1
|
Leite LB, Soares LL, Guimarães-Ervilha LO, Costa SFF, Generoso SCDL, Xavier MAM, Iasbik-Lima T, de Oliveira LL, Della Lucia CM, Bianchi SE, Bassani VL, Herter FG, Turck P, da Rosa Araujo AS, Forte P, Reis ECC, Machado-Neves M, José Natali A. Blueberry Extract and Resistance Training Prevent Left Ventricular Redox Dysregulation and Pathological Remodeling in Experimental Severe Pulmonary Arterial Hypertension. Nutrients 2025; 17:1145. [PMID: 40218902 PMCID: PMC11990098 DOI: 10.3390/nu17071145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE To investigate whether the regular administration of blueberry extract and low-intensity resistance exercise training (RT), either alone or in combination, during the development of monocrotaline (MCT)-induced severe pulmonary arterial hypertension (PAH) in rats protect the left ventricle (LV) from redox dysregulation and pathological remodeling. METHODS Groups of seven male Wistar rats were formed for the experiment: sedentary control; sedentary hypertensive; sedentary hypertensive blueberry; exercise hypertensive; and exercise hypertensive blueberry. PAH was experimentally induced through a single intraperitoneal administration of MCT at a dose of 60 mg/kg. One day after injection, the blueberry groups started receiving a daily dose of blueberry extract (100 mg/kg) by gavage, while the exercise groups initiated a three-week program of RT (ladder climbing; 15 climbs carrying 60% of maximum load; one session/day; 5 times/week). Echocardiographic evaluations were conducted 23 days after injection, and the rats were euthanized the next day to harvest LV tissue. RESULTS Separately, blueberry extract and RT mitigated augments in pulmonary artery resistance, LV tissue redox dysregulation (i.e., increased PC levels) and detrimental remodeling (i.e., reduced inflammation), and reductions in ejection fraction (EF) and fractional shortening (FS) caused by PAH. The combination of treatments prevented reductions in EF and FS, along with the development of a D-shaped LV. CONCLUSIONS blueberry extract and moderate-intensity resistance training administered during the development of MCT-induced severe PAH in rats prevented LV redox dysregulation and pathological remodeling, thereby preserving its function.
Collapse
Affiliation(s)
- Luciano Bernardes Leite
- Exercise Biology Laboratory, Department of Physical Education, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.L.S.); (S.F.F.C.); (S.C.d.L.G.); (A.J.N.)
- Department of Sports, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Leôncio Lopes Soares
- Exercise Biology Laboratory, Department of Physical Education, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.L.S.); (S.F.F.C.); (S.C.d.L.G.); (A.J.N.)
| | - Luiz Otávio Guimarães-Ervilha
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.O.G.-E.); (M.A.M.X.); (T.I.-L.); (L.L.d.O.); (M.M.-N.)
| | - Sebastião Felipe Ferreira Costa
- Exercise Biology Laboratory, Department of Physical Education, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.L.S.); (S.F.F.C.); (S.C.d.L.G.); (A.J.N.)
| | - Sara Caco dos Lúcio Generoso
- Exercise Biology Laboratory, Department of Physical Education, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.L.S.); (S.F.F.C.); (S.C.d.L.G.); (A.J.N.)
| | - Mirielly Alexia Miranda Xavier
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.O.G.-E.); (M.A.M.X.); (T.I.-L.); (L.L.d.O.); (M.M.-N.)
| | - Thainá Iasbik-Lima
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.O.G.-E.); (M.A.M.X.); (T.I.-L.); (L.L.d.O.); (M.M.-N.)
| | - Leandro Licursi de Oliveira
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.O.G.-E.); (M.A.M.X.); (T.I.-L.); (L.L.d.O.); (M.M.-N.)
| | - Ceres Mattos Della Lucia
- Laboratory of Vitamin Analysis, Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Sara Elis Bianchi
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (S.E.B.); (V.L.B.)
| | - Valquíria Linck Bassani
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (S.E.B.); (V.L.B.)
