s)
- Panayiotis Louca
- Department of Twin Research, King’s College London, London SE1 7EH, UK; (P.L.); (A.N.); (M.M.)
| | - Ana Nogal
- Department of Twin Research, King’s College London, London SE1 7EH, UK; (P.L.); (A.N.); (M.M.)
| | - Aurélie Moskal
- Nutrition and Metabolism Section, International Agency for Research on Cancer, 69372 Lyon, France; (A.M.); (M.J.G.)
| | - Neil J. Goulding
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK; (N.J.G.); (Y.B.-S.); (D.A.L.)
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Martin J. Shipley
- Department Epidemiology and Public Health, University College London, London WC1E 7HB, UK; (M.J.S.); (J.V.L.); (M.K.)
| | - Taryn Alkis
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA; (T.A.); (B.Y.)
| | - Joni V. Lindbohm
- Department Epidemiology and Public Health, University College London, London WC1E 7HB, UK; (M.J.S.); (J.V.L.); (M.K.)
- Clinicum, Department of Public Health, University of Helsinki, P.O. Box 20 Helsinki, Finland
| | - Jie Hu
- Division of Women’s Health, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.H.); (K.M.R.)
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ni Wang
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark; (N.W.); (B.C.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark; (N.W.); (B.C.)
| | - Kathryn M. Rexrode
- Division of Women’s Health, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.H.); (K.M.R.)
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK; (N.J.G.); (Y.B.-S.); (D.A.L.)
- NIHR Applied Research Collaboration West, University Hospitals Bristol and Weston National Health Service Foundation Trust, Bristol BS1 2NT, UK
| | - Mika Kivimaki
- Department Epidemiology and Public Health, University College London, London WC1E 7HB, UK; (M.J.S.); (J.V.L.); (M.K.)
| | - Rachel A. Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- Cancer Control Research, BC Cancer, Vancouver, BC V5Z 1G1, Canada
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA; (T.A.); (B.Y.)
| | - Marc J. Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, 69372 Lyon, France; (A.M.); (M.J.G.)
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha 24144, Qatar;
| | - Deborah A. Lawlor
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK; (N.J.G.); (Y.B.-S.); (D.A.L.)
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Bristol NIHR Biomedical Research Centre, University of Bristol, Bristol BS1 2NT, UK
| | - Massimo Mangino
- Department of Twin Research, King’s College London, London SE1 7EH, UK; (P.L.); (A.N.); (M.M.)
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London SE1 9RT, UK
| | - Cristina Menni
- Department of Twin Research, King’s College London, London SE1 7EH, UK; (P.L.); (A.N.); (M.M.)
| |
Collapse
|