| | | | - Patrick Turck
- Department of Physiology, Basic Sciences Institute of Health, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (P.T.); (A.S.d.R.A.)
| | - Alex Sander da Rosa Araujo
- Department of Physiology, Basic Sciences Institute of Health, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (P.T.); (A.S.d.R.A.)
| | - Pedro Forte
- Department of Sports, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Department of Sports, Higher Institute of Educational Sciences of the Douro, 4560-708 Penafiel, Portugal
- CI-ISCE, ISCE Douro, 4560-547 Penafiel, Portugal
- Research Center for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | | | - Mariana Machado-Neves
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.O.G.-E.); (M.A.M.X.); (T.I.-L.); (L.L.d.O.); (M.M.-N.)
| | - Antônio José Natali
- Exercise Biology Laboratory, Department of Physical Education, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.L.S.); (S.F.F.C.); (S.C.d.L.G.); (A.J.N.)
| |
Collapse
|
2
|
Yousefi Zardak M, Keshavarz F, Mahyaei A, Gholami M, Moosavi FS, Abbasloo E, Abdollahi F, Hossein Rezaei M, Madadizadeh E, Soltani N, Bejeshk F, Salehi N, Rostamabadi F, Bagheri F, Jafaraghae M, Ranjbar Zeydabadi M, Baghgoli M, Sepehri G, Bejeshk MA. Quercetin as a therapeutic agent activate the Nrf2/Keap1 pathway to alleviate lung ischemia-reperfusion injury. Sci Rep 2024; 14:23074. [PMID: 39367100 PMCID: PMC11452703 DOI: 10.1038/s41598-024-73075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) causes oxidative stress, inflammation, and immune system activation. The Nrf2/Keap1/HO-1 pathway is important in cellular defense against these effects. Quercetin, a flavonoid with antioxidant, anti-inflammatory, and anti-cancer properties, has been investigated. Our aim in this study was to investigate the effect of quercetin on preventing lung ischemia-reperfusion injury and the role of the Nrf2/Keap1/HO-1 pathway. Sixty-four male Wistar rats were divided into four distinct groups(n = 16). Sham, lung ischemia-reperfusion (LIR), Saline + LIR, Quercetin + LIR (30 mg/kg i.p for a week before LIR). LIR groups were subjected to 60 min of ischemia (left pulmonary artery, vein, and bronchus) and 120 min of reperfusion. Our assessment encompassed a comprehensive analysis of various factors, including the evaluation of expression Nrf2, Keap1, and Heme Oxygenase-1 (HO-1) levels and NF-κB protein. Furthermore, we examined markers related to inflammation (interleukin-1β and tumor necrosis factor alpha), oxidative stress (malondialdehyde, total oxidant status, superoxide dismutase, glutathione peroxidase, total antioxidant capacity), lung edema (Wet/dry lung weight ratio and total protein concentration), apoptosis (Bax and Bcl2 protein), and histopathological alterations (intra-alveolar edema, alveolar hemorrhage, and neutrophil infiltration). Our results show that ischemia-reperfusion results in heightened inflammation, oxidative stress, apoptosis, lung edema, and histopathological damage. Quercetin showed preventive effects by reducing these markers, acting through modulation of the Nrf2/Keap1 pathway and inhibiting the NF-κB pathway. This anti-inflammatory effect, complementary to the antioxidant effects of quercetin, provides a multifaceted approach to cell protection that is important for developing therapeutic strategies against ischemia-reperfusion injury and could be helpful in preventive strategies against ischemia-reperfusion.
Collapse
Affiliation(s)
- Mohammad Yousefi Zardak
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Keshavarz
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mahyaei
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Gholami
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sadat Moosavi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Abbasloo
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Abdollahi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Hossein Rezaei
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Elham Madadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Nasrin Soltani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Niyan Salehi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research center, Bam University of Medical Sciences, Bam, Kerman, Iran
| | - Fatemeh Bagheri
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
| | - Mahla Jafaraghae
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Meraj Baghgoli
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
- Pulmonary Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Zhang L, Wang G, Li Z, Yang J, Li H, Wang W, Li Z, Li H. Molecular pharmacology and therapeutic advances of monoterpene perillyl alcohol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155826. [PMID: 38897045 DOI: 10.1016/j.phymed.2024.155826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Perillyl alcohol (POH) is a aroma monoterpene commonly obtained from various plants' essential oil. Recently, increasing researches have demonstrated that POH may be useful, not only as flavor compound, but also as bioactive molecule because of a variety of biological activities. PURPOSE The aim of this review is to summarize the production, pharmacological activities and molecular mechanism, active derivatives, toxicity and parmacokinetics, and industrial application of POH. METHODS A systematic search of published articles up to January 2024 in Web of Science, China Knowledge Network, and PubMed databases is conducted using the following keywords: POH, POH derivatives, biological or pharmacological, production or synthesis, pharmacokinetics, toxicity and application. RESULTS Biotechnological production is considered to be a potential alternative approach to generate POH. POH provides diverse pharmacological benefits, including anticancer, antimicrobial, insecticidal, antioxidant, anti-inflammatory, hypotensive, vasorelaxant, antinociceptive, antiasthmatic, hepatoprotective effects, etc. The underlying mechanisms of action include modulation of NF-κB, JNK/c-Jun, Notch, Akt/mTOR, PI3K/Akt/eNOS, STAT3, Nrf2 and ERS response pathways, mitigation of mitochondrial dysfunction and membrane integrity damage, and inhibition of ROS accumulation, pro-inflammatory cytokines release and NLRP3 activation. What's more, the proteins or genes influenced by POH against diseases refer to Bax, Bcl-2, cyclin D1, CDK, p21, p53, HIF-1α, AP-1, caspase-3, M6P/IGF2R, PARP, VEGF, etc. Some clinical studies report that intranasal delivery of POH is a safe and effective treatment for cancer, but further clinical investigations are needed to confirm other health benefits of POH in human healthy. Depending on these health-promoting properties together with desirable flavor and safety, POH can be employed as dietary supplement, preservative and flavor additive in food and cosmetic fields, as building block in synthesis fields, as anticancer drug in medicinal fields, and as pesticides and herbicides in agricultural fields. CONCLUSION This review systematically summarizes the recent advances in POH and highlights its therapeutic effects and potential mechanisms as well as the clinical settings, which is helpful to develop POH into functional food and new candidate drug for prevention and management of diseases. Future studies are needed to conduct more biological activity studies of POH and its derivatives, and check their clinical efficacy and potential side effects.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China.
| | - Guoguo Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Zehao Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan 450000, PR China.
| | - Haoliang Li
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan 450000, PR China
| | - Wanying Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Zhijian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
4
|
Farazi MM, Jafarinejad-Farsangi S, Miri Karam Z, Gholizadeh M, Hadadi M, Yari A. Circular RNAs: Epigenetic regulators of PTEN expression and function in cancer. Gene 2024; 916:148442. [PMID: 38582262 DOI: 10.1016/j.gene.2024.148442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Epigenetic regulation of gene expression, without altering the DNA sequence, is involved in many normal cellular growth and division events, as well as diseases such as cancer. Epigenetics is no longer limited to DNA methylation, and histone modification, but regulatory non-coding RNAs (ncRNAs) also play an important role in epigenetics. Circular RNAs (circRNAs), single-stranded RNAs without 3' and 5' ends, have recently emerged as a class of ncRNAs that regulate gene expression. CircRNAs regulate phosphatase and tensin homolog (PTEN) expression at various levels of transcription, post-transcription, translation, and post-translation under their own regulation. Given the importance of PTEN as a tumor suppressor in cancer that inhibits one of the most important cancer pathways PI3K/AKT involved in tumor cell proliferation and survival, significant studies have been conducted on the regulatory role of circRNAs in relation to PTEN. These studies will be reviewed in this paper to better understand the function of this protein in cancer and explore new therapeutic approaches.
Collapse
Affiliation(s)
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Miri Karam
- Department of Medical Genetics, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran
| | - Maryam Gholizadeh
- Institute of Bioinformatics, University of Medicine Greifswald, Greifwald, Germany
| | - Maryam Hadadi
- Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abolfazl Yari
- Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
5
|
Zhang JJ, Mao-Mao, Shao MM, Wang MC. Therapeutic potential of natural flavonoids in pulmonary arterial hypertension: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155535. [PMID: 38537442 DOI: 10.1016/j.phymed.2024.155535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease caused by pulmonary vascular remodeling, with a high incidence and mortality. At present, many clinical drugs for treating PAH mainly exert effects by relaxing the pulmonary artery, with limited therapeutic effects, so the search for viable therapeutic agents continues uninterrupted. In recent years, natural flavonoids have shown promising potential in the treatment of cardiovascular diseases. It is necessary to comprehensively elucidate the potential of natural flavonoids to combat PAH. PURPOSE To evaluate the potential of natural flavonoids to hinder or slow down the occurrence and development of PAH, and to identify promising drug discovery candidates. METHODS Literature was collected from PubMed, Science Direct, Web of science, CNKI databases and Google scholar. The search terms used included "pulmonary arterial hypertension", "pulmonary hypertension", "natural products", "natural flavonoids", "traditional chinese medicine", etc., and several combinations of these keywords. RESULTS The resources, structural characteristics, mechanisms, potential and prospect strategies of natural flavonoids for treating PAH were summarized. Natural flavonoids offer different solutions as possible treatments for PAH. These mechanisms may involve various pathways and molecular targets related to the pathogenesis of PAH, such as inflammation, oxidative stress, vascular remodeling, genetic, ion channels, cell proliferation and autophagy. In addition, prospect strategies of natural flavonoids for anti-PAH including structural modification and nanomaterial delivery systems have been explored. This review suggests that the potential of natural flavonoids as alternative therapeutic agents in the prevention and treatment of PAH holds promise for future research and clinical applications. CONCLUSION Despite displaying the enormous potential of flavonoids in PAH, some limitations need to be further explored. Firstly, using advanced drug discovery tools, including computer-aided design and high-throughput screening, to further investigate the safety, biological activity, and precise mechanism of action of flavonoids. Secondly, exploring the structural modifications of these compounds is expected to optimize their efficacy. Lastly, it is necessary to conduct well controlled clinical trials and a comprehensive evaluation of potential side effects to determine their effectiveness and safety.
Collapse
Affiliation(s)
- Jin-Jing Zhang
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Mao-Mao
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Min-Min Shao
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Meng-Chuan Wang
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China.
| |
Collapse
|
6
|
Farazi MM, Rostamzadeh F, Jafarinejad-Farsangi S, Moazam Jazi M, Jafari E, Gharbi S. CircPAN3/miR-221/PTEN axis and apoptosis in myocardial Infarction: Quercetin's regulatory effects. Gene 2024; 909:148316. [PMID: 38401834 DOI: 10.1016/j.gene.2024.148316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
The circular RNA/microRNA/mRNA axis is a new layer of non-coding RNA(ncRNA)-based regulatory gene expression networks upstream of numerous cell signaling pathways. Circular RNAPAN3 (circPAN3) is involved in autophagy, fibrosis and apoptosis which are responsible for the reduction incardiac functional capacityfollowingmyocardial infarction(MI). However, the molecular mechanism of circPAN3 association with apoptosis is unknown. In addition, the relationship between quercetin as a cardioprotective factor in MI and circular RNA-dependent regulatory pathways has not yet been elucidated. MI was induced in Wistar rats using the left anterior descending artery (LAD) ligation method. One day after surgery, quercetin (30 mg/kg) was injected intraperitoneal (IP) every other day for two weeks. The expression of circPAN3 was increased in the MI group (P < 0.05). The increase in circPAN3 was accompanied by a decrease in miR-221 (P < 0.0001), an increase in PTEN (P < 0.0001), and cleaved caspase 3 (P < 0.001). Quercetin effectively reduced the expression of circPAN3 (P < 0.05), PTEN (P < 0.0001), and cleaved caspase 3 (P < 0.001), and increased the expression of miR-221 (P < 0.0001) and the ratio of p-AKT to p-PI3K (P < 0.001). The circPAN3/miR-221/PTEN pathway is an ncRNA-dependent apoptotic pathway in MI cardiac tissue. Quercetin effectively modulated this pathway, resulting in a reduction of cardiac tissue death and improvement in cardiac function after MI. This suggests that the circPAN3/miR-221 axis plays a role in apoptosis in MI, and quercetin can act as a protective candidate by modulating this pathway.
Collapse
Affiliation(s)
- Mohammad Mojtaba Farazi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Farzaneh Rostamzadeh
- Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Maryam Moazam Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sedigheh Gharbi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
7
|
Ariyanto EF. The efficacy of botanical drugs in orchestrating epigenetic modifications for ameliorating metabolic disorders. Front Pharmacol 2024; 15:1366551. [PMID: 38645564 PMCID: PMC11026643 DOI: 10.3389/fphar.2024.1366551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Affiliation(s)
- Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
8
|
He YZG, Wang YX, Ma JS, Li RN, Wang J, Lian TY, Zhou YP, Yang HP, Sun K, Jing ZC. MicroRNAs and their regulators: Potential therapeutic targets in pulmonary arterial hypertension. Vascul Pharmacol 2023; 153:107216. [PMID: 37699495 DOI: 10.1016/j.vph.2023.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/26/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex and progressive disease characterized by pulmonary arterial remodeling. Despite that current combination therapy has shown improvement in morbidity and mortality, a better deciphering of the underlying pathological mechanisms and novel therapeutic targets is urgently needed to combat PAH. MicroRNA, the critical element in post-transcription mechanisms, mediates cellular functions mainly by tuning downstream target gene expression. Meanwhile, upstream regulators can regulate miRNAs in synthesis, transcription, and function. In vivo and in vitro studies have suggested that miRNAs and their regulators are involved in PAH. However, the miRNA-related regulatory mechanisms governing pulmonary vascular remodeling and right ventricular dysfunction remain elusive. Hence, this review summarized the controversial roles of miRNAs in PAH pathogenesis, focused on different miRNA-upstream regulators, including transcription factors, regulatory networks, and environmental stimuli, and finally proposed the prospects and challenges for the therapeutic application of miRNAs and their regulators in PAH treatment.
Collapse
Affiliation(s)
- Yang-Zhi-Ge He
- Center for bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Yi-Xuan Wang
- Laboratory Department of Qingzhou People's Hospital, Qingzhou 262500, Shandong, China
| | - Jing-Si Ma
- Department of School of Pharmacy, Henan University, Kaifeng 475100, Henan, China
| | - Ruo-Nan Li
- Department of School of Pharmacy, Henan University, Kaifeng 475100, Henan, China
| | - Jia Wang
- Department of Medical Laboratory, Weifang Medical University, Weifang 261053, Shandong, China
| | - Tian-Yu Lian
- Medical Science Research Center, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Yu-Ping Zhou
- Department of Cardiology, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, China
| | - Hao-Pu Yang
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Kai Sun
- Medical Science Research Center, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
9
|
He Y, Chen S, Li M, Gao Y, Feng H, Umar Q, Yin D, Feng Y. Novel co-crystal of 3-methylcinnamic acid with berberine (1:1): synthesis, characterization, and intestinal absorption property. Drug Dev Ind Pharm 2023; 49:617-627. [PMID: 37725481 DOI: 10.1080/03639045.2023.2259460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE To synthesis a novel 'Pharmaceutical Cocrystal' of berberine (BBR) with coformer 3-methylcinnamic acid (3MCA) for increasing its solubility and intestinal absorption property. SIGNIFICANCE BBR-HCl has poor liposolubility, difficulty in penetrating the cell membrane and absorption in the gastrointestinal tract, low bioavailability, and limited clinical application. A new cocrystal is formed by the interaction between 3-MCA and BBR through molecular interaction, which improves the physicochemical properties, intestinal absorption property, and hygroscopicity. METHODS The solvent evaporation method was used to synthesize BCR-3MCA cocrystal. The physicochemical properties of the crystals were confirmed by different spectral techniques, i.e. by X-ray diffraction (PXRD, SXRD), thermogravimetry and differential thermal analysis (DSC, TGA), and scanning electron microscopy (SEM). Hygroscopicity of the cocrystal was evaluated by dynamic water vapor sorption (DVS). The intestinal absorption property was evaluated by the Ussing chamber system. RESULTS BBR and 3MCA can be directly self-assembled into uniform co-crystal by hydrogen bonds and π-π stacking interactions. Compared with BBR-HCl, the solubility of BBR-3MCA cocrystal in polar solvents of water, methanol, ethanol, and isopropanol increased by 13.9, 1.5, 4.7, and 15.8 times, respectively. The apparent absorption and the absorption rate constants were increased by 7.7 and 5.6 times, respectively. Surprisingly, BBR-3MCA co-crystal almost had no hygroscopicity. CONCLUSION The absolute molecular structure of the co-crystal was further confirmed by single crystal X-ray diffraction. The hydrogen bonds drove the formation of X-like one-dimensional unit. Compared to the BBR-HCl, BBR-3MCA cocrystal displayed superior dissolution and solubility performance, improved physical-chemical properties and significantly improved intestinal absorption.
Collapse
Affiliation(s)
- Yong He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Shiyun Chen
- Analytical & Testing Center, Hefei University, Hefei, China
| | - Mengmeng Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yonghao Gao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Huiyi Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Qasim Umar
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
| | - Yisi Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
10
|
Bekedam FT, Goumans MJ, Bogaard HJ, de Man FS, Llucià-Valldeperas A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary hypertension. Pharmacol Ther 2023; 244:108389. [PMID: 36940790 DOI: 10.1016/j.pharmthera.2023.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/19/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Right ventricular fibrosis is a stress response, predominantly mediated by cardiac fibroblasts. This cell population is sensitive to increased levels of pro-inflammatory cytokines, pro-fibrotic growth factors and mechanical stimulation. Activation of fibroblasts results in the induction of various molecular signaling pathways, most notably the mitogen-activated protein kinase cassettes, leading to increased synthesis and remodeling of the extracellular matrix. While fibrosis confers structural protection in response to damage induced by ischemia or (pressure and volume) overload, it simultaneously contributes to increased myocardial stiffness and right ventricular dysfunction. Here, we review state-of-the-art knowledge of the development of right ventricular fibrosis in response to pressure overload and provide an overview of all published preclinical and clinical studies in which right ventricular fibrosis was targeted to improve cardiac function.
Collapse
Affiliation(s)
- F T Bekedam
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - M J Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC Leiden, the Netherlands
| | - H J Bogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - F S de Man
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| | - A Llucià-Valldeperas
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Wang RR, Yuan TY, Wang JM, Chen YC, Zhao JL, Li MT, Fang LH, Du GH. Immunity and inflammation in pulmonary arterial hypertension: From pathophysiology mechanisms to treatment perspective. Pharmacol Res 2022; 180:106238. [DOI: 10.1016/j.phrs.2022.106238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/08/2023]
|
12
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Rajabi S, Najafipour H, Sheikholeslami M, Jafarinejad-Farsangi S, Beik A, Askaripour M, Karam ZM. Perillyl alcohol and quercetin modulate the expression of non-coding RNAs MIAT, H19, miR-29a, and miR-33a in pulmonary artery hypertension in rats. Noncoding RNA Res 2022; 7:27-33. [PMID: 35155877 PMCID: PMC8818487 DOI: 10.1016/j.ncrna.2022.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play critical roles in the pathogenesis and progression of pulmonary artery hypertension (PAH). LncRNA H19, myocardial infarction-associated transcript (MIAT), miR-29a, and miR-33a have been suggested as potential targets for treating arterial hypertension. We explored the expression pattern of non-coding RNAs H19, MIAT, miR-29a, and miR-33a in monocrotaline (MCT)-induced PAH rats. Moreover, we investigated whether perillyl alcohol (PA) and quercetin (QS), two plant derivatives with beneficial effects on PAH-induced abnormalities, act through regulating the expression of these non-coding RNAs. Methods Male Wistar rats (n = 30) were divided into five groups. MCT (60 mg/kg) was injected subcutaneously to induce PAH. PA (50 mg/kg daily) and QS (30 mg/kg daily) were administered three weeks after induction of PAH. H&E staining and qRT-PCR were performed to assess arteriole wall thickness and gene expression, respectively. Results Right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH) increased in MCT and MCT + Veh. groups compared to the control group (in both P < 0.001). QS and PA decreased RVSP and RVH significantly. Wall thickness and fibrosis score in the MCT group (score 3) increased compared to the control group (score 0). PA and QS ameliorated wall thickness and fibrosis to score 1 (mild). Also, the expression of miR-29a and miR-33a decreased in the PAH group (in both, P < 0.001). Treatment with PA and QS decreased the expression of H19 (P < 0.001) and MIAT (P < 0.01) and increased the expression of miR-29a (P < 0.01) and miR-33a significantly (P < 0.05 for QS and P < 0.001 for PA). Conclusions The beneficial effects of PA and QS on PAH-induced abnormalities were exerted through returning the dysregulated expression of H19, MIAT, miR-29a, and miR-33a to normal levels in rats with MTC-induced PAH. This study emphasized the therapeutic potential of PA and QS in PAH. However, more detailed investigations are needed to clarify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Soodeh Rajabi
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Mozhgan Sheikholeslami
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Corresponding author. Physiology Research Center, Kerman University of Medical Sciences, Jehad Blvd, Ebn Sina Avenue, Kerman, 76198-13159, Iran.
| | - Ahmad Beik
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Askaripour
- Department of Physiology, Bam University of Medical Sciences, Bam, Iran
| | - Zahra Miri Karam
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Xue Z, Li Y, Zhou M, Liu Z, Fan G, Wang X, Zhu Y, Yang J. Traditional Herbal Medicine Discovery for the Treatment and Prevention of Pulmonary Arterial Hypertension. Front Pharmacol 2021; 12:720873. [PMID: 34899290 PMCID: PMC8660120 DOI: 10.3389/fphar.2021.720873] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary artery remodeling that may subsequently culminate in right heart failure and premature death. Although there are currently both non-pharmacological (lung transplantation, etc.) and pharmacological (Sildenafil, Bosentan, and new oral drugs on trial) therapies available, PAH remains a serious and fatal pulmonary disease. As a unique medical treatment, traditional herbal medicine (THM) treatment has gradually exerted its advantages in treating PAH worldwide through a multi-level and multi-target approach. Additionally, the potential mechanisms of THM were deciphered, including suppression of proliferation and apoptosis of pulmonary artery smooth muscle cells, controlling the processes of inflammation and oxidative stress, and regulating vasoconstriction and ion channels. In this review, the effects and mechanisms of the frequently studied compound THM, single herbal preparations, and multiple active components from THM are comprehensively summarized, as well as their related mechanisms on several classical preclinical PAH models. It is worth mentioning that sodium tanshinone IIA sulfonate sodium and tetramethylpyrazine are under clinical trials and are considered the most promoting medicines for PAH treatment. Last, reverse pharmacology, a strategy to discover THM or THM-derived components, has also been proposed here for PAH. This review discusses the current state of THM, their working mechanisms against PAH, and prospects of reverse pharmacology, which are expected to facilitate the natural anti-PAH medicine discovery and development and its bench-to-bedside transformation.
Collapse
Affiliation(s)
- Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yixuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Mengen Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|